16 research outputs found

    A Broad Class of Discrete-Time Hypercomplex-Valued Hopfield Neural Networks

    Full text link
    In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley-Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B\mathcal{B}-projection functions. Broadly speaking, a B\mathcal{B}-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley-Dickson algebras

    Neural Computing in Quaternion Algebra

    Get PDF
    兵庫県立大学201

    An Introduction to Quaternion-Valued Recurrent Projection Neural Networks

    Full text link
    Hypercomplex-valued neural networks, including quaternion-valued neural networks, can treat multi-dimensional data as a single entity. In this paper, we introduce the quaternion-valued recurrent projection neural networks (QRPNNs). Briefly, QRPNNs are obtained by combining the non-local projection learning with the quaternion-valued recurrent correlation neural network (QRCNNs). We show that QRPNNs overcome the cross-talk problem of QRCNNs. Thus, they are appropriate to implement associative memories. Furthermore, computational experiments reveal that QRPNNs exhibit greater storage capacity and noise tolerance than their corresponding QRCNNs.Comment: Accepted to be Published in: Proceedings of the 8th Brazilian Conference on Intelligent Systems (BRACIS 2019), October 15-18, 2019, Salvador, BA, Brazi

    Learning Schemes for Recurrent Neural Networks

    Get PDF
    兵庫県立大学大学院202

    Selected aspects of complex, hypercomplex and fuzzy neural networks

    Full text link
    This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.Comment: 46 page

    Instantaneously trained neural networks with complex and quaternion inputs

    Get PDF
    Neural network architectures such as backpropagation networks, perceptrons or generalized Hopfield networks can handle complex inputs but they require a large amount of time and resources for the training process. This thesis investigates instantaneously trained feedforward neural networks that can handle complex and quaternion inputs. The performance of the basic algorithm has been analyzed and shown how it provides a plausible model of human perception and understanding of images. The motivation for studying quaternion inputs is their use in representing spatial rotations that find applications in computer graphics, robotics, global navigation, computer vision and the spatial orientation of instruments. The problem of efficient mapping of data in quaternion neural networks is examined. Some problems that need to be addressed before quaternion neural networks find applications are identified

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples
    corecore