16,390 research outputs found

    Ion channels: too complex for rational drug design?

    Get PDF

    Nodes, paranodes and neuropathies

    Get PDF
    This review summarises recent evidence supporting the involvement of the specialised nodal and perinodal domains (the paranode and juxtaparanode) of myelinated axons in the pathology of acquired, inflammatory, peripheral neuropathies.The identification of new target antigens in the inflammatory neuropathies heralds a revolution in diagnosis, and has already begun to inform increasingly targeted and individualised therapies. Rapid progress in our basic understanding of the highly specialised nodal regions of peripheral nerves serves to strengthen the links between their unique microstructural identities, functions and pathologies. In this context, the detection of autoantibodies directed against nodal and perinodal targets is likely to be of increasing clinical importance. Antiganglioside antibodies have long been used in clinical practice as diagnostic serum biomarkers, and associate with specific clinical variants but not to the common forms of either acute or chronic demyelinating autoimmune neuropathy. It is now apparent that antibodies directed against several region-specific cell adhesion molecules, including neurofascin, contactin and contactin-associated protein, can be linked to phenotypically distinct peripheral neuropathies. Importantly, the immunological characteristics of these antibodies facilitate the prediction of treatment responsiveness

    Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders

    Full text link
    The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs. Highlights • Human studies and animal models need to be bridged in neurodevelopmental disorders • Inhibitory signaling emerges as a common contributor to neurodevelopmental disorders • Inhibitory signaling is diverse in mode, source, and target • Systematic evaluation of inhibitory diversity is lacking in neurodevelopment • Understanding of inhibitory signaling diversity will advance therapeutic strategie

    Arachidonic Acid as a Possible Negative Feedback Inhibitor of Nicotinic Acetylcholine Receptors on Neurons

    Get PDF
    Neuronal acetylcholine receptors, being highly permeable to calcium, are likely to regulate calcium-dependent events in neurons. Arachidonic acid is a membrane-permeant second messenger that can be released from membrane phospholipids by phospholipases in a calcium-dependent manner. We show here that activation of neuronal acetylcholine receptors triggers release of 3H-arachidonic acid in a calcium-dependent manner from neurons preloaded with the fatty acid. Moreover, low concentrations of arachidonic acid reversibly inhibit the receptors and act most efficiently on receptors likely to have the highest permeability to calcium, namely receptors containing α7 subunits. Low concentrations of arachidonic acid also reversibly inhibit α7- containing receptors expressed in Xenopus oocytes following injection of α7 cRNA. The oocyte results indicate following injection of α7 cRNA. The oocyte results indicate that the inhibition is a feature of the receptors rather than a consequence of neuron-specific machinery. The inhibition is not mediated by specific metabolites of arachidonic acid because the effects can be mimicked by other fatty acids; their effectiveness correlates with their content of double bonds. In contrast to arachidonic effects on calcium currents, inhibition of neuronal nicotinic receptors by the fatty acid cannot be prevented by blocking production of free radicals or by inhibiting protein kinase C. An alternative mechanism is that arachidonic acid binds directly to the receptors or perturbs the local environment in such a manner as to constrain receptor function
    • …
    corecore