153 research outputs found

    On treewidth and minimum fill-in of asteroidal triple-free graphs

    Get PDF
    We present O(n5R + n3R3) time algorithms to compute the treewidth, pathwidth, minimum fill-in and minimum interval graph completion of asteroidal triple-free graphs, where n is the number of vertices and R is the number of minimal separators of the input graph. This yields polynomial time algorithms for the four NP-complete graph problems on any subclass of the asteroidal triple-free graphs that has a polynomially bounded number of minimal separators, as e.g. cocomparability graphs of bounded dimension and d-trapezoid graphs for any fixed d ⩾ 1

    Boxicity and Cubicity of Asteroidal Triple free graphs

    Get PDF
    An axis parallel dd-dimensional box is the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line. The {\it boxicity} of a graph GG, denoted as \boxi(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-dimensional boxes. An axis parallel unit cube in dd-dimensional space or a dd-cube is defined as the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line of the form [ai,ai+1][a_i,a_i + 1]. The {\it cubicity} of GG, denoted as \cub(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-cubes. Let S(m)S(m) denote a star graph on m+1m+1 nodes. We define {\it claw number} of a graph GG as the largest positive integer kk such that S(k)S(k) is an induced subgraph of GG and denote it as \claw. Let GG be an AT-free graph with chromatic number χ(G)\chi(G) and claw number \claw. In this paper we will show that \boxi(G) \leq \chi(G) and this bound is tight. We also show that \cub(G) \leq \boxi(G)(\ceil{\log_2 \claw} +2) ≤\leq \chi(G)(\ceil{\log_2 \claw} +2). If GG is an AT-free graph having girth at least 5 then \boxi(G) \leq 2 and therefore \cub(G) \leq 2\ceil{\log_2 \claw} +4.Comment: 15 pages: We are replacing our earlier paper regarding boxicity of permutation graphs with a superior result. Here we consider the boxicity of AT-free graphs, which is a super class of permutation graph

    On claw-free asteroidal triple-free graphs

    Get PDF
    AbstractWe present an O(n2.376) algorithm for recognizing claw-free AT-free graphs and a linear-time algorithm for computing the set of all central vertices of a claw-free AT-free graph. In addition, we give efficient algorithms that solve the problems INDEPENDENT SET, DOMINATING SET, and COLORING. We argue that all running times achieved are optimal unless better algorithms for a number of famous graph problems such as triangle recognition and bipartite matching have been found. Our algorithms exploit the structure of 2LexBFS schemes of claw-free AT-free graphs

    Independent Sets in Asteroidal Triple-Free Graphs

    Get PDF
    An asteroidal triple (AT) is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an AT. We show that there is an O(n4 ) time algorithm to compute the maximum weight of an independent set for AT-free graphs. Furthermore, we obtain O(n4 ) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problems on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally, we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Independent sets in asteroidal triple-free graphs

    Get PDF
    An asteroidal triple is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an asteroidal triple. We show that there is an O(n 2 · (¯m+1)) time algorithm to compute the maximum cardinality of an independent set for AT-free graphs, where n is the number of vertices and ¯m is the number of non edges of the input graph. Furthermore we obtain O(n 2 · (¯m+1)) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problem on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Vertex ranking of asteroidal triple-free graphs

    Get PDF

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree
    • …
    corecore