277 research outputs found

    Structured Equations for Complex Living Systems - Modeling, Asymptotics and Numerics

    Get PDF
    Complex living systems differ from those systems whose evolution is well described by the laws of Classical Physics. In fact, they are endowed with self-organizing abilities that result from the interactions among their constituent individuals, which behave according to specific functions, strategies or traits. These functions/strategies/traits can evolve over time, as a result of adaptation to the surrounding environment, and are usually heterogeneously distributed over the individuals, so that the global features expressed by the system as a whole cannot be reduced to the superposition of the single functions/strategies/traits. Quoting Aristotle, we can say that, within these systems, "the whole is more than the sum of its parts". As a result, when we study the dynamics of complex living systems, there are new concepts that come into play, such as adaptation, herding and learning, which do not belong to the traditional vocabulary of physical sciences and make the dynamics of these systems hardly to be forecast. Moving from the above considerations, the subject of my PhD was the development and the study of structured equations for population dynamics (partial differential equations and integro-differential equations) applied to modelling the evolution of complex living systems. In particular, I designed models for multicellular systems, living species and socio-economic systems with the aim of inspecting mechanisms underlying the emergence of collective behaviors and self-organization. In the framework of structured equations, individuals belonging to a given system are divided into different populations and heterogeneously distributed characteristics are modelled by suitable independent variables, the so-called structuring variables. For each population, a function describing the distribution of the individuals over the structuring variables is introduced, which evolves through a partial differential equation, or an integro-differential equation, whose parameter functions are defined according to the phenomena under study. I decided to use such mathematical framework since it makes possible to effectively model the afore mentioned complexity aspects of living systems and provides an efficient way to reduce complexity in view of the mathematical formalization. With particular reference to multicellular systems, I focused on the design and the study of mathematical models describing the evolutionary dynamics of cancer cell populations under the selective pressures exerted by therapeutic agents and the immune system. Proliferation, mutation and competition phenomena are included in these models, which rely on the idea that the process leading to the emergence of resistance to anti-cancer therapies and immune action can be considered, at least in principles, as a Darwinian micro-evolution. It is worth noting that most of these models stem from direct collaborations with biologists and clinicians. Besides local and global existence results for the mathematical problems linked to the models, my PhD thesis presents results related to concentration phenomena arising in phenotype-structured equations and opinion-structured equations (i.e., the weak convergence of the solutions to sums of Dirac masses), and with the derivation of macroscopic models from space-velocity structured equations. From the applicative standpoint such concentration phenomena provide a possible mathematical formalization of the selection principle in evolutionary biology and the emergence of opinions; macroscopic models, instead, offer an overall view of the systems at hand. Numerical simulations are performed with the aim of illustrating, and extending, analytical results and verifying the consistency of the model with empirical dat

    Preface [Special issue on Modeling and Simulation of Tumor Development, Treatment and Control]

    Get PDF
    Preface of the Special Issue: Modeling and Simulation of Tumor Development, Treatment, and Control, Edited by Nicola Bellomo and Elena De Angelis, Volume 37, Issue 11, Pages 1121-1252, 2003, Mathematical and Computer Modelling, ISSN 0895-7177, ELSEVIE

    Fractional model of cancer immunotherapy and its optimal control

    Get PDF
    Cancer is one of the most serious illnesses in all of the world. Although most of the cancer patients are treated with chemotherapy, radiotherapy and surgery, wide research is conducted related to experimental and theoretical immunology. In recent years, the research on cancer immunotherapy has led to major medical advances. Cancer immunotherapy refers to the stimulation of immune system to deal with cancer cells. In medical practice, it is mainly achieved by using effector cells such as activated T-cells and Interleukin-2 (IL-2), which is the main cytokine responsible for lymphocyte activation, growth and differentiation. A well-known mathematical model, named as Kirschner-Panetta (KP) model, represents richly the dynamics of the interaction between cancer cells, IL-2 and the effector cells. The dynamics of the KP model is described and the solution to which is approximated by using polynomial approximation based methods such as Adomian decomposition method and differential transform method. The rich nonlinearity of the KP model causes these approaches to become so complicated in order to deal with the representation of polynomial approximations. It is illustrated that the approximated polynomials are in good agreement with the solution obtained by common numerical approaches. In the KP model, the growth of the tumour cells can be expressed by a linear function or any limited-growth function such as logistic equation, in which the cancer population possesses an upper bound mentioned as carrying capacity. Effector cells and IL-2 construct two external sources of medical treatment to stimulate immune system to eradicate cancer cells. Since the main goal in immunotherapy is to remove the tumour cells with the least probable medication side effects, an advanced version of the model may include a time dependent external sources of medical treatment, meaning that the external sources of medical treatment could be considered as control functions of time and therefore the optimum use of medical sources can be evaluated in order to achieve the optimal measure of an objective function. With this sense of direction, two distinct strategies are explored. The first one is to only consider the external source of effector cells as the control function to formulate an optimal control problem. It is shown under which circumstances, the tumour is eliminated. The approach in the formulation of the optimal control is the Pontryagin maximum principal. Furthermore the optimal control problem will be dealt with using particle swarm optimization (PSO). It is shown that the obtained results are significantly better than those obtained by previous researchers. The second strategy is to formulate an optimal control problem by considering both the two external sources as the controls. To our knowledge, it is the first time to present a multiple therapeutic protocol for the KP model. Some MATLAB routines are develop to solve the optimal control problems based on Pontryagin maximum principal and also the PSO. As known, fractional differential equations are more appropriate to describe the persistent memory of physical phenomena. Thus, the fractional KP model is defined in the sense of Caputo differentiation operator. An effective method for numerical treatment of the model is described, namely Predictor-Corrector method of Adams-Bashforth-Moulton type. A robust MATLAB routine is coded based on the mentioned approach and the solution obtained will be compared with those of the classical KP model. The code is prepared in such a way to be able to deal with systems of fractional differential equations, in which each equation has its own fractional order (i.e. multi-order systems of fractional differential equations). The theorems for existence of solutions and the stability analysis of the fractional KP model are represented. In this regard, a frequently used method of solving fractional differential equations (FDEs) is described in details, namely multi-step generalized differential transform method (MSGDTM), then it is illustrated that the method neglects the persistent memory property and takes the incorrect approach in dealing with numerical solutions of FDEs and therefore it is unfit to be used in differential equations governed by fractional differentiation operators. The sigmoidal behavior of the solution to the logistic equation caused it to be one of the most versatile models in natural sciences and therefore the fractional logistic equation would be a relevant problem to be dealt with. Thus, a power series of Mittag-Leffer functions is introduced, the behaviour of which is in good agreement with the solution to fractional logistic equation (FLE), and then a fractional integro-differential equation is represented and proved to be satisfied with the power series of Mittag-Leffler function. The obtained fractional integro-differential equation is named as modified fractional differential equation (MFDL) and possesses a nonlinear additive term related to the solution of the logistic equation (LE). The method utilized in the thesis, may be appropriately applied to the analysis of solutions to nonlinear fractional differential equations of mathematical physics. Inverse problems to FDEs occur in many branches of science. Such problems have been investigated, for instance, in fractional diffusion equation and inverse boundary value problem for semi- linear fractional telegraph equation. The determination of the order of fractional differential equations is an issue, which has been analyzed and discussed in, for instance, fractional diffusion equations. Thus, fractional order estimation has been conducted for some classes of linear fractional differential equations, by introducing the relationship between the fractional order and the asymptotic behaviour of the solutions to linear fractional differential equations. Fractional optimal control problems, in which the system and (or) the objective function are described based on fractional derivatives, are much more complicated to be solved by using a robust and reliable numerical approach. Thus, a MATLAB routine is provided to solve the optimal control for fractional KP model and the obtained solutions are compared with those of classical KP model. It is shown that the results for fractional optimal control problems are better than classical optimal control problem in the sense of the amount of drug administration

    Mathematical biomedicine and modeling avascular tumor growth

    Get PDF
    In this chapter we review existing continuum models of avascular tumor growth, explaining howthey are inter related and the biophysical insight that they provide. The models range in complexity and include one-dimensional studies of radiallysymmetric growth, and two-dimensional models of tumor invasion in which the tumor is assumed to comprise a single population of cells. We also present more detailed, multiphase models that allow for tumor heterogeneity. The chapter concludes with a summary of the different continuum approaches and a discussion of the theoretical challenges that lie ahead

    Solutions of fractional logistic equations by Euler's numbers

    Full text link
    In this paper, we solve in the convergence set, the fractional logistic equation making use of Euler's numbers. To our knowledge, the answer is still an open question. The key point is that the coefficients can be connected with Euler's numbers, and then they can be explicitly given. The constrained of our approach is that the formula is not valid outside the convergence set, The idea of the proof consists to explore some analogies with logistic function and Euler's numbers, and then to generalize them in the fractional case.Comment: Euler's numbers, Biological Application, Fractional logistic equatio

    A New Efficient Technique for Solving Modified Chua's Circuit Model with a New Fractional Operator

    Get PDF
    Chua's circuit is an electronic circuit that exhibits nonlinear dynamics. In this paper, a new model for Chua's circuit is obtained by transforming the classical model of Chua's circuit into novel forms of various fractional derivatives. The new obtained system is then named fractional Chua's circuit model. The modified system is then analyzed by the optimal perturbation iteration method. Illustrations are given to show the applicability of the algorithms, and effective graphics are sketched for comparison purposes of the newly introduced fractional operatorsThe authors are grateful to the Spanish Government for Grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE) and to the Basque Government for Grant IT1207-1

    Longterm existence of solutions of a reaction diffusion system with non-local terms modeling an immune response

    Full text link
    This paper shows the global existence and boundedness of solutions of a reaction diffusion system modeling liver infections. Non-local effects in the dynamics between the virus and the cells of the immune system lead to an integro-partial differential equation with homogeneous Neumann boundary conditions. Depending on the chosen model parameters, the system shows two types of solutions which are interpreted as different infection courses. Apart from solutions decaying to zero, there are solutions with a tendency towards a stationary and spatially inhomogeneous state. By proving the boundedness of the solution in the L1(Ω)L^1(\Omega)- and the L2(Ω)L^2(\Omega)-norms, it is possible to show the global boundedness of the solution. The proof uses the opposite mechanisms in the reaction terms. The gained rough estimates for showing the boundedness in the L1(Ω)L^1(\Omega)- and the L2(Ω)L^2(\Omega)-norms are compared numerically with the norms of the solutions.Comment: 19 pages, 7 figure

    Mathematical models for immunology:current state of the art and future research directions

    Get PDF
    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years
    • …
    corecore