196 research outputs found

    Early-life social environment predicts social network position in wild zebra finches

    Get PDF
    Early-life experience can fundamentally shape individual life-history trajectories. Previous research has suggested that exposure to stress during development causes differences in social behaviour later in life. In captivity, juvenile zebra finches exposed to elevated corticosterone levels were less socially choosy and more central in their social networks when compared to untreated siblings. These differences extended to other aspects of social life, with ‘stress-exposed’ juveniles switching social learning strategies and juvenile males less faithfully learning their father's song. However, while this body of research suggests that the impacts of early-life stress could be profound, it remains unknown whether such effects are strong enough to be expressed under natural conditions. Here, we collected data on social associations of zebra finches in the Australian desert after experimentally manipulating brood sizes. Juveniles from enlarged broods experienced heightened sibling competition, and we predicted that they would express similar patterns of social associations to stress-treated birds in the captive study by having more, but less differentiated, relationships. We show striking support for the suggested consequences of developmental stress on social network positions, with our data from the wild replicating the same results in 9 out of 10 predictions previously tested in captivity. Chicks raised in enlarged broods foraged with greater numbers of conspecifics but were less ‘choosy’ and more central in the social network. Our results confirm that the natural range of variation in early-life experience can be sufficient to predict individuals' social trajectories and support theory highlighting the potential importance of developmental conditions on behaviour

    Kinship, lineage identity, and an evolutionary perspective on the structure of cooperative big game hunting groups in Indonesia.

    Get PDF
    Work was conducted among traditional, subsistence whale hunters in Lamalera, Indonesia in order to test if kinship or lineage membership is more important for explaining the organization of cooperative hunting parties ranging in size from 8-14 men. Crew identifications were collected for all 853 hunts that occurred between May 3 and August 5, 1999. Lineage identity and genetic relatedness were determined for a sample of 189 hunters. Results of matrix regression show that kinship explains little of the hunters' affiliations independent of lineage identity. Crews are much more related amongst themselves than expected by chance. This is due, however, to the correlation between lineage membership and kinship. Lineage members are much more likely to affiliate in crews, but beyond r = 0.5 kin are just as likely not to affiliate. The results are discussed vis-à-vis the evolution of cooperation and group identity

    Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences

    Get PDF
    We introduce a new optimization model, dubbed the display optimization problem, that captures a common aspect of choice behavior, known as the framing bias. In this setting, the objective is to optimize how distinct items (corresponding to products, web links, ads, etc.) are being displayed to a heterogeneous audience, whose choice preferences are influenced by the relative locations of items. Once items are assigned to vertically differentiated locations, customers consider a subset of the items displayed in the most favorable locations, before picking an alternative through Multinomial Logit choice probabilities. The main contribution of this paper is to derive a polynomial-time approximation scheme for the display optimization problem. Our algorithm is based on an approximate dynamic programming formulation that exploits various structural properties to derive a compact state space representation of provably near-optimal item-to-position assignment decisions. As a by-product, our results improve on existing constant-factor approximations for closely-related models, and apply to general distributions over consideration sets. We develop the notion of approximate assortments, that may be of independent interest and applicable in additional revenue management settings. Lastly, we conduct extensive numerical studies to validate the proposed modeling approach and algorithm. Experiments on a public hotel booking data set demonstrate the superior predictive accuracy of our choice model vis-a-vis the Multinomial Logit choice model with location bias, proposed in earlier literature. In synthetic computational experiments, our approximation scheme dominates various benchmarks, including natural heuristics -- greedy methods, local-search, priority rules -- as well as state-of-the-art algorithms developed for closely-related models

    Prescriptive formalism for constructing domain-specific evolutionary algorithms

    Get PDF
    It has been widely recognised in the computational intelligence and machine learning communities that the key to understanding the behaviour of learning algorithms is to understand what representation is employed to capture and manipulate knowledge acquired during the learning process. However, traditional evolutionary algorithms have tended to employ a fixed representation space (binary strings), in order to allow the use of standardised genetic operators. This approach leads to complications for many problem domains, as it forces a somewhat artificial mapping between the problem variables and the canonical binary representation, especially when there are dependencies between problem variables (e.g. problems naturally defined over permutations). This often obscures the relationship between genetic structure and problem features, making it difficult to understand the actions of the standard genetic operators with reference to problem-specific structures. This thesis instead advocates m..

    Approximation algorithms for dynamic assortment optimization models

    Get PDF
    We consider the single-period joint assortment and inventory planning problem with stochastic demand and dynamic substitution across products, motivated by applications in highly differentiated markets, such as online retailing and airlines. This class of problems is known to be notoriously hard to deal with from a computational standpoint. In fact, prior to the present paper, only a handful of modeling approaches were shown to admit provably good algorithms, at the cost of strong restrictions on customers’ choice outcomes. Our main contribution is to provide the first efficient algorithms with provable performance guarantees for a broad class of dynamic assortment optimization models. Under general rank-based choice models, our approximation algorithm is best possible with respect to the price parameters, up to lower-order terms. In particular, we obtain a constant-factor approximation under horizontal differentiation, where product prices are uniform. In more structured settings, where the customers’ ranking behavior is motivated by price and quality cues, we derive improved guarantees through tailor-made algorithms. In extensive computational experiments, our approach dominates existing heuristics in terms of revenue performance, as well as in terms of speed, given the myopic nature of our methods. From a technical perspective, we introduce a number of novel algorithmic ideas of independent interest, and unravel hidden relations to submodular maximization

    Greedy-Like Algorithms for Dynamic Assortment Planning Under Multinomial Logit Preferences

    Get PDF
    We study the joint assortment planning and inventory management problem, where stock-out events elicit dynamic substitution effects, described by the multinomial logit (MNL) choice model. Special cases of this setting have been extensively studied in recent literature, notably the static assortment planning problem. Nevertheless, to our knowledge, the general formulation is not known to admit efficient algorithms with analytical performance guarantees before this work, and most of its computational aspects are still wide open. In this paper, we devise what is, to our knowledge, the first provably good approximation algorithm for dynamic assortment planning under the MNL model. We derive a constant-factor guarantee for a broad class of demand distributions that satisfy the increasing failure rate property. Our algorithm relies on a combination of greedy procedures, where stocking decisions are restricted to specific classes of products and the objective function takes modified forms. We demonstrate that our approach substantially outperforms state-of-the-art heuristic methods in terms of performance and speed, leading to an average revenue gain of 4% to 12% in computational experiments. In the course of establishing our main result, we develop new algorithmic ideas that may be of independent interest. These include weaker notions of submodularity and monotonicity, shown sufficient to obtain constant-factor worst-case guarantees, despite using noisy estimates of the objective functio

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Bayesian Mechanism Design for Blockchain Transaction Fee Allocation

    Full text link
    In blockchain systems, the design of transaction fee mechanisms is essential for stability and satisfaction for both miners and users. A recent work has proven the impossibility of collusion-proof mechanisms that achieve both non-zero miner revenue and Dominating-Strategy-Incentive-Compatible (DSIC) for users. However, a positive miner revenue is important in practice to motivate miners. To address this challenge, we consider a Bayesian game setting and relax the DSIC requirement for users to Bayesian-Nash-Incentive-Compatibility (BNIC). In particular, we propose an auxiliary mechanism method that makes connections between BNIC and DSIC mechanisms. With the auxiliary mechanism method, we design a transaction fee mechanism (TFM) based on the multinomial logit (MNL) choice model, and prove that the TFM has both BNIC and collusion-proof properties with an asymptotic constant-factor approximation of optimal miner revenue for i.i.d. bounded valuations. Our result breaks the zero-revenue barrier while preserving truthfulness and collusion-proof properties.Comment: 58 pages, CESC 202
    • …
    corecore