15 research outputs found

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    Independent sets in asteroidal triple-free graphs

    Get PDF
    An asteroidal triple is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an asteroidal triple. We show that there is an O(n 2 · (¯m+1)) time algorithm to compute the maximum cardinality of an independent set for AT-free graphs, where n is the number of vertices and ¯m is the number of non edges of the input graph. Furthermore we obtain O(n 2 · (¯m+1)) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problem on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Asteroidal quadruples in non rooted path graphs

    Get PDF
    A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.Facultad de Ciencias Exacta

    Independent Sets in Asteroidal Triple-Free Graphs

    Get PDF
    An asteroidal triple (AT) is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an AT. We show that there is an O(n4 ) time algorithm to compute the maximum weight of an independent set for AT-free graphs. Furthermore, we obtain O(n4 ) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problems on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally, we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Asteroidal quadruples in non rooted path graphs

    Get PDF
    A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.Facultad de Ciencias Exacta

    On claw-free asteroidal triple-free graphs

    Get PDF
    AbstractWe present an O(n2.376) algorithm for recognizing claw-free AT-free graphs and a linear-time algorithm for computing the set of all central vertices of a claw-free AT-free graph. In addition, we give efficient algorithms that solve the problems INDEPENDENT SET, DOMINATING SET, and COLORING. We argue that all running times achieved are optimal unless better algorithms for a number of famous graph problems such as triangle recognition and bipartite matching have been found. Our algorithms exploit the structure of 2LexBFS schemes of claw-free AT-free graphs

    Obstructions to Faster Diameter Computation: Asteroidal Sets

    Get PDF
    Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let ExtαExt_{\alpha} be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than α\alpha pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every mm-edge graph in ExtαExt_{\alpha} can be computed in deterministic O(α3m3/2){\cal O}(\alpha^3 m^{3/2}) time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive +1+1-approximation of all vertex eccentricities in deterministic O(α2m){\cal O}(\alpha^2 m) time. This is in sharp contrast with general mm-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in O(m2ϵ){\cal O}(m^{2-\epsilon}) time for any ϵ>0\epsilon > 0. As important special cases of our main result, we derive an O(m3/2){\cal O}(m^{3/2})-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2){\cal O}(k^3m^{3/2})-time algorithm for this problem on graphs of asteroidal number at most kk. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions

    Graphs with at most two moplexes

    Full text link
    A moplex is a natural graph structure that arises when lifting Dirac's classical theorem from chordal graphs to general graphs. However, while every non-complete graph has at least two moplexes, little is known about structural properties of graphs with a bounded number of moplexes. The study of these graphs is motivated by the parallel between moplexes in general graphs and simplicial modules in chordal graphs: Unlike in the moplex setting, properties of chordal graphs with a bounded number of simplicial modules are well understood. For instance, chordal graphs having at most two simplicial modules are interval. In this work we initiate an investigation of kk-moplex graphs, which are defined as graphs containing at most kk moplexes. Of particular interest is the smallest nontrivial case k=2k=2, which forms a counterpart to the class of interval graphs. As our main structural result, we show that the class of connected 22-moplex graphs is sandwiched between the classes of proper interval graphs and cocomparability graphs; moreover, both inclusions are tight for hereditary classes. From a complexity theoretic viewpoint, this leads to the natural question of whether the presence of at most two moplexes guarantees a sufficient amount of structure to efficiently solve problems that are known to be intractable on cocomparability graphs, but not on proper interval graphs. We develop new reductions that answer this question negatively for two prominent problems fitting this profile, namely Graph Isomorphism and Max-Cut. On the other hand, we prove that every connected 22-moplex graph contains a Hamiltonian path, generalising the same property of connected proper interval graphs. Furthermore, for graphs with a higher number of moplexes, we lift the previously known result that graphs without asteroidal triples have at most two moplexes to the more general setting of larger asteroidal sets
    corecore