50,767 research outputs found

    Central limit theorem for Fourier transforms of stationary processes

    Full text link
    We consider asymptotic behavior of Fourier transforms of stationary ergodic sequences with finite second moments. We establish a central limit theorem (CLT) for almost all frequencies and also an annealed CLT. The theorems hold for all regular sequences. Our results shed new light on the foundation of spectral analysis and on the asymptotic distribution of periodogram, and it provides a nice blend of harmonic analysis, theory of stationary processes and theory of martingales.Comment: Published in at http://dx.doi.org/10.1214/10-AOP530 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Converse Lyapunov theorems for discrete-time linear switching systems with regular switching sequences

    Full text link
    We present a stability analysis framework for the general class of discrete-time linear switching systems for which the switching sequences belong to a regular language. They admit arbitrary switching systems as special cases. Using recent results of X. Dai on the asymptotic growth rate of such systems, we introduce the concept of multinorm as an algebraic tool for stability analysis. We conjugate this tool with two families of multiple quadratic Lyapunov functions, parameterized by an integer T >= 1, and obtain converse Lyapunov Theorems for each. Lyapunov functions of the first family associate one quadratic form per state of the automaton defining the switching sequences. They are made to decrease after every T successive time steps. The second family is made of the path-dependent Lyapunov functions of Lee and Dullerud. They are parameterized by an amount of memory (T-1) >= 0. Our converse Lyapunov theorems are finite. More precisely, we give sufficient conditions on the asymptotic growth rate of a stable system under which one can compute an integer parameter T >= 1 for which both types of Lyapunov functions exist. As a corollary of our results, we formulate an arbitrary accurate approximation scheme for estimating the asymptotic growth rate of switching systems with constrained switching sequences

    Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences

    Full text link
    When asymptotically analysing the summatory function of a qq-regular sequence in the sense of Allouche and Shallit, the eigenvalues of the sum of matrices of the linear representation of the sequence determine the "shape" (in particular the growth) of the asymptotic formula. Existing general results for determining the precise behavior (including the Fourier coefficients of the appearing fluctuations) have previously been restricted by a technical condition on these eigenvalues. The aim of this work is to lift these restrictions by providing a insightful proof based on generating functions for the main pseudo Tauberian theorem for all cases simultaneously. (This theorem is the key ingredient for overcoming convergence problems in Mellin--Perron summation in the asymptotic analysis.) One example is discussed in more detail: A precise asymptotic formula for the amount of esthetic numbers in the first~NN natural numbers is presented. Prior to this only the asymptotic amount of these numbers with a given digit-length was known.Comment: to appear in "2019 Proceedings of the Sixteenth Meeting on Analytic Algorithmics and Combinatorics (ANALCO)

    Automatic enumeration of regular objects

    Full text link
    We describe a framework for systematic enumeration of families combinatorial structures which possess a certain regularity. More precisely, we describe how to obtain the differential equations satisfied by their generating series. These differential equations are then used to determine the initial counting sequence and for asymptotic analysis. The key tool is the scalar product for symmetric functions and that this operation preserves D-finiteness.Comment: Corrected for readability; To appear in the Journal of Integer Sequence

    On the non-holonomic character of logarithms, powers, and the n-th prime function

    Full text link
    We establish that the sequences formed by logarithms and by "fractional" powers of integers, as well as the sequence of prime numbers, are non-holonomic, thereby answering three open problems of Gerhold [Electronic Journal of Combinatorics 11 (2004), R87]. Our proofs depend on basic complex analysis, namely a conjunction of the Structure Theorem for singularities of solutions to linear differential equations and of an Abelian theorem. A brief discussion is offered regarding the scope of singularity-based methods and several naturally occurring sequences are proved to be non-holonomic.Comment: 13 page

    Asymptotics of classical spin networks

    Full text link
    A spin network is a cubic ribbon graph labeled by representations of SU(2)\mathrm{SU}(2). Spin networks are important in various areas of Mathematics (3-dimensional Quantum Topology), Physics (Angular Momentum, Classical and Quantum Gravity) and Chemistry (Atomic Spectroscopy). The evaluation of a spin network is an integer number. The main results of our paper are: (a) an existence theorem for the asymptotics of evaluations of arbitrary spin networks (using the theory of GG-functions), (b) a rationality property of the generating series of all evaluations with a fixed underlying graph (using the combinatorics of the chromatic evaluation of a spin network), (c) rigorous effective computations of our results for some 6j6j-symbols using the Wilf-Zeilberger theory, and (d) a complete analysis of the regular Cube 12j12j spin network (including a non-rigorous guess of its Stokes constants), in the appendix.Comment: 24 pages, 32 figure

    Period-luminosity relations in evolved red giants explained by solar-like oscillations

    Full text link
    Solar-like oscillations in red giants have been investigated with CoRoT and Kepler, while pulsations in more evolved M giants have been studied with ground-based microlensing surveys. After 3.1 years of observation with Kepler, it is now possible to make a link between these different observations of semi-regular variables. We aim to identify period-luminosity sequences in evolved red giants identified as semi-regular variables. Then, we investigate the consequences of the comparison of ground-based and space-borne observations. We have first measured global oscillation parameters of evolved red giants observed with Kepler with the envelope autocorrelation function method. We then used an extended form of the universal red giant oscillation pattern, extrapolated to very low frequency, to fully identify their oscillations. From the link between red giant oscillations observed by Kepler and period-luminosity sequences, we have identified these relations in evolved red giants as radial and non-radial solar-like oscillations. We were able to expand scaling relations at very low frequency. This helped us to identify the different sequences of period-luminosity relations, and allowed us to propose a calibration of the K magnitude with the observed frequency large separation. Interpreting period-luminosity relations in red giants in terms of solar-like oscillations allows us to investigate, with a firm physical basis, the time series obtained from ground-based microlensing surveys. This can be done with an analytical expression that describes the low-frequency oscillation spectra. The different behavior of oscillations at low frequency, with frequency separations scaling only approximately with the square root of the mean stellar density, can be used to address precisely the physics of the semi-regular variables.Comment: Accepted in A&

    An exactly solvable self-convolutive recurrence

    Full text link
    We consider a self-convolutive recurrence whose solution is the sequence of coefficients in the asymptotic expansion of the logarithmic derivative of the confluent hypergeometic function U(a,b,z)U(a,b,z). By application of the Hilbert transform we convert this expression into an explicit, non-recursive solution in which the nnth coefficient is expressed as the (n1)(n-1)th moment of a measure, and also as the trace of the (n1)(n-1)th iterate of a linear operator. Applications of these sequences, and hence of the explicit solution provided, are found in quantum field theory as the number of Feynman diagrams of a certain type and order, in Brownian motion theory, and in combinatorics
    corecore