51,581 research outputs found

    Some Exact Solutions for Maximally Symmetric Topological Defects in Anti de Sitter Space

    Full text link
    We obtain exact analytical solutions for a class of SO(ll) Higgs field theories in a non-dynamic background nn-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric pp-dimensional topological defects where n=(p+1)+ln=(p+1)+l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both pp and ll. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects (p=0,1,2,… ; l=1p=0,1,2,\dotsc;\, l=1), vortex-like defects (p=1,2,3; l=2p=1,2,3;\, l=2), and the 'tHooft-Polyakov monopole (p=0; l=3p=0;\, l=3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.Comment: 45 pages, 19 figures. In version 2: added two paragraphs about how our double BPS limit automatically gives a solution to the Yang-Mills equation, and related it to Yang-Mills solutions in AdS_4 that appeared on the same day in eprint 1708.0636

    On asymptotic behavior of work distributions for driven Brownian motion

    Full text link
    We propose a simple conjecture for the functional form of the asymptotic behavior of work distributions for driven overdamped Brownian motion of a particle in confining potentials. This conjecture is motivated by the fact that these functional forms are independent of the velocity of the driving for all potentials and protocols, where explicit analytical solutions for the work distributions have been derived in the literature. To test the conjecture, we use Brownian dynamics simulations and a recent theory developed by Engel and Nickelsen (EN theory), which is based on the contraction principle of large deviation theory. Our tests suggest that the conjecture is valid for potentials with a confinement equal to or weaker than the parabolic one, both for equilibrium and for nonequilibrium distributions of the initial particle position. In addition we obtain a new analytical solution for the asymptotic behavior of the work distribution for the V-potential by application of the EN theory, and we extend this theory to nonequilibrated initial particle positions

    Antiperiodic XXZ chains with arbitrary spins: Complete eigenstate construction by functional equations in separation of variables

    Full text link
    Generic inhomogeneous integrable XXZ chains with arbitrary spins are studied by means of the quantum separation of variables (SOV) method. Within this framework, a complete description of the spectrum (eigenvalues and eigenstates) of the antiperiodic transfer matrix is derived in terms of discrete systems of equations involving the inhomogeneity parameters of the model. We show here that one can reformulate this discrete SOV characterization of the spectrum in terms of functional T-Q equations of Baxter's type, hence proving the completeness of the solutions to the associated systems of Bethe-type equations. More precisely, we consider here two such reformulations. The first one is given in terms of Q-solutions, in the form of trigonometric polynomials of a given degree NsN_s, of a one-parameter family of T-Q functional equations with an extra inhomogeneous term. The second one is given in terms of Q-solutions, again in the form of trigonometric polynomials of degree NsN_s but with double period, of Baxter's usual (i.e. without extra term) T-Q functional equation. In both cases, we prove the precise equivalence of the discrete SOV characterization of the transfer matrix spectrum with the characterization following from the consideration of the particular class of Q-solutions of the functional T-Q equation: to each transfer matrix eigenvalue corresponds exactly one such Q-solution and vice versa, and this Q-solution can be used to construct the corresponding eigenstate.Comment: 38 page

    Surface properties of fluids of charged platelike colloids

    Full text link
    Surface properties of mixtures of charged platelike colloids and salt in contact with a charged planar wall are studied within density functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the Cartesian axes corresponding to the Zwanzig model and the charges of the particles are concentrated in their centers. The density functional applied is an extension of a recently introduced functional for charged platelike colloids. Analytically and numerically calculated bulk and surface phase diagrams exhibit first-order wetting for sufficiently small macroion charges and isotropic bulk order as well as first-order drying for sufficiently large macroion charges and nematic bulk order. The asymptotic wetting and drying behavior is investigated by means of effective interface potentials which turn out to be asymptotically the same as for a suitable neutral system governed by isotropic nonretarded dispersion forces. Wetting and drying points as well as predrying lines and the corresponding critical points have been located numerically. A crossover from monotonic to non-monotonic electrostatic potential profiles upon varying the surface charge density has been observed. Due to the presence of both the Coulomb interactions and the hard-core repulsions, the surface potential and the surface charge do not vanish simultaneously, i.e., the point of zero charge and the isoelectric point of the surface do not coincide.Comment: 14 pages, submitte

    Quantitative Properties on the Steady States to A Schr\"odinger-Poisson-Slater System

    Full text link
    A relatively complete picture on the steady states of the following Schro¨\ddot{o}dinger-Poisson-Slater (SPS) system \begin{cases} -\Delta Q+Q=VQ-C_{S}Q^{2}, & Q>0\text{ in }\mathbb{R}^{3}\\ Q(x)\to0, & \mbox{as }x\to\infty,\\ -\Delta V=Q^{2}, & \text{in }\mathbb{R}^{3}\\ V(x)\to0 & \mbox{as }x\to\infty. \end{cases} is given in this paper: existence, uniqueness, regularity and asymptotic behavior at infinity, where CS>0C_{S}>0 is a constant. To the author's knowledge, this is the first uniqueness result on SPS system

    Acausality in Gowdy spacetimes

    Full text link
    We present a parametrization of T3T^3 and S1Ă—S2S^1\times S^2 Gowdy cosmological models which allows us to study both types of topologies simultaneously. We show that there exists a coordinate system in which the general solution of the linear polarized special case (with both topologies) has exactly the same functional dependence. This unified parametrization is used to investigate the existence of Cauchy horizons at the cosmological singularities, leading to a violation of the strong cosmic censorship conjecture. Our results indicate that the only acausal spacetimes are described by the Kantowski-Sachs and the Kerr-Gowdy metrics.Comment: Typos corrected, 10 pages. Dedicated to Michael P. Ryan on the occasion of his 60-th birthda

    On the Thermodynamic Bethe Ansatz Equation in Sinh-Gordon Model

    Get PDF
    Two implicit periodic structures in the solution of sinh-Gordon thermodynamic Bethe ansatz equation are considered. The analytic structure of the solution as a function of complex θ\theta is studied to some extent both analytically and numerically. The results make a hint how the CFT integrable structures can be relevant in the sinh-Gordon and staircase models. More motivations are figured out for subsequent studies of the massless sinh-Gordon (i.e. Liouville) TBA equation.Comment: 32 pages, 18 figures, myart.st
    • …
    corecore