311 research outputs found

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times

    Novel heavy-traffic regimes for large-scale service systems

    Get PDF
    We introduce a family of heavy-traffic regimes for large scale service systems, presenting a range of scalings that include both moderate and extreme heavy traffic, as compared to classical heavy traffic. The heavy-traffic regimes can be translated into capacity sizing rules that lead to Economies-of-Scales, so that the system utilization approaches 100% while congestion remains limited. We obtain heavy-traffic approximations for stationary performance measures in terms of asymptotic expansions, using a non-standard saddle point method, tailored to the specific form of integral expressions for the performance measures, in combination with the heavy-traffic regimes

    Pseudo steady-state period in non-stationary infinite-server queue with state dependent arrival intensity

    Get PDF
    An infinite-server queueing model with state-dependent arrival process and exponential distribution of service time is analyzed. It is assumed that the difference between the value of the arrival rate and total service rate becomes positive starting from a certain value of the number of customers in the system. In this paper, time until reaching this value by the number of customers in the system is called the pseudo steady-state period (PSSP). Distribution of duration of PSSP, its raw moments and its simple approximation under a certain scaling of the number of customers in the system are analyzed. Novelty of the considered problem consists of an arbitrary dependence of the rate of customer arrival on the current number of customers in the system and analysis of time until reaching from below a certain level by the number of customers in the system. The relevant existing papers focus on the analysis of time interval since exceeding a certain level until the number of customers goes down to this level (congestion period). Our main contribution consists of the derivation of a simple approximation of the considered time distribution by the exponential distribution. Numerical examples are presented, which confirm good quality of the proposed approximation

    Transient error approximation in a Lévy queue

    Get PDF
    Motivated by a capacity allocation problem within a finite planning period, we conduct a transient analysis of a single-server queue with Lévy input. From a cost minimization perspective, we investigate the error induced by using stationary congestion measures as opposed to time-dependent measures. Invoking recent results from fluctuation theory of Lévy processes, we derive a refined cost function, that accounts for transient effects. This leads to a corrected capacity allocation rule for the transient single-server queue. Extensive numerical experiments indicate that the cost reductions achieved by this correction can be significant
    corecore