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NOVEL HEAVY-TRAFFIC REGIMES
FOR LARGE-SCALE SERVICE SYSTEMS∗

A.J.E.M. JANSSEN† , J.S.H. VAN LEEUWAARDEN† , AND B.W.J. MATHIJSEN†

Abstract. We introduce a family of heavy-traffic regimes for large-scale service systems, pre-
senting a range of scalings that include both moderate and extreme heavy traffic, as compared to
classical heavy traffic. The heavy-traffic regimes can be translated into capacity sizing rules that
lead to economies-of-scales, so that the system utilization approaches 100% while congestion remains
limited. We obtain heavy-traffic approximations for stationary performance measures in terms of
asymptotic expansions, using a nonstandard saddle point method, tailored to the specific form of
integral expressions for the performance measures, in combination with the heavy-traffic regimes.

Key words. heavy-traffic approximation, heavy-traffic regimes, large service systems, queueing
theory, asymptotic analysis, saddle point method, Riemann zeta function
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1. Introduction. Facing costs and large populations in need of service, service
operations in, for instance, call centers, health care, and digital communications face
the challenge of matching customer demand with provider capacity. Timely access
and responsiveness should be balanced with the costs of service capacity, and the
central question is thus how to match capacity and demand. By taking into account
the natural fluctuations of demand, stochastic models have proved instrumental in
both quantifying and improving the operational performance of service systems. A
celebrated capacity sizing rule for large service systems, which arises from stochastic
intuition, prescribes that capacity should be such that it can deal with the natural
fluctuations of demand. Say the demand per period is given by some random variable
A with mean μA and variance σ2

A. For systems facing large demand, one then sets
the capacity according to the rule s = μA + βσA, which consists of a part μA that is
minimally required to deal with the incoming demand, and a part βσA which is the
additional capacity that should protect the system against stochastically predictable
yet unforeseeable fluctuations. The additional capacity βσA hence presents a hedge
against variability, which is of the order of the natural fluctuations in demand σA and
which can be fine-tuned by setting the constant β.

Large-scale service operations are often amenable to pursuing the dual goal of
high system utilization and short delays. In order to achieve this, capacity sizing
rules, or heavy-traffic regimes, typically scale systems such that the system utilization
approaches 100% while both the demand and capacity grow large, hence rendering
effects of economies-of-scale. The capacity sizing rule described above often fulfills this
condition, and we can best describe this in terms of a setting in which the demand per
period is generated by many customers. Consider a service system with n independent
customers and let X denote the generic random variable that describes the individual
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788 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

customer demand per period with mean μX and variance σ2
X . Denote the service

capacity by sn, so that the system utilization is given by ρn = nμX/sn, where we
index with n to express the dependence on the scale at which the system operates.

Stochastic models with several parameters usually exhibit different kinds of lim-
iting behavior depending on how the parameters converge. We shall choose the pa-
rameters such that, in the limit, the system becomes large and goes into heavy traffic,
i.e., ρn → 1 as n → ∞. The way in which the system reaches heavy traffic is deter-
mined by the capacity sizing rule used. We introduce a new class of capacity sizing
rules that depend on n and that define novel heavy-traffic regimes which are partic-
ularly useful in application because the waiting times in the limiting service systems
will be negligible, compared to the waiting times in conventional heavy-traffic regimes.

Conventional heavy-traffic limit theory was largely developed by Kingman in the
1960s (for an extensive survey see [30]) and involves a sequence of queueing systems
having a fixed capacity with an associated sequence of traffic intensities that converges
to the critical value of one from below. The sequence of random variables depicting
the stationary queue length diverges to infinity but converges to a nondegenerate limit
after appropriate normalization. However, in an important respect, this regime fails
to represent a typical queueing system in practice because in the (heavy-traffic) limit
an arriving customer is almost certain to be delayed and waiting times are excessive.
We therefore consider a sequence of systems in which the traffic intensities converge
to one from below, the demand and capacity going to infinity, but in such a way
(the relation we refer to as the capacity sizing rule) that the waiting times remain
manageable.

A sensible capacity sizing rule would be sn = nμX + βσX
√
n. The heavy-traffic

paradigm, which builds on the central limit theorem, then prescribes considering a
sequence of systems indexed by n with associated loads ρn such that

(1.1)
√
n(1− ρn) → γ =

βσ2
X

μX
> 0, as n → ∞.

Starting from this setting, considered in many papers including [16] (cf. below for
more connections with the literature), we introduce a novel family described in terms
of a parameter α for which we assume that

(1.2) nα(1− ρn) → γ, as n → ∞, γ > 0.

The parameter α ≥ 0 defines a whole range of possible scaling regimes, including
the classic case α = 1/2. In terms of a capacity sizing rule for systems with many
customers, the condition (1.2) is tantamount to sn = nμX + βσXn1−α. Similar
capacity sizing rules have been considered in [5, 22] for many-server systems with
uncertain arrival rates. Hence, for α ∈ (0, 1/2) the variability hedge is relatively
large, so that the regime parameterized by α ∈ (0, 1/2) can be seen as moderate
heavy traffic: heavy-traffic conditions in which the full occupancy is reached more
slowly, as a function of n, than for classical heavy traffic. For opposite reasons, the
range α ∈ (1/2,∞) corresponds to extreme heavy traffic due to a relatively small
variability hedge. Note that the case α = 0 does not lead to 100% system utilization
when n → ∞.

In this paper we apply (1.2) to a specific stochastic model and show that econo-
mies-of-scale can be achieved for a large range of α, although the nature of the bene-
fits obtained by operating on a large scale depends on the precise capacity sizing rule
(hence the parameter α). We quantify performance in terms of stationary measures:
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HEAVY-TRAFFIC REGIMES FOR LARGE SERVICE SYSTEMS 789

the mean and variance of the congestion in the system and the probability of an
empty system. For these performance measures, we derive heavy-traffic limits under
the scalings (1.2) that are relatively simple functions of only the first two moments of
the demand per period. Such parsimonious expressions are useful for quantifying and
improving system behavior. The heavy-traffic limits, however, also provide qualitative
insight into the system behavior. Our asymptotic analysis shows that mean conges-
tion is O(nα), which implies that delays experienced by the customers are negligible
for all values of α ∈ [0, 1), are roughly constant for α = 1, and grow without bound for
α > 1. We expect this qualitative behavior to be universal for a wide range of stochas-
tic models to which the regime (1.2) is applied. We further show the existence of the
following trichotomy as n → ∞ under (1.2): For α ∈ (0, 1/2) the empty-system prob-
ability converges to 1, for α ∈ (1/2, 1) it converges to 0, while only for α = 1/2 there
is a limiting value in (0, 1). Hence, as expected, the system performance deteriorates
with α, in a rather crude way for the empty-system probability, and in only a mild
way for mean congestion levels. The regime (1.2) thus presents a range of possible
capacity sizing rules that all lead to economies-of-scale, and depending on what is the
desired nature of performance for a particular service system, an appropriate α can
be selected. From the quantitative perspective, our detailed asymptotic analysis leads
to more precise asymptotic estimates for the performance measures in heavy traffic,
which reveal the exact manner in which the mean congestion is influenced by α and γ.

To explore the family of heavy-traffic regimes (1.2), we choose as a vehicle a spe-
cific discrete stochastic model, in which we divide time into periods of equal length,
and model the net input in period k as the difference between the incoming demand
An(k) and a fixed capacity sn. Assuming demand is generated by n independent cus-
tomers, the demand per period can be written as An(k) =

∑n
i=1 Xi(k) and is assumed

to be integer-valued. The rule in (1.2) thus specifies how the mean and variance of
An(k) (and hence of Xi(k)), and simultaneously sn, will all grow to infinity as func-
tions of n. Although the scaling (1.2) can be applied to other possibly more general
models, our model strikes a good balance between applicability and mathematical
tractability. The vast majority of the literature for service systems builds on stochas-
tic models for individual customer arrivals and departures, also under Markovian
assumptions. In particular, the classical birth-death processes that describe M/M/sn
and M/M/sn + M systems are the main drivers, both for plain performance eval-
uation and for exploring capacity sizing rules in heavy-traffic regimes; see [16, 7].
These birth-death processes are driven by arrival rates, leading to sample paths in
which customers leave and depart one by one, while our model represents processes
embedded at equidistant time points, driven by arrival counts in the periods between
these time points. Albeit at a rougher scale, or at a higher level of aggregation, a
practical modeling advantage is that the random variable An(k) leaves room for inter-
pretations that do not rely on the Poisson assumption. Let us mention some possible
interpretations. The canonical framework for large data-handling systems considers a
buffer that receives messages from n independent and identical information sources.
Source i generates Xi(k) data packets in slot k, so that in total An(k) =

∑n
i=1 Xi(k)

packets join the buffer in slot k. The buffer depletes through an output channel with
a maximum transmission capacity of sn packets per time slot. As such, our model can
be viewed as a discrete version of the Anick–Mitra–Sondhi model [3]. Many-sources
scaling became popular as it is well suited to modern telecommunications networks,
in which a switch may have hundreds of different input flows, but the situation in
which An(k) =

∑n
i=1 Xi(k) can in principle be applied to any service system in which

demand can be regarded as coming from many different inputs.
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790 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

Our stochastic model can be viewed as a discrete time bulk service queue, in
which work is served in bulks of size sn. This model is one of the canonical models in
queueing theory, having a wide range of applications in fields like digital communica-
tion, wireless networks, road traffic, reservation systems, health care, and many more.
(See [9] and [28, Chapter 5] for an overview.) In road traffic, the basic model for
congestion at an intersection, known as the fixed-cycle traffic-light queue [23, 29], is
related to our discrete bulk service queue. Then sn represents the maximum number
of delayed cars in front of a traffic light that can depart during one green period, while
Ak(n) is the number of newly arriving cars during a consecutive green and red period.
An example from health care is panel sizing [31]. Say a general practitioner has a
pool of n clients (typically in the order of [15]), all of which are potential patients,
and together require Ak(n) consults per day. Further assume that the practitioner
can see a maximum number of sn patients per day. What then is an appropriate
patient panel size n that strikes a reasonable balance between accessing medical care
in a timely manner and restricting the time that the practitioner sits idle? The panel
size application is one of many examples of an appointment book, referring to some
schedule of appointments for a fixed period with capacity sn appointments per period
and newly arriving appointment Ak(n) per period. See [12] for another recent exam-
ple of an appointment book in a health care setting, again in terms of our bulk service
queue, with An(k) the new patients per day and sn the number of available beds. For
all of the examples above, and many more, our new class of heavy-traffic scalings (1.2)
presents capacity sizing rules for which the expected performance can be quantified
using the results in this paper. This will be helpful in dimensioning the systems (how
much capacity is needed to achieve a certain target performance?) while exploiting
economies-of-scale. For appointment books, our model together with the capacity
sizing rules (1.2) are particularly relevant for advanced access [15], a scheduling ap-
proach in health care designed to reduce delays by offering every patient a same-day
appointment, regardless of the urgency of the problem. In that way, patients do not
have to wait long for appointments, and practices do not waste capacity by holding
appointments in anticipation of urgent situations.

Next to the freedom to model different situations, another advantage of our model
is that it is mathematically tractable, in the sense that it can be subjected to powerful
mathematical methods from complex and asymptotic analysis. In order to establish
the heavy-traffic limits, we start from Pollaczek’s formula for the transform of the
stationary queue length distribution in terms of a contour integral. From this famous
transform representation, contour integrals for the empty-system probability and the
mean and variance of the congestion immediately follow. Contour integrals are often
amenable to asymptotic evaluation (see, e.g., [11]), particularly for obtaining classical
heavy-traffic asymptotics. We also subject the contour integral representations to
asymptotic evaluation, but not under classical heavy-traffic scaling. This asymptotic
analysis requires a nonstandard saddle point method (see [14] for an historical account
on the application of the saddle point method in mathematics), tailored to the spe-
cific form of the integral expressions that arise under the capacity sizing rule (1.2).
The saddle point method in its standard form is typically suited for large deviations
regimes, for instance, to characterize rare event probabilities, and cannot be applied
to asymptotically characterize other stationary measures like the mean or mass at
zero. Indeed, for our model, the saddle point converges to one (as n → ∞), which is a
singular point of the integrand and renders the standard saddle point method useless.
Our nonstandard saddle point method, originally proposed by [13], is made specifically
to overcome this complication. This leads to asymptotic expansions for the perfor-
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mance measures, of which the limiting forms correspond to the heavy-traffic limits,
and prelimit forms present refined approximations for prelimit systems (n < ∞) in
heavy traffic. Such refinements to heavy-traffic limits are commonly referred to as
corrected diffusion approximations [25, 6, 4].

Further connections to the literature. In this paper we consider a bulk
service queue, which serves as one of the key models for the performance analysis
of service systems. Under the family of scalings (1.2), we establish heavy-traffic ap-
proximations that give insight into the system behavior in high occupancy scenarios.
We like to point out that the results in this paper are all formulated for the spe-
cial case of demand generated by many sources, so that the demand An(k) can be
described in terms of the sum

∑n
i=1 Xi(k), but the methodology we develop is ap-

plicable to more general models that make no specific assumptions on the random
variable An(k) except for its second moment to exist, that is, Xi(k) has finite vari-
ance. What is important is that Pollaczek’s formula is available, so that the saddle
point method can be applied. We now discuss two classes of stochastic systems for
which the heavy-traffic regime (1.1) has been studied extensively and for which our
new family of regimes (1.2) is largely unexplored. We discuss these classes because,
despite the Pollaczek formula not holding, we believe the qualitative results that we
reveal for our particular model should to a large extent carry over to these settings
as well, presenting some interesting avenues for further research (see section 6.2).

The first class concerns so-called nearly deterministic systems [26, 27], denoted
by the Gn/Gn/1 system, where Gn stands for cyclic thinning of order n, indicating
that some point process is thinned to contain only every nth point. As n → ∞, the
Gn/Gn/1 systems approach the deterministic D/D/1 system. For Gn/Gn/1 systems,
[26] establishes stochastic-process limits and [27] derives heavy-traffic limits for sta-
tionary waiting times. In the framework of [26, 27], our stochastic model corresponds
to a D/Gn/1 queue, where the sequence of service times (An(k))k≥1 follows from a
cyclically thinned sequence of independently and identically distributed (i.i.d.) ran-
dom variables (Xi(k)). It follows from [27, Theorem 3] that the rescaled stationary
waiting time process converges under (1.1) to a reflected Gaussian random walk.
Hence, the performance measures of the nearly deterministic system, under (2.1)
and (1.1), should be well approximated by the performance measures of the reflected
Gaussian random walk, giving rise to heavy-traffic approximations. This connection
is discussed in detail in section 4.2. It seems likely that results similar to those in
this paper can be obtained for applying the scaling (1.2) to the nearly deterministic
systems in [26, 27], and because Pollaczek’s formula also applies to this setting, the
nonstandard saddle point method developed in this paper can provide the appropriate
methodology.

The second class concerns multiserver systems, and in particular the many-server
regime (not to be confused with the many-sources regime). When we interpret sn
as the number of servers, instead of capacity per time slot or order of thinning, the
scaling (1.1) is similar to the many-server heavy-traffic regime called the quality and
efficiency driven (QED) or Halfin–Whitt regime, first developed by Halfin and Whitt
[16] for the M/M/sn system. The QED regime (1.1) is in many situations a highly
effective way of scaling, because the probability of delay converges to a nondegenerate
limit away from both zero and one, and the mean delay is asymptotically negligible
as the number of servers grows large. The QED regime (1.1) is naturally positioned
in between the quality-driven (QD) regime and the efficiency-driven (ED) regime. In
the QD regime, the load remains bounded away from 1, which corresponds to setting
α = 0 in (1.2). Hence, the range α ∈ (0, 1/2) bridges the gap between the QED
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regime and the QD regime. Likewise, the ED regime corresponds to setting α = 1
in (1.2), so that the range α ∈ (1/2, 1] connects the QED regime and ED regime.
For the birth-death process describing the M/M/sn system, Maman [22] introduced
a scaling similar to (1.2) and called it the QED-c regime, also bridging the ED and
QD regimes. Maman [22, Theorem 4.1] says that the expected waiting time under
the scaling sn = nμX + βσXn1−α is of order s1−α

n , which is equivalent to the ex-
pected queue length being of order nα by Little’s law. We should stress though that
we expect the mathematical techniques that are needed to establish heavy-traffic re-
sults could be entirely different than in this paper, because Pollaczek’s formula does
not apply to many-server settings. The specific model assumptions will determine
to a large extent the appropriate methodology. Under Markovian assumptions lead-
ing to the M/M/sn system, product-form solutions are available for the stationary
distribution. This makes it possible to describe performance measures like the mean
congestion directly in terms of real integrals. Where the saddle point method is used
for integrals in the complex plane, the Laplace method (see, e.g., [14]) is used for real
integrals. Hence, for the asymptotic evaluation of the M/M/sn system under the
scaling (1.2), the Laplace method seems an appropriate methodology, although again
one needs to deal with possible singularities in the integrand. For G/D/sn systems,
which assume deterministic service times, it has been shown in [21] that using a de-
composition property, the dynamics of these multiserver systems can be captured in
terms of a single-server system. Hence, for these systems, Pollaczek’s formula applies,
and our saddle point method can most likely be applied to obtain heavy-traffic re-
sults in the regimes (1.2). Under more general conditions, for instance, leading to a
G/G/sn system, it is simply unclear at this stage how to obtain precise heavy-traffic
approximations for (1.2), because a tractable description of the performance measures
is not available.

Structure of the paper. In section 2 we present in detail the model and the
family of heavy-traffic scalings. In section 3 we introduce the saddle point method.
In section 4 we apply the saddle point method for the mean congestion level. Theo-
rem 3 gives for all heavy-traffic scalings the limiting behavior in terms of an integral
expression. As a consequence, we show in Proposition 4 that there are two types of
heavy-traffic behavior, depending on whether α ∈ (0, 1/2) or α ≥ 1/2. In section 4.2
we discuss for the case α = 1/2 the connection with the Gaussian random walk and
the Riemann zeta function. In fact, we show that for all α ≥ 1/2, there exists a con-
nection between the integral expression in Theorem 3 and the Riemann zeta function.
In section 5 we apply the saddle point method to obtain several more heavy-traffic
results, including refined heavy-traffic approximations for the mean congestion level
and the leading heavy-traffic behaviors for the variance of the stationary congestion
level and for the empty-system probability. Numerical examples are given in sec-
tion 6. Appendix A presents a new self-contained derivation of Pollaczek’s formula
for the transform of the stationary waiting time in the D/G/1 system, which forms
the point of departure for our analysis. In section 6, however, we do confirm through
numerical experiments that under (1.2), various multiserver systems behave similarly
to our discrete bulk service queue.

2. Model description and heavy-traffic regimes. We thus consider a dis-
crete stochastic model in which time is divided into periods of equal length. At the
beginning of each period k = 1, 2, 3, . . . new demand An(k) arrives to the system.
The demands per period An(1), An(2), . . . are assumed to be independent and equal
in distribution to some nonnegative integer-valued random variable An. The system
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has a service capacity sn ∈ N per period, so that the recursion

(2.1) Qk+1 = max{Qk +An(k)− sn, 0}, k = 1, 2, . . . ,

assuming Q0 = 0, gives rise to a Markov chain (Qk)k≥1 that describes the congestion
in the system over time. The probability generation function (pgf)

(2.2) An(z) =
∞∑
j=0

P(An = j)zj

is assumed analytic in a disk |z| < r with r > 1, which implies that all moments of
An exist. We also assume that

(2.3) A′
n(1) = EAn(k) = μA < sn.

Under the assumption (2.3), the function zsn − A(z) has exactly s zeros in the
closed unit disk, one of these being z = 1 (see [2]). We further assume that P(A =
j) > 0 for some j > sn. Under this assumption, the function zsn −A(z) also has zeros
outside |z| ≤ 1, and we let r0 be the minimum modulus of these zeros. The number
r0 is the unique zero of zsn −A(z) with real z > 1; see, e.g., [17].

Under the assumption (2.3), the stationary distribution limk→∞ P(Qk = j) =
P(Q = j), j = 0, 1, . . . exists, with the random variable Q defined as having this
stationary distribution.

We let

(2.4) Q(w) =

∞∑
j=0

P(Q = j)wj

be the pgf of the stationary distribution. Q(w) is analytic in |w| < r0 and given by
Pollaczek’s formula (see, e.g., [1, 11])

(2.5) Q(w) = exp

[
1

2πi

∫
|z|=1+ε

ln
(w − z

1− z

) (zsn −A(z))′

zsn −A(z)
dz

]
,

where ε > 0 is such that |w| < 1 + ε < r0. In (2.5), the principal value of ln(w−z
1−z )

is chosen, which is analytic in the whole complex z-plane, except for a branch cut
consisting of the straight line segment from w to 1. In Appendix A we present a short
proof of Pollaczek’s formula in the discrete-queue setting that we have here.

Using P(Q = 0) = Q(0), μQ = Q′(1) and σ2
Q = Q′′(1)+Q′(1)−(Q′(1))2, it follows

by straightforward manipulations that

P(Q = 0) = exp

[
1

2πi

∫
|z|=1+ε

ln
( z

z − 1

) (zsn −A(z))′

zsn −A(z)
dz

]
,(2.6)

μQ =
1

2πi

∫
|z|=1+ε

1

1− z

(zsn −A(z))′

zsn −A(z)
dz,(2.7)

σ2
Q =

1

2πi

∫
|z|=1+ε

−z

(1 − z)2
(zsn −A(z))′

zsn −A(z)
dz.(2.8)

Because sn appears directly in expressions (2.6)–(2.8), we will be conducting our
analysis with respect to sn rather than n. Note that this has no consequences for our
results on the convergence speed of the performance metrics, since sn = O(n). Fur-
thermore, we will omit the index n when describing the capacity sn in the remainder
of the paper for brevity.
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794 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

We next discuss in more detail the family of heavy-traffic scalings considered
in this paper, which combines two features. First, we have assumed that An

k is in
distribution equal to the sum of work generated by all sources, X1,k + · · · + Xn,k,
where the Xi,k are for all i and k i.i.d. copies of a random variable X , of which the
pgf X(z) =

∑∞
j=0 P(X = j)zj has radius of convergence r > 1, and

(2.9) 0 < μA = nμX = nX ′(1) < s.

Hence,

(2.10) ϑ :=
n

s
∈ (0, 1/μX).

Second, we scale the system according to (1.2), for which we assume that

(2.11) ρs = ϑμX = 1− γ

sα
,

in which γ > 0 is bounded away from 0 and ∞ as s → ∞.
The condition that P(A = j) > 0 for some j > s holds when the degree d of X(z)

(with d = ∞ if X(z) is not a polynomial) is such that nd > s.
To avoid certain complications when applying the saddle point method, we further

assume that

(2.12) |X(z)| < X(r1), |z| = r1 , z �= r1,

for any r1 ∈ (0, r). This implies that r0 is the unique zero of zs − A(z) on |z| = r0.
This condition is related to Cramér’s condition, see [4, pp. 189 and 355], and it has
also been used in [18]. Condition (2.12) holds when the set of all j = 0, 1, . . . such
that P(X = j) > 0 is not contained in an arithmetic progression with a ratio larger
than one (see also [2]).

3. Nonstandard saddle point method. We illustrate our saddle point method
for μQ. As a first step, we bring (2.7) in a form which is amenable to saddle point
analysis.

Lemma 1.

(3.1) μQ =
s

2πi

∫
|z|=1+ε

g′(z)
z − 1

exp(s g(z))

1− exp(s g(z))
dz

with

(3.2) g(z) = −ln z + ϑ ln(X(z)).

Proof. With A(z) = Xn(z),

(zs −A(z))′

zs −A(z)
=

s zs−1 − nX ′(z)Xn−1(z)

zs −Xn(z)

=
s

z
− s

z

(n
s

z X ′(z)
X(z)

− 1
) z−s Xn(z)

1− z−sXn(z)
.(3.3)

Write z−sXn(z) = exp(sg(z)). Noting that

(3.4)
1

2πi

∫
|z|=1+ε

s

z

1

1− z
dz = 0
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HEAVY-TRAFFIC REGIMES FOR LARGE SERVICE SYSTEMS 795

and that

(3.5) g′(z) =
1

z

(
ϑ
z X ′(z)
X(z)

− 1

)

gives (3.1).
Let us now explain how the standard saddle point method can be applied to (3.1).

Since

(3.6) g(1) = g(r0) = 0; g(z) < 0 , 1 < z < r0,

and by strict convexity of

(3.7) z−s Xn(z) = z−sA(z) =
∞∑
k=0

ak z
k−s, z ∈ (0, r),

g(z) has a unique minimum on [1, r0]. This minimum is found by solving z ∈ [1, r0]
from g′(z) = 0, and this yields the equation

(3.8) X(z) = ϑ z X ′(z).

Denote the solution z ∈ (1, r0) of (3.8) by zsp, and observe that zsp is a saddle point
of g(z), explaining the notation. Thus, the saddle point method can be used for the
integral in (3.1) by taking 1 + ε = zsp.

In the case that ϑ = n/s is bounded away from 1/μX as s → ∞, we have
that the minimum value of g(z), 1 ≤ z ≤ r0, is negative and bounded away from
0. Furthermore, zsp is bounded away from 1, and the saddle point method can be
applied in the classical way by replacing

(3.9)
exp(s g(z))

1− exp(s g(z))
by exp(s g(z)),

at the expense of an exponentially small relative error, and performing an expansion
of g′(z)/(zsp− 1) = d1(z− zsp)+O((z− zsp)

2) with d1 = g′′(zsp)/(zsp− 1) �= 0. Using
that g(z∗) = (g(z))∗, where the ∗ denotes complex conjugation, it can be shown that

(3.10) μQ =
exp(s g(zsp))

(zsp − 1)2
√
2πs g′′(zsp)

(1 +O(s−1)).

We next explain why the standard saddle point method does not work for the
heavy-traffic scaling considered in this paper. Since we operate in (2.11), ϑμX → 1
as s → ∞, and

zsp − 1 =
γ

a2 sα
+O(s−2α),(3.11)

g(zsp) =
−γ2

2a2s2α
+O(s−3α),(3.12)

g′′(zsp) = a2 +O(s−α),(3.13)

where

(3.14) a2 =
σ2
X

μX
− γ

sα

(
σ2
X

μX
− 1

)
.
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796 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

Hence, exp(sg(z)) near z = zsp is (as s → ∞): vanishingly small when α ∈ (0, 1/2),
bounded away from 1, but nonnegligible when α = 1/2, and tending to 1 when
α ∈ (1/2,∞). Furthermore, (z − 1)−1 in (3.1) is unbounded near z = zsp as s → ∞.
Therefore, an adaptation of the standard saddle point method is required, and the
resulting asymptotic form of μQ will deviate significantly from the standard case
(3.10). In particular, since zsp → 1, this asymptotic form will contain information
from X(z) at z = 1, rather than at a point away from 1 as is the case in (3.10).

The required adaption of the saddle point method is modeled after a device de-
veloped in [13, section 5.12]. We use a substitution z = z(v) in (3.1) with real v and
z(0) = zsp such that for sufficiently small v,

(3.15) g(z(v)) = g(zsp)− 1
2 v

2 g′′(zsp).

This is feasible, since

(3.16) g(z) = g(zsp) +
1
2 g

′′(zsp)(z − zsp)
2
(
1 +

g′′′(zsp)
3g′′(zsp)

(z − zsp) + · · ·
)

with g′′(zsp) positive and bounded away from 0 as s → ∞. Hence, z(v) can be found
for small v by inverting the equation

(3.17) (z − zsp)
(
1 +

g′′′(zsp)
3g′′(zsp)

(z − zsp) + · · ·
)1/2

= iv.

By Lagrange’s inversion theorem [13], there is a δ > 0 (independent of s) such that

(3.18) z(v) = zsp + iv +
∞∑
k=2

ck(iv)
k, |v| < δ,

with real coefficients ck (since g(z) is real for real z) and

(3.19) c2 = − g′′′(zsp)
6g′′(zsp)

.

Thus,

(3.20) z(v) = zsp + iv − c2 v
2 +O(v3), |v| ≤ 1

2 δ,

where the order term holds uniformly in s. The uniformity statement follows from an
inspection of the usual argument by which Lagrange’s theorem is proved, noting that
the inversion in (3.15) with g as in (3.2) is considered for ϑ → 1/μX , zsp → 1 with
radius of convergence r away from 1.

By (2.12), we can restrict the integration in (3.1) to a fixed but arbitrarily small
subset of |z| = zsp near z = zsp, at the expense of an exponentially small error.
Furthermore, by Cauchy’s theorem and again at the expense of an exponentially small
error, the integration path can be deformed in accordance with the transformation in
(3.15)–(3.20). Set

(3.21) q(v) = g(zsp)− 1
2 v

2 g′′(zsp)

and note that from (3.15)

(3.22) g′(z(v)) z′(v) = −v g′′(zsp).
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Then substituting z = z(v) in (3.1), μQ is given with exponentially small error by

s

2πi

∫ 1
2 δ

− 1
2 δ

g′(z(v))
z(v)− 1

exp(s g(z(v)))

1− exp(s g(z(v)))
z′(v) dv,(3.23)

which gives the following result.
Lemma 2. The mean stationary congestion level is given with exponentially small

error by

(3.24) μQ =
−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v

z(v)− 1

exp(s q(v))

1− exp(s q(v))
dv.

In a similar fashion, we get that P(Q = 0) and σ2
Q, see (2.6) and (2.8), are given,

both with exponentially small error, by

(3.25)
−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v ln

(
z(v)

z(v)− 1

)
exp(s q(v))

1− exp(s q(v))
dv

and

(3.26)
−s

2πi
g′′(zsp)

∫ 1
2 δ

− 1
2 δ

v z(v)

(z(v)− 1)2
exp(s q(v))

1− exp(s q(v))
dv,

respectively.

4. Heavy-traffic limits for the mean congestion level. In this section we
apply the nonstandard saddle point method explained in section 2 to the Pollaczek
integral representation for the mean stationary congestion level μQ. In section 4.1
we first derive an integral representation for the leading-order behavior of μQ with
a relative error of order O(s−1), which serves as a heavy-traffic approximation in
the regime ρs = 1 − γ/sα with α > 0. We also consider separately the cases of
moderate heavy traffic (α ∈ (0, 1/2)) and extreme heavy traffic (α ∈ (1/2,∞)), for
which the integral representation leads to vastly different alternative expressions. We
find that μQ → 0 more rapidly than any power of 1/s when α ∈ (0, 1/2). When
α ≥ 1/2, the saddle point method yields an integral representation with relative error
O(s−min(1,α)). In section 4.2 we specialize this general result to the CLT case α = 1/2
and make a connection with existing results.

4.1. Leading-order behavior in integral form.
Theorem 3. The mean stationary congestion level is given by

(4.1)

μQ =
2

π
σX

√
s

2μX

∫ ∞

0

t2

d2(s) + t2
exp(−d2(s)− t2)

1− exp(−d2(s)− t2)
dt
(
1 +O(s−min(1,α))

)

with d2(s) = s1−2αγ2μX/(2σ2
X).

Proof. According to Lemma 2, μQ is given with exponentially small error by
(3.24) with q(v) given in (3.21). Since z(−v) = z∗(v) for real v, we have

v

z(v)− 1
+

−v

z(−v)− 1
= −2iv

Im(z(v))

|z(v)− 1|2

=
−2iv2 +O(v4)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2 +O(v4)
,(4.2)
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where (3.20) and ck ∈ R have been used. Using (4.2) in (3.24) and extending the
integration range from [− 1

2δ,
1
2 δ] to (−∞,∞) while using symmetry of q(v), we get

that μQ is given with exponentially small error by

s g′′(zsp)
π

∫ ∞

0

v2 +O(v4)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2 +O(v4)

exp(s q(v))

1− exp(s q(v))
dv.(4.3)

With

(4.4) B = exp(s g(zsp)), η = g′′(zsp),

(4.3) takes the form

sη

π

∫ ∞

0

v2 +O(v4)

(zsp − 1)2 + v2 − 2c2(zsp − 1) v2 +O(v4)
· B exp(−1

2 s η v
2)

1−B exp(− 1
2 s η v

2)
dv.(4.5)

In leading order, the integrand in (4.5) has the form

(4.6)
B v2 exp(−sD v2)

(v2 + C s−2α)(1 − exp(−sD v2))
,

and this is reminiscent of the integrand in [13, equation (5.12.3)] for the case κ = 2α.
Proceeding as in [13, section 5.12], the substitution v = t

√
2/(sη) brings (4.5) into

the form

2

π

√
1
2s η

∫ ∞

0

t2(1 +O(t2/s))
1
2s η(zsp − 1)2 + t2 − 2c2(zsp − 1)t2 +O(t4/s)

B exp(−t2)

1−B exp(−t2)
dt.(4.7)

From (3.11)–(3.14) and (4.4),

2

π

√
sη

2
=

2

π
σX

√
s

2μX
(1 +O(s−α)),(4.8)

1
2 s η (zsp − 1)2 = d2(s) +O(s1−3α),(4.9)

2 c2(zsp − 1) = O(s−α),(4.10)

s g(zsp) = −d2(s) +O(s1−3α),(4.11)

where

(4.12) d2(s) =
b20

s2α−1
, b20 :=

γ2μX

2 σ2
X

.

In the case that 2α− 1 < 0, we have that 1
2 s η (zsp − 1)2 → ∞ and that

(4.13) B = exp(s g(zsp)) = O(exp(−b2 s1−2α))

for any b ∈ (0, b0). From (4.7), it follows then that μQ = O(exp(−b2 s1−2α)) for any
b ∈ (0, b0). In the case that 2α − 1 ≥ 0, we have that d2(s) is bounded, and using
that 1/s3α−1 = O(d2(s)/sα), we get

1
2 s η (zsp − 1)2 + t2 − 2 c2 (zsp − 1) t2 +O(t4/s)

= d2(s) + t2 +O
(
s−α (d2(s) + t2)

)
+O(t4/s)

=
(
d2(s) + t2

) (
1 +O(s−α) +O(t2/s)

)
.(4.14)

D
ow

nl
oa

de
d 

04
/2

8/
15

 to
 1

31
.1

55
.1

51
.1

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HEAVY-TRAFFIC REGIMES FOR LARGE SERVICE SYSTEMS 799

Hence, in this case,
(4.15)

t2(1 +O(t2/s))
1
2s η(zsp − 1)2 + t2 − 2c2(zsp − 1)t2 +O(t4/s)

=
t2

d2(s) + t2
(
1 +O(s−α) +O(t2/s)

)
,

where we restrict to t in a range [0, s1/4]. Furthermore,

1−B exp(−t2) = 1− exp(−d2(s)− t2)
(
1 + d2(s)O(s−α)

)
= (1− exp(−d2(s)− t2))

(
1 +

d2(s)

exp(d2(s) + t2)− 1
O(s−α)

)
= (1− exp(−d2(s)− t2)) (1 +O(s−α)).(4.16)

It follows therefore that

(4.17)
B exp(−t2)

1−B exp(−t2)
=

exp(−d2(s)− t2)

1− exp(−d2(s)− t2)
(1 +O(s−α)).

Combining the three items (4.8), (4.15), and (4.17), we obtain for (4.7) the result
(4.18)

2

π
σX

√
s

2μX

∫ ∞

0

t2

d2(s) + t2
· exp(−d2(s)− t2)

1− exp(−d2(s)− t2)
dt
(
1 +O(s−α) +O(s−1)

)
,

where the integration range [0,∞) is, at the expense of relative errors of type
exp(−s1/4), first restricted to the range [0, s1/4], where (4.15) holds, and then restored
again to the full range.

Theorem 3 gives the leading-order behavior of μQ as s → ∞ with a relative error
of O(s−min(1,α)). By considering in more detail the integral expressions, we obtain
the following result, describing two different heavy-traffic behaviors.

Proposition 4. If α ∈ (0, 1/2), the mean congestion level satisfies

(4.19) μQ = O
(
exp(−b2s1−2α)

)
for any b ∈ (0, b0). If α ∈ [1/2,∞), the mean congestion level μQ is given by

(4.20) sα
σ2
X

2μXγ

(
1 +O(smax(1/2−α,−1))

)
.

The first assertion in Proposition 4 follows from the observation in (4.13), together
with (4.7). The second assertion is based on a connection between the integral in
Theorem 3 and the Riemann zeta function, which is explained in the next subsection.

4.2. Classical heavy traffic and the Gaussian random walk. We now build
on Theorem 3 to obtain further results for the classical heavy-traffic case α = 1/2, for
which we know from [27, Theorem 3] that the rescaled congestion process converges
under (1.1) to a reflected Gaussian random walk. The latter is defined as (Sβ(k))k≥0

with Sβ(0) = 0 and

(4.21) Sβ(k) = Y1 + · · ·+ Yk

with Y1, Y2, . . . i.i.d. copies of a normal random variable with mean −β and variance
1. Assume β > 0 (negative drift) and denote the all-time maximum of this random
walk by Mβ.
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Denote by Q
(s)
∞ the stationary congestion level for a fixed s (that arises from

taking k → ∞ in (2.1)) and remember that we have assumed ϑ = n/s fixed. Then,
using ρs = 1− γ/

√
s with

(4.22) γ =
βσX

μX

√
ϑ
,

the spatially scaled stationary congestion levels reach the limit Q
(s)
∞ /(σX

√
n)

d→ Mβ

as s, n → ∞ (see [21, 26, 27]). From [27, Theorem 4], we then know that under the
standard heavy-traffic scaling (1.1),

EQ
(s)
∞

σX
√
n
→ EMβ , as s, n → ∞,(4.23)

from which it follows that

(4.24) μQ ≈ σX

√
n EMβ .

The random variable Mβ was studied in [10, 19]. In particular, [19, Theorem 2] yields,
for β < 2

√
π,

EMβ =
1

2β
+

ζ(1/2)√
2π

+
β

4
+

β2

√
2π

∞∑
r=0

ζ(−1/2− r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

,(4.25)

and hence, for small values of β,

(4.26) μQ ≈ σX

√
n EMβ ≈ σX

√
n

2β
=

√
s

σ2
X

2μXγ
.

We will now show how the approximation (4.26) follows from Theorem 3 and also
how similar steps give rise to Proposition 4.

Consider the integral

(4.27) G0(b) = G1(b)−G2(b) =

∫ ∞

0

t2

b2 + t2
exp(−b2 − t2)

1− exp(−b2 − t2)
dt,

where b > 0 and
(4.28)

G1(b) =

∫ ∞

0

exp(−b2 − t2)

1− exp(−b2 − t2)
dt , G2(b) =

∫ ∞

0

b2

b2 + t2
exp(−b2 − t2)

1− exp(−b2 − t2)
dt.

We have, as in [19, section 2],

G1(b) =

∞∑
k=0

∫ ∞

0

exp(−(k + 1)(b2 + t2)) dt

=

√
π

2

∞∑
k=0

e−(k+1)b2

√
k + 1

=

√
π

2
e−b2 Φ(e−b2 , 1/2, 1)

=
π

2b
+

√
π

2

∞∑
r=0

ζ(12 − r)
(−1)r b2r

r!
,(4.29)

where Φ(z, s, v) is Lerch’s transcendent and where the last identity holds when 0 <
b <

√
2π.
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As to G2(b), we make a connection with the complementary error function

(4.30) erfc(z) =
2√
π

∫ ∞

z

e−t2 dt =
2

π
e−z2

∫ ∞

0

e−z2t2

1 + t2
dt;

see [24, sections 7.2 and 7.7.1]. We thus compute

G2(b) =

∞∑
k=0

e−(k+1)b2
∫ ∞

0

b2

b2 + t2
e−(k+1)t2 dt

=
π

2
b

∞∑
k=0

erfc(b
√
k + 1).(4.31)

From [19, equations (4.3) and (4.23)],

(4.32)

∞∑
n=1

1√
2π

∫ ∞

β
√
n

e−x2/2 dx =
1

2β2
− 1

4
− 1√

2π

∞∑
r=0

ζ(−1/2− r)(−1/2)r

r! (2r + 1)
β2r+1,

in which 0 < β < 2
√
π. Taking β = b

√
2 in (4.32), we get

(4.33) G2(b) =
π

4b
− π

4
b−√

π

∞∑
r=0

ζ(−1/2− r)(−1)r b2r+2

r! (2r + 1)

when 0 < b <
√
2π. The two results in (4.29) and (4.33) can be combined, as in [19,

section 5.2], and this yields

(4.34) G0(b) =
π

4b
+

π

4
b+

√
π

2
ζ(1/2) +

√
π

∞∑
r=0

ζ(−1/2− r)(−1)r b2r+2

r! (2r + 1)(2r + 2)

when 0 < b <
√
2π.

Using (4.34) in (4.24), we find that the leading-order behavior of μQ is given as

(4.35) σX

√
s

2μX

[
1

2b0
+

b0
2

+
ζ(1/2)√

π
+

2√
π

∞∑
r=0

ζ(−1/2− r)(−1)rb2r+2
0

r! (2r + 1)(2r + 2)

]

with relative error of O(s−1/2) in which b0 is given by (4.12). The expression (4.35)
is exactly equal to the right-hand side of [19, equation (4.25)] times

√
s when we take

there σ = μ = 1 and β = b0
√
2. Notice that, with γ as in (4.22),

(4.36) σX

√
s

2μX

1

2b0
=

σX
√
n

2β
,

which confirms the approximation (4.26).
According to Theorem 3, we have for α ≥ 1/2,

(4.37) μQ =
2

π
σX

√
s

2μX
G0(d(s))

(
1 +O(s−min(1,α))

)
.

When α = 1/2, so that d(s) = b0 is independent of s, the series representation for
G0 in (4.34) can be used, as long as b0 ∈ (0,

√
2π). When α > 1/2, we have that

D
ow

nl
oa

de
d 

04
/2

8/
15

 to
 1

31
.1

55
.1

51
.1

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

802 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

d(s) = b0/s
α−1/2 → 0 as s → ∞, and so this series representation can be used when s

is large enough. We then have from (4.34) and b20 = γ2μX/2 σ2
X , while replacing the

whole series at the right-hand side by O(b2), for μQ the leading-order behavior

(4.38) sα
[

σ2
X

2 γ μX
+

σX ζ(1/2)√
2 π μX

1

sα−1/2
+

1

4
γ

1

s2α−1
+O(s3/2−3α)

]

with relative error O(s−min(1,α)). Retaining the constant term σ2
X/(2γμX) and esti-

mating the other terms between the brackets in (4.38) as O(s1/2−α), we get Proposi-
tion 4.

5. More heavy-traffic results. In this section we apply the nonstandard sad-
dle point method to obtain several more heavy-traffic results. In section 5.1 we de-
rive refined heavy-traffic approximations for the mean congestion level by considering
higher-order correction terms. In section 5.2 we derive the leading heavy-traffic be-
havior for the variance of the stationary congestion level, and in section 5.3 we derive
it for the empty-system probability. To keep the developments tractable, we restrict
section 5.1 to α = 1/2, and section 5.2 and section 5.3 to α ∈ (0, 1], although the
same technique will work for all values α > 0.

5.1. Correction term for the mean congestion level in the case α =
1/2. Our saddle point method not only establishes the leading-order heavy-traffic
approximations but also allows us to derive refinements to these approximations. In
this section we demonstrate how this works for the mean congestion level in the case
α = 1/2.

To obtain a refinement or correction term from (4.7), we must be more precise
about the O(s−α) terms that occur in the approximations in section 4.1 for 1

2 s,

η(zsp − 1)2, B, and
√
s η/2. When higher-order corrections are required, we should

include higher-order terms in the approximations of these quantities and be more
specific about the O(t2/s) and O(t4/s) in the integrand in (4.7).

Denote, see (2.10) and (3.2), with ϑ = (1− γ/sα)μ−1
X ,

(5.1) ai = g(i)(1); g(z) = −ln z + ϑ lnX(z).

Dropping the X from μX and σ2
X for brevity, we have

a1 = − γ

sα
, a2 =

σ2

μ
− γ

sα

(
σ2

μ
− 1

)
,(5.2)

a3 = −2 +
(
1− γ

sα

)(X ′′′(1)
X ′(1)

− 3X ′′(1) + 2(X ′(1))2
)
.(5.3)

For the purpose of finding a first-order correction term, we note that

η = g′′(zsp) = a2 + (zsp − 1) a3 +O(s−1),(5.4)

zsp − 1 = − a1
a2

− a3
2a2

(
a1
a2

)2

+O(s−3/2),(5.5)

c2 = − g′′′(zsp)
6g′′(zsp)

= − a3
6a2

+O(s−1/2),(5.6)

g(zsp) = − a21
2a2

− a3
6a32

a31 +O(s−2).(5.7)
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This gives rise to √
1
2 s η = σ

√
s

2μ

(
1 +

C1√
s
+O(s−1)

)
,(5.8)

1
2 s η(zsp − 1)2 =

γ2 μ

2σ2
+

C2√
s
+ O(s−1),(5.9)

2c2(zsp − 1) =
C3√
s
+O(s−1),(5.10)

B = exp(s g(zsp)) = exp

(
− γ2 μ

2σ2

)(
1 +

C4√
s
+O(s−1)

)
(5.11)

with explicitly computable constants C1, C2, C3, C4. Remembering that b20 =
γ2μ/2σ2, see (4.12), we then get with errors of order 1/s

t2(1 +O(t2/s))
1
2 s η(zsp − 1)2 + t2 − 2c2(zsp − 1) t2 +O(t4/s)

=
t2

b20 + t2
− 1√

s

(
(C2 + b20 C3)

t2

(b20 + t2)2
− C3

t2

b20 + t2

)
(5.12)

and

(5.13)
B exp(−t2)

1−B exp(−t2)
=

exp(−b20 − t2)

1− exp(−b20 − t2)
+

C4√
s

exp(−b20 − t2)

(1− exp(−b20 − t2))2
.

Using (5.8), (5.12), and (5.13) in (4.7), we get with an absolute error of order 1/
√
s

μQ =
2

π
σ

√
s

2μ

(
1 +

C1√
s

)∫ ∞

0

(
t2

b20 + t2
− 1√

s

(
(C2 + b20 C3)

t2

(b20 + t2)2
t2

b20 + t2

))

·
(

exp(−b20 − t2)

1− exp(−b20 − t2)
+

C4√
s

exp(−b20 − t2)

(1− exp(−b20 − t2))2

)
dt

=
2σ

π

√
s

2μ
G0(b0)

+
2σ

π

√
1

2μ
((C1 + C3)G0(b0)− (C2 + b20 C3)G3(b0) + C4 G4(b0)),(5.14)

where G0 is as in (4.27), and

G3(b0) =

∫ ∞

0

t2

(b20 + t2)2
exp(−b20 − t2)

1− exp(−b20 − t2)
dt,(5.15)

G4(b0) =

∫ ∞

0

t2

b20 + t2
exp(−b20 − t2)

(1− exp(−b20 − t2))2
dt.(5.16)

We shall express the integrals in (5.15) and (5.16) in terms of ζ-functions. By partial
integration

G3(b) =
1

2

∫ ∞

0

1

b2 + t2
exp(−b2 − t2)

1− exp(−b20 − t2)
dt

−
∫ ∞

0

t2

b2 + t2
exp(−b2 − t2)

(1− exp(−b2 − t2))2
dt

=
1

2b2
G2(b)−G4(b);(5.17)
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see (4.27) and (5.16). Since G2(b) is expressed in terms of ζ-functions in (4.33), it is
sufficient to consider G4(b).

As to G4(b),

(5.18) G4(b) = G5(b)−G6(b),

where

G5(b) =

∫ ∞

0

exp(−b2 − t2)

(1− exp(−b2 − t2))2
dt,(5.19)

G6(b) =

∫ ∞

0

b2

b2 + t2
exp(−b2 − t2)

(1− exp(−b2 − t2))2
dt.(5.20)

We have, compare (4.29),

G5(b) =

∞∑
k=0

(k + 1)

∫ ∞

0

e−(k+1)(b2+t2) dt

=

√
π

2
e−b2 Φ(e−b2 ,− 1

2 , 1) =
π

4b3
+

√
π

2

∞∑
r=0

ζ(− 1
2 − r)

(−1)r b2r

r!
,(5.21)

the last identity being valid when 0 < b <
√
2π. Next, we have, compare (4.31),

G6(b) =

∞∑
k=0

(k + 1) b2
∫ ∞

0

exp(−(k + 1)(b2 + t2))

b2 + t2
dt

=
π

2
b

∞∑
k=0

(k + 1) erfc(b
√
k + 1).(5.22)

From [19, equations (5.4) and (5.21)], we have

∞∑
n=1

n√
2π

∫ ∞

β
√
n

e−x2/2 dx =
3

4β4
− 1

24
− 1√

2π

∞∑
r=0

ζ(−3/2− r)(−1/2)r

r! (2r + 1)
β2r+1(5.23)

when 0 < β < 2
√
π. Taking β = b

√
2 in (5.23), we get

(5.24) G6(b) =
3π

16b2
− πb

24
−√

π
∞∑
r=0

ζ(−3/2− r)(−1)r

r! (2r + 1)
b2r+2

when 0 < b <
√
2π. The two results (5.21) and (5.24) can be combined, as in [19,

section 5], and this yields

(5.25) G4(b) =
π

16b3
+

πb

24
+ 1

2 ζ(−1/2)
√
π +

√
π

∞∑
r=0

ζ(−3/2− r)(−1)r b2r+2

r! (2r + 1)(2r + 2)

when 0 < b <
√
2π.

Finally, we can use (5.25) in (5.17), and we obtain with (4.33), for 0 < b <
√
2π,

G3(b) =
π

16b3
− π

8b
− πb

24
− ζ(−1/2)

√
π − 2

√
π

∞∑
r=0

ζ(−3/2− r)(−1)r b2r+2

r! (2r + 1)(2r + 2)(2r + 3)
.

(5.26)

The right-hand side of (5.26) equals the right-hand side of [19, equation (2.3)] multi-
plied by π/(2b) with β = b

√
2.
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5.2. Heavy-traffic limits for the variance. We have from (3.26) in section 2,
using the same approach and notation as in section 4.1 for μQ, that σ

2
Q is given with

exponentially small error by

(5.27)
−s η

2πi

∫ 1
2 δ

− 1
2 δ

v z(v)

(z(v)− 1)2
B exp(− 1

2 s η v
2)

1−B exp(− 1
2 s η v

2)
dv

with B and η given in (4.4). From z(−v) = z∗(v), for real v we now compute

(5.28)
z(v)

(z(v)− 1)2
− z(−v)

(z(−v)− 1)2
= −2i

|z(v)|2 − 1

|z(v)− 1|4 Im(z(v)),

and so (5.27) becomes

(5.29)
sη

π

∫ 1
2 δ

0

|z(v)|2 − 1

|z(v)− 1|4 v Im(z(v))
B exp(− 1

2 s η v
2)

1−B exp(− 1
2 s η v

2)
dv.

From

(5.30) Im(z(v)) = v +O(v3), |z(v)|2 − 1 = z2sp − 1 +O(v2),

we get for the expression in (5.29)
(5.31)

sη

π

∫ 1
2 δ

0

v2 (z2sp − 1 +O(v2))(1 +O(v2))

((zsp − 1)2 + v2 +O((zsp − 1) v2) +O(v4))2
B exp(− 1

2 s η v
2)

1−B exp(− 1
2 s η v

2)
dv.

When 2α−1 < 0, we have as for the case of μQ in section 4.1 that the whole expression
in (5.31) is O(exp(−b2 s1−2α)) for any b ∈ (0, b0), as s → ∞. When 2α − 1 ≥ 0, we
get as in the case of μQ after substitution v = t

√
2/(s η) for the expression in (5.31)

(5.32)
2

π

(s η
2

)3/2 ∫ ∞

0

t2 (z2sp − 1 +O(t2/s))(1 +O(t2/s))

(d2(s) + t2)2 (1 +O(1/sα) + O(t2/s))

B e−t2

1−B e−t2
dt.

When 2α − 1 ≥ 0, the leading-order behavior of σ2
Q depends crucially on the factor

z2sp − 1 +O(t2/s), where

(5.33) z2sp − 1 =
2 γ μX

σ2
X sα

(
1 +O(s−α)

)

is dominant when α < 1, while the O(t2/s) is dominant when α > 1. In the case that
α ∈ (1/2, 1), we get for the leading-order behavior of σ2

Q

2

π

(s η
2

)3/2 2 γ μX

σ2
X sα

∫ ∞

0

t2

(d2(s) + t2)2
· e−d2(s)−t2

1− e−d2(s)−t2
dt
(
1 +O(sα−1)

)

=
γ σX

π

(
2

μX

)1/2

s3/2−α G3(d(s))
(
1 +O(sα−1)

)
,(5.34)

where (3.13), (3.14), and (4.4) have been used for η = g′′(zsp) and where G3 is given
in (5.15).
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When we insert the expansion (5.26) forG3(b), with the whole series on the second
line being O(b2), we get the leading-order behavior of σ2

Q as

s2α
(

σ4
X

4 γ2μ2
X

− σ2
X

4μX

1

s2α−1
−
(
2 σ2

X

π μX

)1/2
γ ζ(−1/2)

s3α−3/2

− γ2

24 s5α−5/2
+O(s1−4α)

) (
1 +O(sα−1)

)
= s2α

σ4
X

4 γ2 μ2
X

(
1 +O(smax(1−2α,α−1))

)
(5.35)

when α ∈ (1/2, 1). For the case α = 1/2, we get the leading-order behavior, assuming
0 < b0 <

√
2π,

σ2
Xs

μX

[
1

8 b20
− 1

4
− 1

12
b20 −

2 ζ(−1/2)√
π

b0 − 4√
π

∞∑
r=0

ζ(−3/2− r) (−1)r b2r+3
0

r! (2r + 1) (2r + 2) (2r + 3)

](5.36)

with relative error O(s−1/2). The expression between brackets in (5.36) coincides with
the right-hand side of [19, equation (2.3)] coincides with β = b0

√
2.

This leads to the following two results.
Theorem 5. For α ∈ [1/2, 1),

(5.37) σ2
Q =

γ σX

π

√
2

μX
s3/2−α G3(d(s))

(
1 +O(sα−1)

)
with G3 given in (5.15).

Proposition 6. For α ∈ (0, 1/2) and for all b < b0,

(5.38) σ2
Q = O(exp(−b2 s1−2α)).

For α = 1/2, σ2
Q equals expression (5.36) with relative error O(s−1/2). For α ∈

(1/2, 1) and b0 ∈ (0,
√
2π), σ2

Q has the form in (5.35).
As in section 5.1 for the mean congestion level with α = 1/2, it is possible to

give a correction term which involves now integrals and series with ζ-functions as
considered in [20, sections 4–5].

5.3. Heavy-traffic limits for the empty-system probability. We have from
(2.6) by proceeding as in (3.3)–(3.5) that

ln [Q(0)] =
s

2πi

∫
|z|=1+ε

ln
( z

z − 1

) g′(z) exp(s g(z))
1− exp(s g(z))

dz

=
1

2πi

∫
|z|=1+ε

1

z(z − 1)
ln (1− exp(s g(z))) dz,(5.39)

where in the last step we used partial integration (noting that Re [g(z)] < 0 on |z| =
1 + ε). Then, as in section 2 for μQ, the last integral in (5.39) is, with exponentially
small error, given by

(5.40)
1

2πi

∫ 1
2 δ

− 1
2 δ

z′(v)
z(v)(z(v)− 1)

ln
(
1−B e−

1
2 sηv

2
)
dv.
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Now for v ≥ 0 from z(−v) = z∗(v), z′(−v) = −(z′(v))∗

z′(v)
z(v)(z(v)− 1)

+
z′(−v)

z(−v)(z(−v)− 1)

= 2i Im

[
z′(v)

z(v)(z(v)− 1)

]
= 2i Im

[
z′(v) z∗(v)(z∗(v)− 1)

|z(v)|2 |z(v)− 1|2
]

= 2i
zsp − 1 +O(v2)

(zsp +O(v2))((zsp − 1)2 + v2 − 2c2(zsp − 1) v2 +O(v4))
,(5.41)

where we used (3.18) and the fact that zsp and ck are real with zsp > 1. Therefore,
we get for the expression in (5.40)

(5.42)
1

π

∫ 1
2 δ

0

1

zsp+O(v2)

zsp − 1 +O(v2)

(zsp − 1)2 + v2 +O((zsp − 1)v2) +O(v4)

ln
(
1−B exp(− 1

2sηv
2)
)
dv.

In the case that 2α − 1 < 0, we have as earlier that the whole expression in (5.42)
is O(exp(−b2 s1−2α)) for any b ∈ (0, b0), as s → ∞. In the case that 2α− 1 ≥ 0, we
substitute v = t

√
s/(2 η), and we get as earlier for the expression (5.42), assuming

also that α < 1,

1

π

√
s η/2

∫ ∞

0

zsp − 1 +O(t2/s)

(d2(s) + t2) (1 +O(s−α) +O(t2/s))
ln(1−B e−t2)dt

=
1

π

∫ ∞

0

√
s η/2 (zsp − 1)

d2(s) + t2
ln(1−B e−t2)dt

(
1 +O(sα−1)

)
=

1

π

∫ ∞

0

d(s)

d2(s) + t2
ln(1− e−d2(s)−t2)dt

(
1 +O(sα−1)

)
.(5.43)

Here, we also used (4.9) and that 1/s3α−1 = O(d2(s)/sα), so that

(5.44) (12 s η)
1/2 (zsp − 1) = d(s)

(
1 +O(s−α)

)
= d(s)

(
1 +O(sα−1)

)
,

since α ≥ 1/2.
We have for b > 0

1

π

∫ ∞

0

b

b2 + t2
ln(1− exp(−b2 − t2)) dt = −1

2

∞∑
k=0

1

k + 1
erfc(b

√
k + 1) = −F (b

√
2),

(5.45)

where according to [19, equations (3.3) and (3.12)] for β > 0

F (β) =

∞∑
n=1

1

n

1√
2π

∫ ∞

β
√
n

e−x2/2dx

= −lnβ − 1

2
ln2− 1√

2π

∞∑
r=0

ζ(1/2− r) (−1/2)r β2r+1

r! (2r + 1)
,(5.46)

the last identity being valid for 0 < β < 2
√
π.
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Using (5.46) with β2 = d2(s) = b20/s
2α−1, with the entire series on the second line

being O(β), we get the leading-order behavior of ln[Q(0)] as

(5.47)
(
−(α− 1/2) ln s+ ln(2 b0) +O(s1/2−α)

) (
1 +O(sα−1)

)
when α ∈ (1/2, 1). For α = 1/2, we get the leading-order behavior, assuming 0 <
b0 <

√
2π,

(5.48) ln(2 b0) +
1√
π

∞∑
r=0

ζ(1/2− r) (−1)r

r! (2r + 1)
b2r+1
0

with relative error O(s−1/2). The expression (5.48) coincides with ln[P(M = 0)] as
given by [19, equation (2.1)] with β = b0

√
2. The next two results summarize the

above.
Theorem 7. For α ∈ (1/2, 1),

(5.49) ln[P(Q = 0)] = −F
(
d(s)

√
2
) (

1 +O(sα−1)
)

with F given by (5.46).
Proposition 8. For α ∈ (0, 1/2) and for all b < b0,

(5.50) ln[P(Q = 0)] = O(exp(−b2 s1−2α)).

For α = 1/2, ln[P(Q = 0)] equals −F (b0
√
2) with a relative error O(1/

√
s). For

α ∈ (1/2, 1) and 0 < b0 <
√
2π, ln[P(Q = 0)] has leading-order behavior as in (5.47).

As in section 5.1 for the mean congestion level case with α = 1/2, it is possible
to give a correction term which involves now the integrals in (5.45) and (4.29).

6. Numerical examples.

6.1. Accuracy of the approximations. In this subsection we present a nu-
merical example that serves to illustrate the accuracy of the derived heavy-traffic
approximations. Consider the Poisson case

(6.1) X(z) = ez−1, μX = σ2
X = 1.

We fix μX and vary n with the value of s, according to

(6.2) ϑ =
n

s
= 1− γ

sα

for some γ > 0 and α ≥ 1/2. To calculate the exact value of the mean congestion
level, we use the expression, see [8],

μQ =
σ2
A

2(s− μA)
− s− 1 + μA

2
+

s−1∑
k=1

1

1− zk
.(6.3)

Here, z1, . . . , zs−1 are the zeros of zs − A(z) in |z| < 1. We apply the method of
successive substitution described in [17] to obtain accurate numerical approximations
for z1, . . . , zs−1 and consequently μQ.

From Theorem 3, we find that the leading-order behavior of μQ is given by

(6.4)

√
2s

π
G0

(
γ√

2 sα−
1
2

)
.
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Table 1

Numerical results for γ = 1.

s ρ μQ (6.4) (6.6)
10 0.683 0.244 0.399 0.247
20 0.776 0.410 0.565 0.412
50 0.858 0.739 0.893 0.741

100 0.900 1.110 1.263 1.111
200 0.929 1.633 1.787 1.634
500 0.955 2.672 2.825 2.673

1000 0.968 3.843 3.996 3.843

Table 2

Numerical results for γ = 0.1.

s ρ μQ (6.4) (6.6)
10 0.968 13.707 14.046 13.732
20 0.977 19.533 19.865 19.551
50 0.985 31.084 31.409 31.095

100 0.990 44.097 44.419 44.106
200 0.992 62.499 62.819 62.505
500 0.995 99.008 99.325 99.011

1000 0.996 140.152 140.468 140.154

Table 3

Numerical results for γ = 0.1 and several values of α.

α = 0.6 α = 0.75 α = 0.9
s μQ (6.4) μQ (6.4) μQ (6.4)

10 17.781 18.125 25.970 26.318 37.553 37.905
20 27.309 27.647 44.391 44.734 71.195 71.541
50 47.948 48.281 89.623 89.961 164.637 164.978

100 73.245 73.574 152.031 152.367 309.353 309.692
200 111.752 112.079 257.435 257.769 580.170 580.507
500 195.082 195.409 515.443 515.776 1329.581 1329.917

1000 297.122 297.448 870.524 870.857 2487.227 2487.562

In order to find the correction terms, we proceed by setting α = 1/2. Deriving
constants C1, C2, C3, and C4 for our setting and substituting these into (5.14), we get
for μQ, with an absolute error of O(s−1/2), the approximation

(6.5)

√
2 s

π

((
1− γ

3
√
s

)
G0(b0)− γ3

3
√
s
(G3(b0) +G4(b0))

)
,

which by (4.27) and (5.17) reduces to

(6.6)

√
2 s

π
G0(b0)−

√
2 γ

3 π
G1(b0).

Numerical results for α = 1/2 and various values of s are given in Tables 1 and 2,
for γ = 1 and γ = 0.1, respectively. We note that for small s, the leading-order
approximation is still off by a significant amount, while the refinement only shows an
error in the second decimal for γ = 0.1. This seems to justify the use of the correction
term. In Table 3 we compare the approximation (6.4) against the exact value of μQ

for three values of α ≥ 1/2 to assess the influence of α. Clearly, the leading-order
approximation is relatively accurate for all three scenarios. As expected, the mean
congestion increases along with α, since utilization approaches 1 more rapidly in this
case.

6.2. Connection to other queueing models. As argued in the introduction,
we believe that the heavy-traffic behavior for the discrete model in this paper will
up to leading order be universal for a wide range of other models (when subjected to
the same heavy-traffic regime (1.2)). We shall now substantiate this for many-server
systems, for which under (1.2), it turns out that the mean congestion is O(sα). We
compare the mean congestion level in our discrete queue with that in the multiserver
systems M/M/s, M/D/s, and Gamma/Gamma/s, all with unit mean service time
and occupation rate 1− γ/sα.
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Fig. 1. μQ plotted against s on log scale for
3 queues for α = 0.75.

Fig. 2. μQ of M/M/s plotted against s on
log scale for different values of α.

Figure 1 shows on logarithmic scale the mean congestion levels for γ = 0.1 and
α = 0.75 under the specified scaling for three systems. We also display three lines with
slope 0.75 for comparison, which confirms that mean congestion levels are of the order
sα, also in these multiserver systems. Formally establishing this heavy-traffic behav-
ior for these multiserver systems is an important open problem and requires other
mathematical approaches than the ones taken in this paper. (See the introduction for
more details.)

Figure 2 shows the mean queue length in the M/M/s system for several values of
α, again on logarithmic scale, together with lines with slope α. For α ≥ 1/2, we see
the same O(sα) behavior, similar as for μQ in our discrete model. For α < 1/2, the
mean queue length decays, again in agreement with our results for μQ. We note that
this qualitative behavior of the M/M/s system was also observed by [22, Theorem
4.1], by proving that the mean waiting time in the M/M/s queue under (1.2) is of
order 1/s1−α, which by Little’s law implies the mean queue length to be of order sα.

Appendix. Proof of Pollaczek’s formula in the discrete setting. In the
setting of section 2, we shall show that for any ε > 0 with 1 + ε < r0,

(A.1) Q(w) = exp

(
1

2πi

∫
|z|=1+ε

ln

(
w − z

1− z

)
(zs −A(z))′

zs −A(z)
dz

)

holds when |w| < 1 + ε. We shall establish (A.1) for any w ∈ (1, 1 + ε), and then the
full result follows from analyticity of Q(w) and of

(A.2) ln

(
w − z

1− z

)
= ln

(
1− w/z

1− 1/z

)
= −

∞∑
k=1

1

k

((w
z

)k
−
(
1

z

)k
)

in w, |w| < 1 + ε for any z with |z| = 1 + ε.
Our starting point is the formula, see [8],

(A.3) Q(w) =
(s− μA)(w − 1)

ws −A(w)

s−1∏
k=1

w − zk
1− zk

,

which holds for all w, |w| < r0, in which z1, . . . , zs−1 are the s− 1 zeros of zs −A(z)
in |z| < 1. Fix w ∈ (1, 1 + ε). Then ln [(w − z)/(1− z)] is analytic in z ∈ C\[1, w]. It
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follows that

IC =
1

2πi

∫
|z|=1+ε

ln

(
w − z

1− z

)
(zs −A(z))′

zs −A(z)
dz

=
s−1∑
k=1

ln

(
w − zk
1− zk

)
+

1

2πi

∫
C

ln

(
w − z

1− z

)
(zs −A(z))′

zs −A(z)
dz,(A.4)

where C is a contour encircling [1, w] in the positive sense with none of the zk’s in
its interior. We let δ ∈ (0, w−1

2 ), and we take C the union of two line segments,
from 1 + δ − i0 to w − δ − i0 and from w − δ + i0 to 1 + δ − i0, and two circles, of
radius δ and encircling 1 and w in the positive sense. A careful administration of the
various contributions to the integral IC in (A.4), taking account of the branch cut
[1, w], yields

(A.5) IC = ln

(
(s− μA)(w − 1)

ws −A(w)

)
+O(δ ln δ).

Using this in (A.3) and letting δ ↓ 0, we get (A.1) for w ∈ (1, 1 + ε), and the proof is
complete.
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[2] I.J.B.F. Adan, J.S.H. van Leeuwaarden, and E.M.M. Winands, On the application of
Rouché’s theorem in queueing theory, Oper. Res. Lett., 34 (2006), pp. 355–360.

[3] D. Anick, D. Mitra, and M.M. Sondhi, Stochastic theory of a data-handling system with
multiple sources, Bell System Tech. J., 61 (1982), pp. 1871–1894.

[4] S. Asmussen, Applied Probability and Queues, 2nd ed., Springer, New York, 2003.
[5] A. Bassamboo, R.S. Randhawa, and A. Zeevi, Capacity sizing under parammeter uncer-

tainty: Safety staffing principles revisited, Management Sci., 56 (2010), pp. 1668–1686.
[6] J. Blanchet and P. Glynn, Complete corrected diffusion approximations for the maximum

of a random walk, Ann. Appl. Probab., 16 (2006), pp. 951–983.
[7] S.C. Borst, A. Mandelbaum, and M.I. Reiman, Dimensioning large call centers, Oper. Res.,

52 (2004), pp. 17–34.
[8] P.E. Boudreau, J.S. Griffin, Jr., and M. Kac, An elementary queueing problem, Amer.

Math. Monthly, 69 (1962), pp. 713–724.
[9] H. Bruneel and B.G. Kim, Discrete-Time Models for Communication Systems Including

ATM, Kluwer Academic, Boston, 1993.
[10] J.T. Chang and Y. Peres, Ladder heights, Gaussian random walks and the Riemann zeta

function, Ann. Probab., 25 (1997), pp. 787–802.
[11] J.W. Cohen, The Single Server Queue, 2nd ed., North-Holland Ser. Appl. Math. Mech. 8,

North-Holland, Amsterdam, 1982.
[12] J.G. Dai and P. Shi, A two-time-scale approach to time-varying queues for hospital inpatient

flow management, http://papers.ssrn.com/sol3/papers.cfm?abstract id=2489533 (2014).
[13] N.G. de Bruijn, Asymptotic Methods in Analysis, 3rd ed., Dover Publications, New York,

1981.
[14] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cam-

bridge, 2009.
[15] L.V. Green and S. Savin, Reducing delays for medical appointments: A queueing approach,

Oper. Res., 56 (2008), pp. 1526–1538.
[16] S. Halfin and W. Whitt, Heavy-traffic limits for queues with many exponential servers, Oper.

Res., 29 (1981), pp. 567–588.
[17] A.J.E.M. Janssen and J.S.H. van Leeuwaarden, Analytic computation schemes for the

discrete-time bulk service queue, Queueing Syst., 50 (2005), pp. 141–163.
[18] A.J.E.M. Janssen and J.S.H. van Leeuwaarden, Relaxation time for the discrete D/G/1

queue, Queueing Syst., 50 (2005), pp. 53–80.

D
ow

nl
oa

de
d 

04
/2

8/
15

 to
 1

31
.1

55
.1

51
.1

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2489533


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

812 A. JANSSEN, J. VAN LEEUWAARDEN, AND B. MATHIJSEN

[19] A.J.E.M. Janssen and J.S.H. van Leeuwaarden, On Lerch’s transcendent and the Gaussian
random walk, Ann. Appl. Probab., 17 (2006), pp. 421–439.

[20] A.J.E.M. Janssen and J.S.H. van Leeuwaarden, Cumulants of the maximum of the Gaussian
random walk, Stochastic Process. Appl., 117 (2007), pp. 1928–1959.

[21] P. Jelenković, A. Mandelbaum, and P. Momčilovic, Heavy traffic limits for queues with
many deterministic servers, Queueing Syst., 47 (2004), pp. 53–69.

[22] S. Maman, Uncertainty in the Demand for Service: The Case of Call Centers and Emergency
Departments, M.Sc. thesis, Technion–Israel Institute of Technology, Haifa, Israel, 2009.

[23] G.F. Newell, Queues for a fixed-cycle traffic light, Ann. Math. Statist., 31 (1960), pp. 589–597.
[24] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathe-

matical Functions, Cambridge University Press, Cambridge, 2010.
[25] D. Siegmund, Sequential Analysis, Springer Ser. Statist., Springer, New York, 1985.
[26] K. Sigman and W. Whitt, Heavy-traffic limits for nearly deterministic queues, J. Appl.

Probab., 48 (2011), pp. 657–678.
[27] K. Sigman and W. Whitt, Heavy-traffic limits for nearly deterministic queues: Stationary

distributions, Queueing Syst., 69 (2011), pp. 145–173.
[28] J.S.H. van Leeuwaarden, Queueing Models for Cable Access Networks, Ph.D. thesis, Eind-

hoven University of Technology, Eindhoven, The Netherlands, 2005.
[29] J.S.H. van Leeuwaarden, Delay analysis for the fixed-cycle traffic light queue, Transportation

Sci., 40 (2006), pp. 189–199.
[30] W. Whitt, Stochastic Process Limits, Springer, New York, 2002.
[31] C. Zacharias and M. Armony, Joint panel sizing and appointment scheduling in outpatient

care, http://www.stern.nyu.edu/om/faculty/armony/joint panel.pdf (2014).

D
ow

nl
oa

de
d 

04
/2

8/
15

 to
 1

31
.1

55
.1

51
.1

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.stern.nyu.edu/om/faculty/armony/joint_panel.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


