research

A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs).

Abstract

MinK and MinK-related peptide I (MiRPI) are integral membrane peptides with a single transmembrane span. These peptides are active only when co-assembled with pore-forming K+ channel subunits and yet their role in normal ion channel behaviour is obligatory. In the resultant complex the peptides establish key functional attributes: gating kinetics, single-channel conductance, ion selectivity, regulation and pharmacology. Co-assembly is required to reconstitute channel behaviours like those observed in native cells. Thus, MinK/KvLQT1 and MiRPI/HERG complexes reproduce the cardiac currents called I(Ks) and I(Kr), respectively. Inherited mutations in KCNEI (encoding MinK) and KCNE2(encoding MiRPI) are associated with lethal cardiac arrhythmias. How these mutations change ion channel behaviour has shed light on peptide structure and function. Recently, KCNE3 and KCNE4 were isolated. In this review, we consider what is known and what remains controversial about this emerging superfamily

    Similar works