661 research outputs found

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree

    Independent Sets in Asteroidal Triple-Free Graphs

    Get PDF
    An asteroidal triple (AT) is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an AT. We show that there is an O(n4 ) time algorithm to compute the maximum weight of an independent set for AT-free graphs. Furthermore, we obtain O(n4 ) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problems on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally, we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Independent sets in asteroidal triple-free graphs

    Get PDF
    An asteroidal triple is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an asteroidal triple. We show that there is an O(n 2 · (¯m+1)) time algorithm to compute the maximum cardinality of an independent set for AT-free graphs, where n is the number of vertices and ¯m is the number of non edges of the input graph. Furthermore we obtain O(n 2 · (¯m+1)) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problem on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    Reduced clique graphs of chordal graphs

    Get PDF
    AbstractWe investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves

    On asteroidal sets in chordal graphs

    Get PDF
    We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.Facultad de Ciencias Exacta
    • …
    corecore