15,966 research outputs found

    Single-Step Quantum Search Using Problem Structure

    Get PDF
    The structure of satisfiability problems is used to improve search algorithms for quantum computers and reduce their required coherence times by using only a single coherent evaluation of problem properties. The structure of random k-SAT allows determining the asymptotic average behavior of these algorithms, showing they improve on quantum algorithms, such as amplitude amplification, that ignore detailed problem structure but remain exponential for hard problem instances. Compared to good classical methods, the algorithm performs better, on average, for weakly and highly constrained problems but worse for hard cases. The analytic techniques introduced here also apply to other quantum algorithms, supplementing the limited evaluation possible with classical simulations and showing how quantum computing can use ensemble properties of NP search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with multiple steps (section 7). See also http://www.parc.xerox.com/dynamics/www/quantum.htm

    Scaling hypothesis for the Euclidean bipartite matching problem

    Full text link
    We propose a simple yet very predictive form, based on a Poisson's equation, for the functional dependence of the cost from the density of points in the Euclidean bipartite matching problem. This leads, for quadratic costs, to the analytic prediction of the large NN limit of the average cost in dimension d=1,2d=1,2 and of the subleading correction in higher dimension. A non-trivial scaling exponent, γd=d−2d\gamma_d=\frac{d-2}{d}, which differs from the monopartite's one, is found for the subleading correction. We argue that the same scaling holds true for a generic cost exponent in dimension d>2d>2.Comment: 11 page

    A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks

    Get PDF
    Research Report UPC-DEIO DR 2018-01. November 2018The computation of the Newton direction is the most time consuming step of interior-point methods. This direction was efficiently computed by a combination of Cholesky factorizations and conjugate gradients in a specialized interior-point method for block-angular structured problems. In this work we apply this algorithmic approach to solve very large instances of minimum cost flows problems in bipartite networks, for convex objective functions with diagonal Hessians (i.e., either linear, quadratic or separable nonlinear objectives). After analyzing the theoretical properties of the interior-point method for this kind of problems, we provide extensive computational experiments with linear and quadratic instances of up to one billion arcs and 200 and five million nodes in each subset of the node partition. For linear and quadratic instances our approach is compared with the barriers algorithms of CPLEX (both standard path-following and homogeneous-self-dual); for linear instances it is also compared with the different algorithms of the state-of-the-art network flow solver LEMON (namely: network simplex, capacity scaling, cost scaling and cycle canceling). The specialized interior-point approach significantly outperformed the other approaches in most of the linear and quadratic transportation instances tested. In particular, it always provided a solution within the time limit and it never exhausted the 192 Gigabytes of memory of the server used for the runs. For assignment problems the network algorithms in LEMON were the most efficient option.Peer ReviewedPreprin

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47

    Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

    Get PDF
    Several recent methods used to analyze asymptotic stability of delay-differential equations (DDEs) involve determining the eigenvalues of a matrix, a matrix pencil or a matrix polynomial constructed by Kronecker products. Despite some similarities between the different types of these so-called matrix pencil methods, the general ideas used as well as the proofs differ considerably. Moreover, the available theory hardly reveals the relations between the different methods. In this work, a different derivation of various matrix pencil methods is presented using a unifying framework of a new type of eigenvalue problem: the polynomial two-parameter eigenvalue problem, of which the quadratic two-parameter eigenvalue problem is a special case. This framework makes it possible to establish relations between various seemingly different methods and provides further insight in the theory of matrix pencil methods. We also recognize a few new matrix pencil variants to determine DDE stability. Finally, the recognition of the new types of eigenvalue problem opens a door to efficient computation of DDE stability
    • …
    corecore