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Abstract. We present an efficient algorithm for computing the vertex 
ranking number of an asteroidal triple-free graph. lts running time is 
bounded by a polynomial in the number of vertices and the number of 
minimal separators of the input graph. 

1 Introduction 

A vertex ranking of a graph is a vertex coloring by a linear ordered set of colors 
such that for every path in the graph with end vertices of the same color there 
is a vertex on this path with a higher color. The vertex ranking problem askes 
for a vertex ranking with a minimum number of colors. 

Asteroidal triples in graphs were introduced in [15], where the interval graphs 
are characterized as those chordal graphs without asteroidal triples. In the mean­
time asteroidal triples (or ATs, for short) turned out to be an important concept. 
Their absence in a graph forces several nice structures [6], however, a character­
ization of AT-free graphs as intersection graphs is not known. 

The AT-free graphs do not form a class of perfect graphs. Nevertheless ef­
ficient algorithms are known for some domination problems restricted to this 
class [7]. The complements of comparability graphs are an important subclass 
of AT-free graphs, which shows that the class of AT-free graphs is a relatively 
large class of graphs. While in general the number of minimal separators of an 
AT-free graph cannot be bounded by any polynomial of the number of vertices, 
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this is the case for the complements of comparability graphs of partial orders of 
bounded dimension [2]. 

The dimension of a partial order is one of the most carefully studied param­
eters of a partial order [19]. Yannakakis [20] showed that determining whether 
a partial order has dimension at most d is NP-complete for any fixed d ;:::: 3. 
Furthermore, while many problems have been shown to be efficiently solvable on 
partial orders of dimension 2, no ~P-complete partial order problem was known 
to be solvable by a polynomial time algorithm for partially ordered sets of some 
fixed dimension greater than 2. This changed when a polynomial time algorithm 
was found for the treewidth of a cocomparability graph of fixed dimension [14]. 
In this paper we show that for the vertex ranking problem a similar re sult can 
be obtained. 

If the intersection model of a cocomparability graph is part of the input, it was 
already shown in [8] that the vertex ranking problem can be solved. However, if 
only the graph is given as input, this does not yield a polynomial time algorithm, 
since we cannot find the representation efficiently. Thus, until now, it was unclear 
whether the problem was easy because the class of graphs is weIl behaved, or 
because having the representation (which is the solution to an NP-complete 
problem) is such a powerful tooI that it gave the solution. 

Much work has been done in finding optimal rankings of trees. For trees 
there is now a linear time algorithm finding an optimal vertex ranking [16). For 
the closely related edge ranking problem on trees an O(n3 10gn) algorithm was 
given in [18]. Efficient vertex ranking algorithms were known for very few other 
classes of graphs. The vertex ranking problem is triviaion split graphs and it is 
solvable in linear time on cographs [17]. Recently a O(n4 ) algorithm for vertex 
ranking of interval graphs was presented in [1]. The approach presented in [8] 
can be used to design a O(n3 ) algorithm computing an optimal vertex ranking 
for interval graphs. In [8] also and O(n6 ) algorithm was presented computing 
the vertex ranking of permutation graphs. 

The decision problem 'Given a graph G and a positive integer k, has G a 
vertex ranking with at most k colors' is NP-complete, even when restricted to 
cobipartite or bipartite graphs [3J. In view of this it is interesting to notice that 
for each constant t, the class of graphs with vertex ranking number at most t 
is recognizable in linear time [3J. This follows fr om the fact that for each t, the 
class of graphs with vertex ranking number at most t is minor closed and from 
the recent results of Robertson and Seymour. 

In [11], among other things, an O( -v'n) bound is given for the vertex ranking 
number of aplanar graph and the authors describe a polynomial time algorithm 
which finds a ranking using only O( -v'n) colors. For graphs in general there 
is an approximation algorithm known with factor O(10g2 n) [4, 12]. In [4J it is 
also shown that one plus the pathwidth of a graph is a lower bound for the 
vertex ranking number ofthe graph (henee aplanar graph has pathwidth O( -v'n), 
(which was also shown in [12J using different methods). 

For definitions and properties of classes of well-structured graphs not given 
here we refer to [5, 9, lOJ. 
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In this paper we show that the vertex ranking problem can be solved effi­
ciently for AT-free graphs with a polynomial number of minimal separators. 

2 Preliminaries 

2.1 Preliminaries on AT-free graphs 

An independent set of three vertices is called an asteroidal triple if between 
each pair in the triple there exists a path that avoids the neighborhood of the 
third. A graph is AT-free if it does not contain an asteroidal triple. Recently 
the structure of AT-free graphs has been studied extensively (see [6]). The class 
of AT-free graphs contains various well-known graph classes, as e.g., interval, 
permutation, trapezoid and cocomparability graphs. A good reference for more 
information on all these sub classes is [10]. 

2.2 Preliminaries on separators 

All graphs in this paper are simple and undirected. G[W] will be the subgraph 
of G induced by the vertices of W. 

Our main tooI will be the set of minimal separators. 

Definition 1. A vertex set S is an a, b-separator if the removal of S separates 
a and b in distinct connected components. If no proper subset of S is an a, b­
separator then S is a minimal a, b-separator. S is a minimal separator if there 
exist non adjacent vertices a and b such that S is a minimal a, b-separator. 
An inclusion minimal separator is a separator such that no other separator is 
properly contained in it. 

Definition 2. Let G = (V, E) be a graph and let S and C be vertex sets of G. 
Then C is S-full in G if every vertex in S has a neighbor in C. We say that 
G[C] is a fuil component of G[V \ S] if Cis S-full in G and G[C] is a connected 
component of G[V \ Slo 

Obviously a vertex set S is a minimal a, b-separator of G Hf a and b are 
vertices in different full components of G[V \ SJ. Furthermore, Sis an inclusion 
minimal separator of G iff G[V\S] is disconnected and all connected components 
of G[V \ S] are S-full in G. 

Lemma 3. Let G (V, E) be a graph with separator SI. Let a and b be non­
adjacent vertices in a connected component G[C] of G[V \ Sj. Let SeC be a 
minimal a, b-separator in G[C]. Then there exists a minimal a, b-sepamtor S2 of 
G with the following properties: 

1. S ç S2 ç S U SI 
2. The connected component G[A] of G[C \ Sj containing vertex a is a full 

component of G[V \ S2]. 
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Pro of. Let G[A] be the connected component of G[C \ S] and let G[B] be the 
connected component of G[C \ S] containing b. Clearly, S* ;= SI uS separates 
a and b in G and the connected components containing a and bare G[AJ and 
G[BJ respectively. 

Remove aU vertices from S* which do not have a neighbor in A. Let the 
resulting set be S2. Notice that no vertex of S is removed in the process, hence 
S ç S2 ç S U SI. Since only vertices of S* are removed which do not have a 
neighbor in G[AJ, G[A] is a fuU component of G[V \ S2]' (Notice that when we 
remove vertices of S*, the component of G[V \ S*] containing the vertex b may 
grow, but not the component containing a.) 0 

In [13] the foUowing result is shown. 

Theorem4. For a positive number R, let OCR) be the class of graphs with at 
most R minimal separators. There exists an algorithm running in time O(n5 R), 
which, for all R, given a graph G with n vertices, either detects that G rt. OCR) 
or lists all minimal separators in G. 

2.3 Preliminaries on rankings 

Definition 5. Let G = (V, E) be a graph and let t be some integer. A (vertex) 
t-ranking is a coloring c : V --r {I, ... , t} such that for every pair of vertices x 
and y with c( x) = c(y) and for every path between x and y there is a vertex z 
on this path with c(z) > c(x). The vertex ranking number of G, Xr(G), is the 
smallest value t for which the graph admits at-ranking. 

By definition a vertex ranking is a proper coloring. Hence Xr(G) ? X(G) 
for every graph G. We caU a Xr(G)-ranking of G an optimal ranking. Clearly, 
:X:r(Kn) = n, where Kn is a complete graph on n vertices. Furthermore, the 
vertex ranking number of a disconnected graph is equal to the maximum vertex 
ranking number of its components. 

Lemma 6. Let G (V,E) be connected, and let c be a t-ranking of G. Then 
there is at most one vertex x with c(x) t. 

Proof. Assume there are two vertices with color t. Since G is connected, there is 
a path between these two vertices. By definition this path must contain a vertex 
with color at least t + 1. This is a contradiction. 0 

Remark. Notice that if c is a t-ranking of a graph G and H is a subgraph of G, 
then the restriction d of c to the vertices of H is at-ranking for H. 

This observation together with Lemma 6 leads to the following lemma which 
appeared in [l1J. 

Lemma 7. A coloring c : V --r {I, ... , t} is at-ranking for a graph G = (V, E) 
if and only if for each 1 SiS t, each connected component of the subgraph 
G[{x I c(x) S i}] of G ha.5 at most one vertex y with c(y) = i. 
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The following theorem, presented in [8], is our main tooI for designing efficient 
vertex ranking algorithms on special classes of grap hs. 

Theorem 8. Let G ::: (V, E) be a a graph and S a nonempty collection of subsets 
of V containing all inclusion minimal separators of G. Then 

Xr(G) ::: min ISI + maxXr(G[C]) 
SES C 

where C ranges over the vertex sets of all connected components of G[V \ Slo 

3 Preliminaries on blocks 

We introduce blocks, which are a basic concept for our algorithm. 

Definition 9. A k-block of G consists of k minimal separators SI, ... , Sk of 
G with Si ~ Sj whenever i :j: j and of a vertex set C such that G[C] is a 
connected component of G[V \ (SI U··· U Sk)] and such that Cis contained in 
a fuIl component of G[V \ Sd for each i 1, ... , k. 

In case of AT-free graphs we only need 1-blocks and 2-blocks. For reasons of 
clarity we give the definitions explicitly. 

Definitionl0. A 1-block is a pair (S,C), where S is a minimal separator and 
G[Cl is a S-full component of G[V \ SJ. 

We want to determine the vertex ranking number Xr(G[C]) for all 1-blocks 
(S, C), by decomposing it into smaller 1-blocks and 2-blocks. The vertex ranking 
for the graph G then follows from Theorem 8. We introduce 2-blocks. 

Definition 11. A triple (Sb C, S3) is called 2-block of a graph G ::: (V, E) if S1 
and S3 are minimal separators of G with S1 ~ S3 and S3 ~ SI, and C c V 
induces a connected component G[C] of G[V \ (SI U S3)] such that for i ::: 1,3 
there exist Si-fullcomponents G[C,] of G[V\Si] with C ç C i and S4-; \Si ç Ci. 

4 Decomposing l-blocks 

Consider a 1-block (S,C). If C is a clique then Xr(G[CJ) ::: IGI. Henceforth, 
assume this is not the case. 

The following theorem gives the decomposition of 1-blocks. 

Theorem 12. Let (SI,C) be a l-block of an AT-free graph G = (V,E), let S be 
an inclusion minimal separator of G[CL and let G[A] be a connected component 
ofG[C\SJ. Then there is a set S2 such that (S2, A) is a l-block ofG or (SI, A, S2) 
is a 2-block of G. 
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Proof. We choose a vertex a E A and b E C \ (A uS). Then SI U Sis an a, b­
separator of G. Let S2 be a minima! a, b-separator with S2 ç St uS. Then we 
have S ç S2 and A is contained in one fuIl component of G(V \ S2]. 

If S2 N(A) \ A then (S2, A) is a l-block of G. 
Assume N(A) \ (AUS2) t 0. We show that (SI,A,S2) is a 2-block. Clearly, 

S2 Cl: SI, since S g SI' But also, SI g S2, sin ce there is a vertex of A with a 
neighbor in SI \ Sz. 

Clearly, Sz \ SI = S is contained in the fuil component G[C] of G(V \ St]. 
Consider a fuil component G[C*] other than G[C] of G[V \ Sl]' Hence every 

vertex of SI \ Sz has a neighbor in C*. It follows that there is connected compo­
nent G[D] of G[V \ Sz] containing all vertices of SI \ Sz. Since there is a vertex 
of A with a neighbor in SI \ Sz, this component D contains all vertices of A. It 
follows that G[D] is a fuH component of G(V \ Sz], since every vertex of S2 has 
a neighbor in A. This proves that (SI, A, Sz) is a 2-block. 0 

5 Decomposing 2-blocks 

We need the foIlowing lemma. 

Lemma 13. Let (Sl, C, Sa) be a 2-block of an AT-free graph G (V, E) and let 
S be an inclusion minimal separator of G[ Cl. Then for all minimal separators 
S2 of G with S ç Sz ç S U Sl U Sa holds Sl ç Sz U Sa or Sa ç S2 U Sl or the 
vertices of Sl \ S2 and S3 \ Sz are in different connected components of G[V \ S2]. 

Proof. Suppose SI g (Sz U S3) and S3 g (S2 U Sl)' Choose vertices SI and S3 
in Sl \ (S2 U S3) and in S3 \ (S2 U Sl) respectively. Clearly, there also exists a 
vertex S2 E S2 \ (SI U S3). 

Assume Sl \ Sz and S3 \ S2 are contairied in one connected component of 
G[V \ S:!]. Then there is another fuIl component of G[V \ S2] without vertices of 
Sl U S3' Choose a vertex V2 in this component. Choose a vertex vertices VI in a 
fuU component of G(V \ St] that contains no vertices of S2 U S3 and a vertex V3 
in a fuU component of G(V \ S3] that contains no vertex of SI U S2' Notice that 
there is a path fr om VI to Va, via 81 and 83, avoiding the neighborhood of V2. 
Similar paths exist from VI to V2 and fr om V3 to V2. It foilows that VI, V2 and V3 
form an AT. 0 

This section shows how 2-blocks are decomposed. Let (SI, C, S3) be a 2-block 
of an AT-free graph G. Clearly, if C is a clique, then the vertex ranking number 
of G[C] is ICI. Assume henceforth this is not the case. 

Theorem14. Let (Sl,C,Sa) be a 2-block of an AT-free graph G = (V,E), let 
S be an inclusion minimal ,çeparator of G[C], and let G[A] be a connected com­
ponent ofG[C\S]. Then there is a set S2 such that (S2, A) is a l-block ofG or 
one of (SI,A,S2) and (S3,A,S2) is a 2-block ofG. 
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ProoI We choose a vertex a E A and b E C \ (S U A). Then SI U S U S3 is an 
a, b-separator of G. Let S2 be a minimal a, b-separator with S2 ç SI U S U S3' 
Then we have S ç S2 and A is in one fuil component of G[V \ S2]. 

First assume that there exist vertices SI and S3 in SI nN(A) \ (S2 US3) and in 
in S3 n N(A) \ (S2 U St) respectively. Then by lemma 13 SI and S3 would belong 
to different connected components of G[V \ S2] contradicting the fact that SI 

and S3 are both in N(A). 
If S2 = N(A) \ A then (S2, A) is a l-block of G. 
Finally assume that S2 c N(A) \ A. Without loss of generality we can now 

assume that that N(A) \ (A US2) ç SI' Then (S!, A, S2) is a 2-block of G which 
follows in the same manner as in the proof of Theorem 12. 0 

6 The algorithm 

Assume our input is an AT-free graph G (V, E) on n vertices with R minimal 
separators. Using the algorithm of [13] we first compute the set Ll of all minimal 
separators of G. This takes time O(n5 R). Next we compute a list B of all vertex 
sets C ç V such that C = V or th ere is a separator S E Ll such that (S, C) 
is a l-block of G or there exist separators SI, S2 E Ll such that (SI, c, S2) is a 
2-block of G. Creating list B is possible in time O(n2 R2) since we have to run 
R(R + 1)/2 times a subroutine computing connected components. We sort the 
elements of B by the number of vertices in time O(n2 R2

). Now the set B contains 
at most nR2 different vertex sets C ç V. For each C E B we compute the vertex 
ranking number Xr(G[C]) in the following way. 

If C is a clique of G then Xr(G[C]) ICI. Otherwise C is representable as 
block of G and decomposes into smaller blocks with ranking numbers computed 
before. By theorem 8 we have 

Xr(G[C]) = min IS n Cl + max Xr(G[C']) 
SE.d c' 

where G[C'] ranges over all connected components of G[C \ SJ. The last ranking 
number computed this way is Xr(G) for C V. By lemma 3 the set {SnC : S E 
Ll} is non-empty and contains all minimal separators of G[ Cl. By Theorems 12 
and 14 for the inclusion minimal separators of G[C] the ranking numbers of the 
connected components G[C'] are computed before. For components G[C'] with 
C' ~ B we assume ranking number IC'I. These components cannot realize the 
minimum. Per component G[C] we need time O(n2 R) for this step. Hence the 
total running time of our algorithm is O(n5 R + n3 R3). 

7 Conclusion 

We have given a efficient algorithm computing the ranking number of AT-free 
graphs. This generalizes in a non trivial way the result of [8]. Notice that in 
this paper we do not assume any intersection model. As a matter of fact, no 
intersection model for AT-free graphs is known. 
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To us it is unknown whether similar results as obtained in this paper hold for 
graphs in genera!. To be more precise, we do not know if there is an algorithm 
computing the vertex ranking number for graphs in general, with a running time 
polynomial in the number of vertices and the number of minimal separators. 
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