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Preface

In this report we aim to detail the methods we developed to improve vascular tracking methods
using sub-Riemannian geodesics. In chapter 1 we introduce the theoretical background for these
tracking methods. In particular we detail P-curve geodesics for uniform cost before introducing
Fast Marching as a general numerical approach to finding geodesics for non-uniform cost with
different metrics.
In chapter 2 we detail how we go about building a cost-function from a source image using
orientation score transforms and what options we have in performing tracking on those cost-
functions.
In chapter 3 we develop an analysis-tool for geodesics that we then use to find keypoints such as
crossings, bifurcations and tracking-deviations as well as improve connecting vessel tips with their
corresponding seeds.
We use chapter 4 for brief concluding remarks about the effectiveness of the methods, the im-
provements to the implementation we made along the way and make some suggestions for future
work.
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Chapter 1

Geodesics in SE(2)

In this chapter we will detail how we can see curves in the plane (and thus vessel traces in an
image) as more complex geometry inside SE(2). We can analyze such curves with the rich tools
of differential geometry. In particular we are interested in different varieties of geodesics as we
can think of blood-vessels as the shortest path for the blood to follow given a certain metric and
vascular geometry.
We start by detailing the nature of SE(2) and how we can lift curves in the plane to curves in
SE(2).

1.1 Lifting Curves in the Plane

In the classic Euclidean view, curves in the plane are seen as a 1-dimensional continuous set of
points. By adding a Cartesian coordinate system we identify points with pairs (x, y), after which
we can parametrize the curve as a function of R → R2 with some parameter u. When we are
interested in the direction of the curve at a certain point we can obtain the tangent to the curve
via the derivatives of the coordinate functions (at least on the points of the curve where those
derivatives exist).
If we wanted to give the direction of the curve a more prominent place in our calculations we could
dispense with derivatives and include it directly in our parameterization by introducing a triple
of coordinates (x(u), y(u), θ(u)), where we retain the conventional Cartesian coordinates x and y
and use θ to denote the direction of the curve at that point with respect to the same Cartesian
coordinate system.
Although not strictly necessary we will be using the common mathematical convention for dealing
with direction θ:

• θ is measured in radians

• θ = 0 is in the direction of the positive x-axis

• increasing θ changes the direction anti-clockwise

Formally we define θ(u) = arg (ẋ(u) + i ẏ(u)). A consequence of this is that directions are equal
modulus 2π i.e.:

θ1 = θ2 ⇐⇒ (θ1 − θ2) mod 2π = 0

3



A parameterization of a curve now becomes a function of R → R2 o S1, the latter which can be
interpreted as the set of all translations and rotations in a plane, also called the Special Euclidian
group of 2 dimensions, or SE(2) for short.
In figure 1.1 we illustrate how two curves are lifted from R2 to SE(2). Note that while the curves
intersect in R2 they do not do so in SE(2).

Figure 1.1: An example of lifting curves from R2 to SE(2)

1.2 Spatial Interpretation of SE(2)

We have already decided to express direction in unit-less radians, but the spatial coordinates (x, y)
will generally represent some physical unit of distance related to the object of study. Since we
intend to study digital images we will assume the spatial unit is a pixel going forward without
saying how such a pixel relates to the physical dimensions of the object in the image.
To imagine SE(2) as a dimensionally coherent 3D volume we need to relate radians to the spatial
dimensions in some fashion. Most straightforward would be the introduction of a proportionality
constant with dimension [Length]−1, which in our case would amount to radians/pixel, we will
denote this constant as ξ. In this fashion we can make any spatial distance dimensionless by
multiplication with ξ.
Our choice of ξ can in principle be any positive real number, the exact value we choose would
depend on how much we want to weigh change of direction against spatial movement. We can
think of ξ as determining how tall we make SE(2), where smaller ξ make for a taller volume which
we illustrate in figure 1.2, where we can see that as ξ becomes smaller there is a larger ‘distance’
to cover for a given change of direction.

Figure 1.2: The effect of decreasing ξ on the spatial interpretation of SE(2).

4



1.3 The Pcurve Problem

Now that we have a geometric interpretation of SE(2) we can proceed to think about geodesics.
What we want to do is connect two elements of SE(2) (i.e. a start- and end-point with associated
directions) in an optimal way according to some measure which is generally stated as an Euler-
Lagrange style functional. In this section we will look at the Pcurve geodesic as detailed in [1].

1.3.1 Introduction

The Pcurve problem is concerned with finding a sufficiently smooth1 curve γ : [0, l] → R2 that
given the start-point (xs, ys, θs) and end-point (xe, ye, θe) adheres to the following:

γ ∈ C∞([0, l],R2),
γ(0) = (xs, ys), γ̇(0) = (cos θs, sin θs),
γ(l) = (xe, ye), γ̇(l) = (cos θe, sin θe).

(1.1)

We have some freedom in choosing what parameterization to use, we will rely on the spatial
arclength parameterization, which we denote by using parameter s. The spatial arclength param-
eterization has the following defining characteristic:

ẋ(s)2 + ẏ(s)2 = 1. (1.2)

The curve we are now looking for is a minimizer of the following energy integral (where the total
spatial arc-length l is free):

γ = argmin
γ per (1.1)

l∫
0

√
ξ2 + κ(s)2ds. (1.3)

Where κ(s) denotes the curvature as a function of the spatial arclength parameter s:

γ(s) =
(
x(s)
y(s)

)
⇒ κ(s) = ẋ(s)ÿ(s)− ẍ(s)ẏ(s)

(ẋ(s)2 + ẏ(s)2)
3
2
. (1.4)

1.3.2 Scaling Invariance

Important for an imaging application is scaling invariance: the solution can not depend on the
choice of resolution or unit of distance used. A solution to the Pcurve problem exhibits this scaling
invariance provided we scale ξ appropriately. We can in fact use clever rescaling to reduce the
problem to one where ξ = 1, thus simplifying the problem somewhat. We state this formally in
the following theorem, where we denote the scaling operator with factor λ as Sλ:

Theorem 1. Given a curve γ(s) parametrized by it’s arclength, that:

• Meets the boundary counditions (1.1) with (xs, ys) 6= (xe, ye)
• Is the global (unique) minimizer of the energy integral (1.3) for any value of l

Then Sξγ is the global (unique) minimizer of the energy integral
∫ lnew

0

√
1 + κ2

newdsnew with bound-
ary conditions:

1Though we might cast a wider net initially we restrict ourselves to C∞ here to head off any potential technical
problems such as abnormal extreme, see [2] for details.
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• Sξγ(0) = (ξxs, ξys), Sξγ(ξl) = (ξxe, ξye),
• d

dsnew
Sξγ(0) = d

dsγ(0), d
dsnew

Sξγ(ξl) = d
dsγ(l).

Proof.
Scaling with factor ξ changes arc-length and the coordinate functions in a straightforward manner:

lnew = ξl, snew = ξs,

xnew(snew) = ξx(s), ynew(snew) = ξy(s).

The curvature is similarly modified:

κnew(snew) = ẋnew(snew)ÿnew(snew)− ẍnew(snew)ẏnew(snew)
(ẋnew(snew)2 + ẏnew(snew)2)3/2

= ξẋ(s)ξÿ(s)− ξẍ(s)ξẏ(s)
(ξ2ẋ(s)2 + ξ2ẏ(s)2)3/2

= ξ2

ξ3 ·
ẋ(s)ÿ(s)− ẍ(s)ẏ(s)
(ẋ(s)2 + ẏ(s)2)3/2

= 1
ξ
· κ(s).

We now look at the energy integral:

Eξ(γ) =
l∫

0

√
ξ2 + κ(s)2 · ds

=
l∫

0

√
ξ2 + ξ2κnew(snew)2 · ds

=
ξl∫

0

ξ
√

1 + κnew(snew)2 · 1
ξ
dsnew

=
lnew∫
0

√
1 + κnew(snew)2 · dsnew

= E1(Sξγ).

We now argue that since scaling with factor ξ > 0 is a bijection that if γ is the global (unique)
optimal solution to the initial problem then Sξγ is the same for the rescaled problem where
ξ = 1. If there was another solution φ to the rescaled problem with E1(φ) ≤ E1(Sξγ) then
Eξ(S−1

ξ φ) ≤ Eξ(γ), a contradiction since we assumed γ was the unique minimizer2.
�

This theorem proves remark 1.2 made by Duits et al. in [1] and allows us to restrict ourselves to
studying these types of curves for ξ = 1.

1.3.3 Cusps

The spatial arc-length parameterization of a P-curve breaks down with the appearance of cusps,
points where the curve stops and reverses on itself. This makes (ẋ, ẏ) = (0, 0) at some point which
is incompatible with (1.2).

2Since C∞ is invariant under scaling we are not optimizing in different sets.
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Assuming we have rescaled the problem so that ξ = 1 we can proceed to find at what spatial
distance the curve reaches its (first) cusp, a distance we will call smax. To aid us we first introduce
the concept of normalized curvature z as follows:

z(s) = κ(s)√
1 + κ(s)2

. (1.5)

We now claim the following:

Theorem 2. A solution to the Pcurve problem (with ξ = 1) that has z(0) = z0 and ż(0) = ż0 has
a (first) cusp at a distance of:

smax = log
(

1 +
√
−z2

0 + ż2
0 + 1

|z0 + ż0|

)
. (1.6)

Proof.
Note that z → ±1 as κ→ ±∞ and so a cusp is reached when |z(s)| = 1.
Using variational techniques we can derive the Euler-Lagrange equation for our problem (1.3)
by perturbing the curve along its normal and finding the stationary curve(s) for the following
functional:

E1(γ(s) + εδ(s)n(s)). (1.7)

Where ε is an arbitrarily small real number, δ(s) : R → R is an arbitrary but well-behaved
perturbation function and n(s) signifies the normal to the curve. We refer to [1, Appendix A] for
a derivation and limit ourselves to stating the relevant Euler-Lagrange equation in terms of z:

d2z

ds2 (s) = z(s). (1.8)

Which yields the general solution:

z(s) = z0 cosh (s) + ż0 sinh (s). (1.9)

Clearly z(0) = z0 and ż(0) = ż0, so these constants derive from the boundary conditions. We can
now identify the first cusp of the curve with the first positive solution of |z(s)| = 1:∣∣∣∣z0

2 (es + e−s) + ż0

2 (es − e−s))
∣∣∣∣ = 1 (1.10)

⇐⇒ z0(es + e−s) + ż0(es − e−s) = ±2
⇐⇒ (z0 + ż0)e2s ± 2es + (z0 − ż0) = 0

⇐⇒ es = ±1±
√
−z2

0 + ż2
0 + 1

z0 + ż0
.

We see that if z0 = −ż0 then the distance to the first cusp is +∞, i.e. there is no first cusp.
Secondly the sign of z0 + ż0 only serves to flip the ± symbols so we can take the absolute value
without eliminating solutions:

⇐⇒ es = ±1±
√
−z2

0 + ż2
0 + 1

|z0 + ż0|
.

In which we have 4 options for choosing signs, since we are looking for positive solutions for s (so
es ≥ 1) we are limited to the following:

⇐⇒ es = ±1 +
√
−z2

0 + ż2
0 + 1

|z0 + ż0|
if ± 1 +

√
−z2

0 + ż2
0 + 1 ≥ |z0 + ż0| ≥ 0.
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The function ±1 +
√
−z2

0 + ż2
0 + 1 has a global minimum of ±1 depending on the choice of sign,

clearly then (+) is the only correct choice if we want to meet the above conditional. We are left
with a single positive solution:

⇐⇒ s = log
(

1 +
√
−z2

0 + ż2
0 + 1

|z0 + ż0|

)
≡ smax. (1.11)

�

This proves equation (78) given by Duits et al. in [1, Appendix A] and indicates up to what
distance the spatial arc-length parameterization can be relied on.

1.4 Numerical Approach

In practice we will want to obtain geodesics numerically, indeed any hopes of obtaining analytical
results will rapidly go out the window after we introduce image-driven geometry to the mix. In
this section we will describe how we obtain numerical geodesics for more general geometry then
the Pcurve problem we discussed above. For a more thorough treatment of this topic we refer to
[3] and [4].

1.4.1 General Finsler Geodesics in R2 o S1 and R2 o P 1

We already detailed the R2 o S1 manifold, the R2 o P 1 manifold is essentially a subset of SE(2)
that equates antipodal points:

R2 o P 1 = R2 o S1/2 with n1 ∼ n2 ⇐⇒ n1 = ±n2 (1.12)

We also refer to this manifold as PT (R2). In this section we will write M when we mean either
of these two manifolds.
Finsler geodesics are curves that minimize an energy integral of the following form:

dF (xs,xe) = inf
γ∈Lip([0,1],M)

γ(0)=xs

γ(1)=xe

∫ 1

0
F(γ(t), γ̇(t)) · dt (1.13)

The pseudo-metric F , which we refer to as the Finsler function, has the following properties:

(1) F(x,v) ≥ 0 (non-negative)

(2) F(x,v) = 0 ⇐⇒ v = 0 (definite)

(3) ∀λ ≥ 0 : F(x, λv) = λF (x,v) (positive homogeneous)

(4) F(x,v +w) ≤ F(x,v) + F(x,w) (subadditive)

(5) F(x,v) ≥ ‖v‖ (well-posed with respect to the Euclidian norm ‖·‖)

Note that we do not require symmetry: in general F(x,v) 6= F(x,−v).
For our application we will be using Finsler functions of a particular form, namely:

F(x,v) = C(x) · Mξ(x,v). (1.14)
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The function C : M → [1, cmax], which we refer to as the cost-function, is what we derive from
an image and associates a cost with each particular location (x, y, θ) in SE(2) (or R2 o P 1 as is
the case). Thinking back to an image, it gives a cost of traversing a particular point of the image
in a particular direction. To meet the positive definite and well-posedness criteria of the Finsler
function we require that the cost-function is normalized to a range of [1, cmax] for some cmax ≥ 1.
The second part of the Finsler function is the pseudo-metric Mξ : T (M)→ R+

0 where:

T (M) = {(x,v) | v ∈ Tx(M)} . (1.15)

It associates a cost not with spatial position but with the direction and speed of travel along the
curve, not only spatially but also (and more importantly) in the θ dimension thus associating a
cost with change of direction. Since the pseudo-metric needs to be dimensionally consistent it
needs to depend on ξ to make the spatial components dimensionless, hence its inclusion in the
notation.
In terms of the car analogy C can be thought of as defining the geography over which the car is
expected to drive and Mξ controls the driving characteristics of the car. We will introduce the
method we used to construct C in the next chapter, in the remainder of this section we will restrict
ourselves to the constant cost case C ≡ 1 and explore different choices for Mξ.
The first and most simple choice of pseudo-metric is the Euclidian, which we will call isotropic
2D since it acts only on the spatial dimensions and does not prefer any direction, note that it
is not strictly necessary to include ξ here for the purpose of computation, but we include it for
dimensional consistency:

M(Iso2D)
ξ (γ(τ), γ̇(τ)) = ξ

√
|ẋ(τ)|2 + |ẏ(τ)|2 (1.16)

A second approach involves taking into account the θ dimension:

M(SE(2))
ξ (γ(τ), γ̇(τ)) =


√
ξ2|ẋ(τ)|2 + ξ2|ẏ(τ)|2 +

∣∣θ̇(τ)
∣∣2

if ∃λ ∈ R : (ẋ, ẏ) = λ(cos θ, sin θ)
+∞ otherwise

(1.17)

As opposed to the isotropic pseudo-metric this one is not Riemannian since we do not allow lateral
movement by assigning an infinite cost. We also see that the inclusion of ξ has become essential
not just for the dimensional consistency of the pseudo-metric but also for the final value of the
integral.
A refinement we can make to the last pseudo-metric is not allowing backward motion as follows:

M(SE(2)+)
ξ (γ(τ), γ̇(τ)) =

{
M(SE(2))

ξ (γ(τ), γ̇(τ)) if ∃λ > 0 : (ẋ, ẏ) = λ(cos θ, sin θ)
+∞ otherwise

(1.18)

We refer to this variant as forward- or positive-control and it eliminates the case of the regular
SE(2) metric where the curve is allowed to go in reverse.
A final variant we will mention is the projective line bundle PT (R2) model, in it we use the same
metric as for the SE(2) case but now equate antipodal points (i.e. we only look at direction and
not orientation essentially discarding half of SE(2)). This has the effect of allowing curves to stop
and reverse at no cost. For more details on this metric we refer to [5].

1.4.2 Fast Marching

The general numerical approach to this type of problem is called Fast Marching [6] which can be
thought of as a volumetric version of Dijkstra’s Algorithm for graphs. We won’t detail the workings
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but refer to [3] for further information. The implementation of the fast marching algorithms we
used in this paper is called HamiltonFastMarching by Mirebeau et al. [7] and allows us to compute
geodesics numerically after which we use Mathematica for visualization.
Figure 1.3 shows such visualizations for the four different metrics we introduced in the previous
section applied to two test cases with a constant C = 1.

(a) Isotropic (b) SR on PTR2 (c) SR on SE(2) (d) SR on SE(2) positive

Figure 1.3: Numerical geodesics on a 200× 200× 32 grid with ξ = 0.02 for different metrics.

Also interesting is how these geodesics can be visualized as lifted curves in SE(2), we show the
three circular test-cases from above as lifted curves in figure 1.4.
The colors are a measure of spatial curvature vs spatial velocity, with red indicating a higher ratio.
We notice how the projective metric is just as happy to reverse out of its starting position towards
its destination if that saves on distance travelled, hence why half the geodesics don’t seem to start
from the correct point in SE(2) but are π of in the θ dimension.
In the regular SE(2) metric the geodesics go through a fair bit of backward contortion to reach
destinations behind their starting points. The positive-control variant seems to produce the most
logical curves from a segway-like point of view: they turn towards their target and then start
moving towards it spatially. Note the broken piano string in the last figure which is likely caused
by a floating point modulus operation gone awry3 which would account for the starting point
being 2π off, otherwise it is correct.

3But we have not investigated further

10



(a) SR on PTR2 (b) SR on SE(2) (c) SR on SE(2) positive

Figure 1.4: Lifted geodesics on a 200× 200× 32 grid with ξ = 0.02 for different sub-Riemannian
metrics.
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Chapter 2

Vessel Tracking

In this chapter we detail how we can construct C, the cost function we introduced in the first
chapter. Starting with orientation scores we will construct a vesselness-measure that is suitable
for tracking vessels in SE(2) with fast marching.
While the techniques we will detail can principally be used on color images by applying them to
the different color channels, we will be restricting ourselves to gray-scale images.
The images we will use to demonstrate and validate these techniques are of the retina, consisting
of 52 different so-called patches that show different isolated parts.

2.1 Orientation Scores

Orientation score transforms do for orientation and direction what local Fourier transforms (or:
Gabor transforms) do for frequency: they decompose an image according to its response to a
particular orientation. In this fashion an orientation score transform is a natural map from R2oS1

to R+ and thus complementary to the techniques we saw in the previous chapter after appropriate
normalization. For more details on Orientation Scores see [8] and [9].
Decomposition by orientation is accomplished by a wavelet-like transform where we generate a
stack of wavelets, one for each orientation of interest. Each wavelet then serves as a convolution
kernel that is applied to the image. The wavelets are crafted to be anisotropically sensitive and
so filter out features not aligned to its orientation.
While we have some choice in wavelets we will restrict ourselves to so-called cake wavelets in this
paper. For a more thorough look into these wavelets and how they are constructed we refer to
[10, Chapter 2.1].
Cake wavelets borrow their name from looking like cake-pieces in the Fourier-domain which is
illustrated in figure 2.1 for two directions of a 60 direction partitioning.
Filtering a particular slice of the Fourier domain in this manner will give the wavelets their
anisotropic properties when they are transformed into the spatial domain as shown in figure
2.2. Since the wavelets were real-valued in the Fourier domain they are complex-valued spatially,
which are plotted separately, shades of blue indicate positive values, shades of red indicate negative
values.
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(b) θ = π/4

Figure 2.1: Cake wavelets in the Fourier domain (101× 101× 60) for two orientations.
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(d) θ = π/4 Im. part

Figure 2.2: Cake Wavelets in the spatial domain (101× 101× 60) for two orientations.

The spatial wavelets are then used as convolution kernels applied to the image, separately for
each orientation of the wavelets, real and imaginary parts. This yields a complex-valued volume
referred to as the Orientation Score of the image. This transform is illustrated for a test-image in
figure 2.3, notice how the central asterisk is pulled apart by the transform.

(a) Input image

7→

(b) Orientation Score Volume

Figure 2.3: Orientation Score (400× 400× 200) of a test image with cake wavelets.
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2.2 Vesselness and the Cost-function

Now we need to apply these techniques to actual images to construct the cost-function C that we
can use to do tracking. We work the original gray-scale through the following steps to arrive at
the cost-function:

1. Down-sample

2. Curvature-flow filter

3. Orientation Score

4. Vesselness-measure

5. Cost-function

While not necessary we generally down-sample input images to a reasonable size of around 250×250
to reduce computation times and memory usage. We then apply a Curvature-flow filter1 to the
bitmap image, which is an anisotropic diffusion filter that smooths the image while preserving
edges, we do this to remove the noise from the image without blurring edges before applying the
Orientation Score transform.
The vesselness measure is constructed as a weighted sum (by parameters σ) of smoothed derivatives
at different scales of the Orientation Score Uf (per Zhang et al. [11]).

V(x, y, θ) =
n∑
i=1

(
σsi

σo

)γ
· G2

2,(σsi
,σo)Uf (x, y, θ). (2.1)

These derivatives are taken via convolution with different sized Gaussian derivative kernels which
we denote with G2

2,(σsi
,σo) by which which we mean the second Gaussian derivative (superscripted

2) orthogonal to the orientation2 (subscripted 2) with spatial scale factors σsi
and an orientation

scale factor σo.
Convolving with derivatives works here because the Gaussian kernels are anisotropic and so sim-
plify the normal group action in R2 o S2 to the same action as in R2 × S1:

(x, θ)(x′, θ1) = (Rθx′ + x, θ + θ′) = (x+ x′, θ + θ′) provided that Rθx′ = x′ (2.2)

This makes the order of smoothing and derivation interchangeable (where G is the Gaussian kernel
functions):

(− sin θ · ∂x + cos θ · ∂y)2
(
GR2

σs
(x)GS

1

σo
(θ) ∗

R2oS1
Uf (x, θ)

)
= (− sin θ · ∂x + cos θ · ∂y)2

(
GR2

σs
(x)GS

1

σo
(θ) ∗

R2×S1
Uf (x, θ)

)
=
(

(− sin θ · ∂x + cos θ · ∂y)2
GR2

σs
(x) ·GS

1

σo
(θ)
)
∗

R2×S1
Uf (x, θ)

= G2
2,(σs,σo)Uf (x, θ) (2.3)

The choice of parameters σ is somewhat dependent on the type of images one wishes to process, in
our case we applied the following: n = 10, σsi = i, σo = 0.4 and γ = 2. So we generate derivatives

1The filter used is standard to Mathematica, see https://reference.wolfram.com/language/ref/
CurvatureFlowFilter.html for details.

2As in: − sin θ · ∂x + cos θ · ∂y
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at 10 scales where we run the Gaussian size over 1 to 10 pixels spatially and a constant 0.4 radians
directionally. The weighting factor in front serves to provide a bias towards the larger scales.
We perform a final transformation on the vesselness measure to aquire our cost function.

C(x, y, θ) = 1
1 + λ · V(x, y, θ)p . (2.4)

Where we use the parameters λ = 200 to control the strength of the cost function and p = 2 for
the sharpness. Other choices of parameters could be desirable for different types of images. Figure
2.4 illustrates these steps taken on an example retinal image, note that the last three images are
projected volumes for the sake of clarity on paper (the Orientation Score being additionally colored
by orientation).

(a) Original (b) Pre-filter (c) Orientation Score (colorized)

(d) Vesselness (projected) (e) Cost Function (projected)

Figure 2.4: Image processing steps to construct C

In some contexts the cost function is called the speed function, in which case it is simply the
reciprocal of the cost function we described above (this is the case in the HFM package we use).

2.3 HFM Tracking

Now we have all the components needed to start tracking vessels in images. The HFM (Hamil-
tonian Fast Marching) software takes in the cost function and a set of starting point and ending
points as boundary conditions. We will refer to these starting points as seeds and the ending
points as tips from now on.
Given these seeds and tips the algorithm connects the latter with the former with the lowest
possible cost according to the specified metric. This gives us a few options in how we do the
tracking given multiple seeds and tips:
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1. Grouped: do a tracking per seed and only include those tips that belong to that seed
connectivity wise.

2. Combined: do a single tracking with all the seeds and tips together.

3. Tip-wise: do a tracking per tip and include all seeds.

Obviously the grouped tracking would be the most desirable if the meta-data needed to match
seeds and tips is available, since this isn’t the case in general we won’t be using it. Instead we will
see what we can learn from the other types of tracking to a) identify key-points b) infer the right
matching between seeds and tips. The different tracking types are illustrated in figure 2.5, where
seeds are indicated with red arrows and tips with green arrows.

(a) Grouped (b) Combined (c) Tip-wise

Figure 2.5: Tracking with different seed/tip sets

Note that applying the full tracking type is already a form of seed/tip matching (in this case
correctly matching 4 out of 6 tips), we will use it later to benchmark our developed method.
Modifying ξ also has a large impact on the quality of tracking, this is illustrated in figure 2.6. Note
how lowering ξ to 0.01 in this case matches 6 out of 6 tips with their correct seeds. Lowering ξ too
much causes excessive stiffness, making the traces not follow the vessels properly. For the images
available to us ξ = 0.02 (excluding the down-sample factor) provided a reasonable trade-off and
that is the value we will use through the rest of the paper unless otherwise mentioned.

(a) ξ = 0.40 (b) ξ = 0.05 (c) ξ = 0.01

Figure 2.6: Tracking with different values of ξ

Lastly, we have 4 available choices for metric, the effects of which are illustrated in figure 2.7.
For appropriate parameterization the PTR2, SE(2) and SE(2) forward metric all perform well.
In some more difficult images the SE(2) forward metric generally provides some cleaner traces,
which is why will be using it going forward as the default metric.
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(a) Isotropic 2D (b) PTR2 (c) SE(2) (d) SE(2) Forward

Figure 2.7: Tracking with different metrics with ξ = 0.01
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Chapter 3

Analyzing Traced Geodesics

In this chapter we will explore how we can analyze the obtained geodesics to detect keypoints
as well as matching tips with their correct seeds. These two techniques, while not improving the
tracings by themselves, are intended to serve as starting points for future techniques. We will base
both these methods on the lift-measure we introduce first.

3.1 Lift-measure

We are interested in those pieces of the geodesics that are close to vertical in our spatial view of
SE(2), i.e. they have a high spatial curvature versus spatial velocity ratio. This ratio is simply a
restatement of the spatial curvature κ scaled by ξ−1, but in this form it is more easily applied to
the discrete geodesics we have obtained. We wrap this ratio in an arctangent as follows to obtain
our lift-measure:

Lγ,ξ(τ) = arctan
(

|θ̇(τ)|
ξ
√
ẋ(τ)2 + ẏ(τ)2

)
(3.1)

The Lγ,ξ measure obviously depends on the curve γ(τ) = (x(τ), y(τ), θ(τ)), but also on ξ, which
we require for dimensional consistency. We use the convention that if

√
ẋ(τ) + ẏ(τ) = 0 then the

arctangent evaluates to π
2 (assuming θ̇(τ) 6= 0). The introduction of the arctangent serves as a

convenience so that we can express threshold values in the range [0, π/2] instead of [0,+∞). In
addition there is the interpretation of this measure as a vertical angle in SE(2) that is intuitively
appealing and also gives a geometric reason for the presence of ξ. Finally in the implementation
we can use the two-argument version of the arctangent function eliminating the chance of a divide-
by-zero and floating point overflows.
Figure 3.1 illustrates the lift-measure by coloring the geodesics according to the value of the
measure, these figures incidentally depict tip-wise tracking.
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Figure 3.1: Vizualizing the lift-measure

To better deal with the obvious discretization noise visible in figure 3.1 we will apply some Gaussian
smoothing on the geodesics before we calculate the measure. We use a window of 20 steps1 with
reflected padding to accomplish the smoothing without shortening the geodesics, the effect of this
is illustrated in figure 3.2, where we see a much cleaner connection between color and curvature.

Figure 3.2: Vizualizing the lift-measure after Gaussian smoothing

We will also be using the following indicator version of the measure:

Lαγ,ξ(τ) ≡ 1 {Lγ,ξ(τ) ≥ α} =
{

1 if Lγ,ξ(τ) ≥ α
0 else

(3.2)

3.2 Keypoint Detection

To detect keypoints we start by doing a tip-wise tracking. A tip-wise tracking has the downside
of containing many errant geodesics that connect tips with wrong seeds (see figure 3.2), but has
the benefit of definitely containing all the correctly matched geodesics as a subset. Moreover we
are not really concerned with the geodesics as such, but with their local behaviour in the sort of
points we want to detect.
After having applied the tracking we identify sections of the geodesics as having high lift-measure.
We use the indicator version of the measure for this, the choice of threshold value α depends
somewhat on what one wishes to accomplish, crossings and sharp bifurcations are readily detected
for thresholds as high as π/4, shallow bifurcation generally only show up for lower values. For the
images we had available α = π/7 served as a good compromise, this is illustrated in figure 3.3.

1Geodesics typically consist of 300 − 800 steps.
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Figure 3.3: High measure sections for α = π/7 on tip-wise tracking

Having identified sections of the geodesics as having high measure/curvature we have some freedom
as to what point of that section we designate as the point-of-interest. For bifurcations the most
accurate choice is choosing the starting-point, while crossings tend to happen in the middle of the
lift. Designating the point 3/10ths of the way through the section as the point of interest served
as a good compromise in all situations.
Having completed this operation we find ourselves with a set of points of interest derived from
the tip-wise tracking, we can now use the geodesics of the combined tracking (tracking with all
seeds and tips at once) to modify these points. The reasoning being that the combined tracking
produces those geodesics that are most likely to correctly match seeds and tips according to the
chosen metric. By moving our original set of points to to their nearest point on the combined
geodesics improves their accuracy with respect to vascular features.
One apparent artifact of the tracking method is a consistent appearance of small sections of high
measure at the seeds and/or tips, we will simply ignore these as not relevant.
We now have a set of points-of-interest located on the lowest cost geodesics connecting tips and
seeds. In many cases a feature such as a bifurcation will cause two or more high measure sections
to appear close to it, for that reason we apply a clustering algorithm to identify groups of points
that are close to each other. A drawback is that two features that are close together might be
identified as a single feature.
For identifying groups of lifts we have used the Calinski-Harabasz method[12] on the Euclidian
distance. This method works by optimizing the ratio of the variance between the cluster centers
and the variance between the members of a cluster.
Suppose we have n points with overall spatial center c, we then want to choose k clusters Ci, each
with ni elements and center ci such that we maximize the following ratio:∑

i

ni · |c− ci|2∑
i

∑
x∈Ci

|ci − x|2
· n− k
k − 1 (3.3)

We reduce the obtained clusters to points by taking the geometrical mean. This cluster center
is likely again not on a geodesic of the combined set (or indeed any geodesic) so we apply the
same remedy as previously and move the found cluster center to the nearest point of the combined
geodesics.
We summarize the steps we took:

1. Perform tip-wise tracking

2. Smooth the found geodesics

3. Calculate lift-measure

4. Isolate high measure sections
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5. Ignore high measure sections close to seeds/tips

6. Take 3/7-weighted center of sections

7. Move points to nearest combined geodesic

8. Identify clusters

9. Take cluster means

10. Move means to nearest combined geodesic

We illustrate the results of these steps in figure 3.4, the combined geodesics set is plotted, the
orange dots are the raw detected points-of-interest and the red points are the final results of our
detection procedure.

Figure 3.4: Results of keypoint detection (orange dots: raw, red dots: final)

3.3 Matching Seeds and Tips

In the previous section we used the lift-measure locally to identify keypoints, in this section we
will use the lift-measure globally to choose which seed to match with a given tip.
In particular we want to calculate the total SE(2)-arc-length of the high measure sections on a
geodesic given a certain threshold, which we calculate as follows with a given geodesic γ : [0, 1]→
R2 o S1:

Lαξ γ =
1∫

0

Lαγ,ξ(τ) ·
√
ξ2 (|ẋ(τ)|2 + |ẏ(τ)|2) + |θ̇(τ)|2 · dτ (3.4)
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Or if we have a geodesic that is parameterized by spatial arc-length:

Lαξ γ =
l∫

0

Lαγ,ξ(s) ·
√
ξ2 + κ(s)2 · ds (3.5)

We can use this global measure to choose between different geodesics reaching a single tip under the
assumption that incorrect geodesics would have to jump a crossing somewhere and consequently
significantly increase their measure. The procedure is as follows:

1. For a given tip track to each seed

2. Calculate local lift-measure over the obtained geodesics

3. Integrate to obtain global lift-measure

4. Select geodesic with lowest global measure

This is illustrated in figure 3.5 where we color the lowest measure geodesic blue and the highest
red.

Figure 3.5: Matching different seeds to tips (blue=lowest measure)

To test the accuracy of the method we applied it to the 52 retina patches we had available, as
a benchmark we compare it against how well combined tracking with the SE(2) forward metric
matches tips and seeds on its own. Results are summarized in table 3.1.

Number of images 52
Number of tips 301
SE(2)+ Fast Marching (ξ = 0.02) 193 correct (64%)
Lift-measure method (ξ = 0.02, α = π/4) 208 correct (69%)

Table 3.1: Accuracy of Lπ/4
0.02 seed/tip matching

For more details and different approaches to the matching problem see [5].
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Chapter 4

Concluding Remarks

On Improving Geodesic Tracking

The lift-measure Lαγ,ξ has proven a useful tool for identifying keypoints such as crossings, bifur-
cations and tracking-errors. Using the measure globally on the geodesics has also produced more
reliable seed/tip matching.
Combined these techniques can serve as a basis for an improved tracking method based on sub-
Riemannian geodesics.

On Performance

In the course of porting the Orientation Score Transform to the GPU (see appendix B) we noticed
significant performance gains. Considering how computationally intensive many steps of the pro-
cess are and how readily parallelizable they are we see GPUs as the way forward in making these
techniques viable outside of academia.

Future Work

Some suggestions for future work:

• Extend the car-on-geography metaphor with an acceleration metric:

Eξ(γ) =
1∫

0

C(γ(τ)) · Mξ(γ̇(τ)) · Nξ(γ̈(τ)) · dτ

• Better discretization of cake-wavelets so that the response isn’t higher for θ = π/2 · Z then
for other orientations.

• Fine-tune the choices of parameters we made, in particular the lift threshold value α.

• Do a tracking with the seed/tip combinations we found with the help of Lαξ and use that as
the basis for a keypoint analysis.

• CUDA implementation:

23



– Wishlist (see figure B.1, orange sections)
– Investigate parallelization of Fast Marching algorithm
– Performance benchmarking

• Clustering with sub-Riemannian metric approximations instead of Euclidian metric
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Appendix A

Geodesics via the Pontryagin
Maximum Principle

We saw how the spatial arc-length parameterization of geodesics in the Pcurve problem breaks
down with the appearance of a cusp. An alternative approach is using the SE(2) arc-length
parameterization (denoted with parameter t), which has the following defining characteristic:

ξ2ẋ(t)2 + ξ2ẏ(t)2 + θ̇(t)2 = 1 (A.1)

As long as 0 ≤ t ≤ tcusp (i.e. we have not reached the first cusp, or there are no cusps) transforming
from SE(2) arc-length to spatial arc-length is straightforward:

ds

dt
= cos θ ẋ+ sin θ ẏ = u1 = 1√

κ2 + 1
(A.2)

And since the transformation is a continuous bijection (under our assumption that no cusps appear
on the spatial projections of our geodesics) we can invert this relationship:

dt

ds
=
(
ds

dt

)−1
(A.3)

Taking this into account we can have a look at the canonical equations produced by P.M.P. (See
[1, Appendix D], we omit the boundary conditions and set ξ = 1):

u1(τ) = cos θ ẋ+ sin θ ẏ = λ1(t)
u2(τ) = − sin θ ẋ+ cos θ ẏ = 0
u3(τ) = λ3(t)

λ̇1(t) = λ2(τ)λ3(t)
λ̇2(t) = −λ1(τ)λ3(t)
λ̇3(t) = −λ1(τ)λ2(t)

(A.4)

We now look at the effect of reparameterization to spatial arc-length on the momentum components
λi: 

dλ1
ds = dt

ds
dλ1
dt = λ2λ3

λ1
dλ2
ds = dt

ds
dλ2
ds = −λ1λ3

λ1
= −λ3

dλ3
ds = dt

ds
λ3
dτ = −λ1λ2

λ1
= −λ2

(A.5)
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Which yields:

⇒ d2λ3

ds2 = −dλ2

ds
= λ3 (A.6)

Since λ3 = u3 = dθ
dt we have:

dθ

dt
= dθ

ds
· ds
dt

= κ√
κ2 + 1

= z (A.7)

We conclude that (A.6) is equivalent to z̈ = z. We can conclude that the P.M.P. scheme applied
to SE(2) indeed yields the Euler-Lagrange scheme in R2 in so far as the spatial arc-length param-
eterization exists. This new scheme however has the benefit of not being so constricted since the
SE(2) arc-length parameterization can exists in and after cusps.
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Appendix B

CUDA Implementation

In the process of experimenting with speeding up Orientation Score Transformations using Math-
ematica’s CUDALink functions we stumbled on some limitations that precluded us from using
convolution kernels of sufficient size. Looking into the details we noted that the limitation was
due to Mathematica and not CUDA and that we could make our own implementation to support
arbitrarily large kernel sizes.
Our implementation was guided by [13], which detailes an efficient FFT-based convolution algo-
rithm suitable for GPUs. Figure B.1 detailes the data-flow of our implementation. Essentially we
transform both the source image and the wavelet-stack to the Fourier domain and then perform
pixel-wise complex multiplications before we transform back to the spatial domain.

Figure B.1: Image Processing Pipeline (blue: implemented, orange: wishlist)

Our implementation consisted of a DLL that we called from Mathematica using NETLink as
translation-layer. While we haven’t had the opportunity for optimization or detailed timings, we
summarize the observed speedup in table B.1.
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CPU GPU GPU speedup vs. CPU
i7-4700MQ @ 2.40 GHz Quadro K610M 4x
i7-4790K @ 4.60 GHz GeForce GTX 1070 10x

Table B.1: Speedup of OS transformations on GPU
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