33 research outputs found

    Sub-Riemannian Fast Marching in SE(2)

    Full text link
    We propose a Fast Marching based implementation for computing sub-Riemanninan (SR) geodesics in the roto-translation group SE(2), with a metric depending on a cost induced by the image data. The key ingredient is a Riemannian approximation of the SR-metric. Then, a state of the art Fast Marching solver that is able to deal with extreme anisotropies is used to compute a SR-distance map as the solution of a corresponding eikonal equation. Subsequent backtracking on the distance map gives the geodesics. To validate the method, we consider the uniform cost case in which exact formulas for SR-geodesics are known and we show remarkable accuracy of the numerically computed SR-spheres. We also show a dramatic decrease in computational time with respect to a previous PDE-based iterative approach. Regarding image analysis applications, we show the potential of considering these data adaptive geodesics for a fully automated retinal vessel tree segmentation.Comment: CIARP 201

    Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D

    Get PDF
    We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2)SE(2) and SE(3)SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(n)SE(n), and which are obtained via the exponential and logarithmic map on SE(n)SE(n). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n)SE(n). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that 1) sub-Riemannian geometry is essential in achieving top performance and 2) that grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on Rn\mathbb{R}^n and SE(n)SE(n).Comment: 18 pages, 9 figures, 3 tables, in review at JMI

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2⋊S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)→[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    Cortical Functional architectures as contact and sub-Riemannian geometry

    Full text link
    In a joint paper, Jean Petitot together with the authors of the present paper described the functional geometry of the visual cortex as the symplectization of a contact form to describe the family of cells sensitive to position, orientation and scale. In the present paper, as a "homage" to the enormous contribution of Jean Petitot to neurogeometry, we will extend this approach to more complex functional architectures built as a sequence of contactization or a symplectization process, able to extend the dimension of the space. We will also outline a few examples where a sub-Riemannian lifting is needed
    corecore