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Abstract
We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of
sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2) and SE(3). In our distance approximations we
consider homogeneous norms on nilpotent groups that locally approximate SE(n), and which are obtained via the exponential
and logarithmic map on SE(n). In a qualitative validation we show that the norms provide accurate approximations of the
true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n). The
quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating
perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The
results show that (1) sub-Riemannian geometry is essential in achieving top performance and (2) grouping via the fast analytic
approximations performs almost equally, or better, than data-adaptive fast marching approaches on R

n and SE(n).

Keywords Sub-Riemannian geometry · Roto-translation group · SE(2) · SE(3) · Nilpotent approximation · Geodesic vessel
tracking · Perceptual grouping

1 Introduction

In this paper we derive analytic formulas for approximations
of sub-Riemannian distances on the 2Dand3D rotation trans-
lation groups, denoted, respectively, with SE(2) and SE(3).
Additionally, we extend the perceptual grouping algorithm
[13] for clustering of local orientations (points on blood
vessels). Here clustering is based on alignment of local orien-
tations, which is quantified using sub-Riemannian distances
on SE(n); see Fig. 1 for an illustration.
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1.1 Nilpotent Approximation

The sub-Riemannian distances on SE(n) are approximated
via norms on the vectors obtained from the logarithmic map
(from group elements to the Lie algebra). This approach is
motivated by problems from sub-Riemannian geometry in
nilpotent Lie groups, in which such homogenous norms pro-
vide exact fundamental solutions to sub-Laplacians.

The vectors obtained by the logarithmic map, expressed
in a left-invariant basis, are the so-called exponential coordi-
nates of the first kind. For a nilpotent group of step two, like
theHeisenberg group, these coordinates define [togetherwith
a group product defined via the Baker–Campbell–Hausdorf
(BCH) formula] a global isomorphism to the group. In our
SE(n) setting we have to truncate the commutator series
in the BCH formula due to non-vanishing (higher-order)
commutators, yielding a corresponding Heisenberg type
approximationwhichwe denotewith (SE(n))0. The obtained
Taylor development of the group product and associated left-
invariant vector fields gives rise to a local approximation of
the (sub-Riemannian) flows on SE(2) in the sense of Roth-
schild and Stein [50].

We then define a norm on (SE(n))0 based on the Folland–
Kaplan–Korányi gauge, which is known for its relation
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Fig. 1 The red and green arrows have equal spatial and angular distance
to the origin (black arrow). In a flat geometry on R

2 × S1 the distance
between the red and green arrow and the source would be equal, and
the geodesics straight lines (see dashed lines). In sub-Riemannian
geometry on SE(2) the green arrow has a shorter distance to the source.
The left image shows 2D projections of the sub-Riemannian geodesics
in solid black, and the right image shows their paths in SE(2) (Color
figure online)

to the fundamental solution of the sub-Laplacian on the
Heisenberg group [29,33,35]. We reason that the Folland–
Kaplan–Korányi provides an accurate approximation to the
fundamental solution on SE(n) as well, as it provides the
exact fundamental solution on the Heisenberg type approx-
imation (SE(n))0. As such, we provide an approach to
approximating the heat kernel and fundamental solution of
the sub-Laplacian on SE(n), as an alternative to the works
[12,22,47].

The distance associated with the Folland–Kaplan–
Korányi-type norm on (SE(n))0 is locally equivalent to the
sub-Riemannian distance on SE(2), as was formally proved
in full generality in the seminal work by Nagel et al. [43]. In
this paper we show by qualitative and quantitative compari-
son that the norm on (SE(n))0 indeed provides a sharp local
approximation of the sub-Riemannian distances on SE(n).

1.2 Perceptual Grouping

The motivation for perceptual grouping of local orientations
comes from problems in medical image analysis in which
the topologically correct reconstruction of vessel (and pul-

monary) trees is of great importance in biomarker research
and surgery planning. Knowing the correct connectivity in
tree structures not only allows for local biomarker analysis
(e.g., studies on bifurcation and crossing properties [37]),
but also allows for higher level biomarker research via statis-
tics on tree structures [28]. Topological knowledge of vessel
trees is also essential in determining artery/vein classification
problems [15,25,26]. Finally, in many medical applications
involving vessel analysis, including topological tree recon-
struction, distances between local orientations play a crucial
role [1,16,27,39,55,57]. The approximate sub-Riemannian
distance in this paper is analytic, fast and easy to implement,
and as such may be a useful tool for algorithms that rely on
local orientation analysis.

Sub-Riemannian models are shown to be effective in
both image processing and in neuropsychological models
for line perception in the primary visual cortex [3,7,12,20,
27,40,45,48,51,53]. In this paper we indeed observe by quan-
titative validation of automatic connectivity analysis that
sub-Riemannian distances are preferred over their (full) Rie-
mannian counter parts.

The approach taken in this paper for doing connectivity
analysis is based on the perceptual grouping algorithm pro-
posed by Cohen [13]. This algorithm turns a set of key points
into a graph by iteratively adding edges between nodes based
on their geodesic distances while putting constraints on the
number of connections per node. The input set of key points
may be obtained via key point tracking algorithms [5,10,34],
as is done also in this paper; see Fig. 2.

In [13] an isotropic metric was used to define the geodesic
distances. Later, the perceptual grouping algorithm was
adapted for use with anisotropic Riemannian metrics by
Bougleux et al. [8]. In recent work [11] it was further
extended for the grouping of n closed contours for an a priori
n. There, a (sub-)Finsler metric on position orientation space
was used, similar to the sub-Riemannian metric used in this
paper. As in [8] and [11] we use the main algorithm of [13]
as a backbone, but we change the metric used for perceptual

Fig. 2 The pipeline for grouping vessel segments consists of 2 steps.
First, key points are generated (from a single source point) using
minimal path tracking with key points [5]. Second, the automatically
generated key points, with estimated orientations, are grouped based on

an adaption of the perceptual grouping algorithm [13] with the use of
sub-Riemannian distances on SE(2). The result on the right is obtained
with the nilpotent approximations of the sub-Riemannian distances in
SE(2)
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grouping and we impose an additional constraint to avoid
closed loops (which are physically not realistic in the vessel
networks of interest).

With quantitative experiments we show that perceptual
grouping with sub-Riemannian distances on SE(n) is pre-
ferred over the use of (full) Riemannian distances on SE(n),
which is in turn preferred over groupingwith distances onR

n .
Furthermore, the analytic approximations allow for fast per-
ceptual grouping with competitive performance compared to
data-adaptive sub-Riemannian distances computed via fast
marching.

1.3 Paper Outline

In Sects. 2 and 3 we derive approximations for sub-
Riemannian distances in, respectively, SE(2) and SE(3).
There, for each Lie group we first provide the preliminaries,
then define the sub-Riemannian distance and then describe
the proposed approximations. In Sect. 4 the algorithms (per-
ceptual grouping, fast marching and key point tracking) are
described, including an overview of the different distances
used in this paper. In Sect. 5 we then compare the perfor-
mance of the perceptual grouping algorithm using different
distances, first on R

2 and SE(2) in Sect. 5.1, and then on R
3

and SE(3) in Sect. 5.2. General conclusions are provided in
Sect. 6.

2 Sub-Riemannian Distance and its
Approximation in SE(2)

2.1 The Lie Group SE(2)

2.1.1 SE(2)

In order to measure distances between local orientations we
will consider the Lie group SE(2) as our base manifold. The
group SE(2) = R

2
�SO(2) is the semi-direct product of the

group of planar translations R
2 and rotations SO(2), and its

group product and inverse are, respectively, defined via:

g · g′ = (x,Rθ ) · (x′,Rθ ′) = (Rθx′ + x,Rθ+θ ′),

g−1 =
(
−R−1

θ x,R−1
θ

)
, (1)

with group elements g, g′ ∈ SE(2). The group acts on the
(coupled) space of positions and orientations R

2
� S1 via

g · (x′, θ ′) = (Rθx′ + x, θ + θ ′).

Since (x,Rθ ) · (0, 0) = (x, θ), we can uniquely identify the
roto-translation group SE(2) with the space of positions and
orientations R

2
� S1.

2.1.2 The Lie Algebra, Exponential Map and Commutators

The Lie algebra associatedwith SE(2) is the real vector space
se(2) = span{A1, A2, A3} together with a bilinear operator
[·, ·] : se(2) × se(2) → se(2) called the Lie bracket (which
we define in Eq. (4)). The generators of the Lie algebra are
given by the differential frame {∂θ , ∂x , ∂y}

∣∣
(0,0,0) at the origin

A1 = ∂θ |(0,0,0) , A2 = ∂x |(0,0,0) , A3 = ∂y
∣∣
(0,0,0) , (2)

which define corresponding left-invariant vector fields

A1|g = (Lg)∗A1 = ∂θ |g ,

A2|g = (Lg)∗A2 = cos θ ∂x |g + sin θ ∂y
∣∣
g ,

A3|g = (Lg)∗A3 = − sin θ ∂x |g + cos θ ∂y
∣∣
g

(3)

via the push forward of left multiplication, denoted by (Lg)∗,
and with g = (x, y, θ) ∈ SE(2).

The exponential map Exp : se(2) → SE(2) defines a
mapping from a vector X ∈ se(2) in the tangent space at
g = (0, 0, 0) to an element in the group SE(2) by following
an integral curve along the left-invariant vector field (Lg)∗X .
The logarithmic map Log : SE(2) → se(2) defines the map-
ping from group element to tangent vector at g = (0, 0, 0).

The Lie bracket for vector fields is defined as follows

[X ,Y ] := lim
t→0

γ (t) − e

t2
, with

γ (t) = Exp(−tY )Exp(−t X)Exp(tY )Exp(t X).

(4)

That is, it describes the infinitesimal displacement by follow-
ing a path moving forth and back in X and Y directions. The
Lie bracket of two vectors defines a new vector (the commu-
tator) and the Lie bracket of two vector fields defines a new
vector field. The nonzero commutators of se(2) are

[A1, A2] = −[A2, A1] = A3,

[A1, A3] = −[A3, A1] = −A2.
(5)

2.2 Sub-Riemannian Geometry in SE(2)

We consider a sub-Riemannian geometry on SE(2) by mea-
suring distances between two points in SE(2) via the lengths
of shortest horizontal paths. A horizontal path is a curve γ :
[t0, t1] ⊂ R → SE(2)with tangent vectors γ̇ (t) ∈ Δ|γ (t) :=
span{A1|γ (t) , A2|γ (t)}, where Δ denotes the sub-bundle of
the full tangent bundle T (SE(2)) := span{A1,A2,A3}.
Lengths of horizontal curves with γ̇ (t) = u1(t) A1|γ (t) +
u2(t) A2|γ (t) are measured by the sub-Riemannian metric
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tensor1

Gξ,C
∣∣∣
γ (t)

(γ̇ (t), γ̇ (t)) := C(γ (t))2(|u1(t)|2 + ξ |u2(t)|2),
(6)

in which C : SE(2) → R
+ is an external cost which penal-

izes the curves to move through certain regions in SE(2), ξ
is a parameter which balances the penalty of motion in the
angular and spatial directions and has dimensions [1/length],
and u1 and u2 are the control parameters of the curve γ .

The sub-Riemannian distances between two points g1, g2
∈ SE(2) is then given by

d0(g1, g2) := inf

{∫ 1

0

√
Gξ,C

∣∣
γ (t) (γ̇ (t), γ̇ (t))dt

}
, (7)

where the infimum is taken over by Lipschitz continuous
curves γ ∈ Lip([0, T ],SE(2)) with γ (0) = g1, γ (1) = g2
and γ̇ (t) = u1(t) A1|γ (t) + u2(t) A2|γ (t). Note that due to
the inclusion of an external cost function C the distance d is
not strictly left-invariant; however, when substituting C by
Cg := C(g−1h) in (7) we do have left invariance (i.e., then
d(g · g1, g · g2) = d(g1, g2)).

2.3 A Nilpotent Approximation (SE(2))0 of SE(2)

2.3.1 A Local Approximation via the
Baker–Campbell–Hausdorff Formula

Consider the exponential map from Lie algebra se(2) to the
group SE(2)

(c1, c2, c3) �→ (x, y, θ) = Exp(c1A1 + c2A2 + c3A3), (8)

with {Ai }3i=1 the basis vectors of se(2) given in (2), and with
(c1, c2, c3) the canonical coordinates of the first kind given
by

c1 = θ, c2 =
{ 1

2θ
(
y + x cot θ

2

)
if θ �= 0

x if θ = 0
,

c3 =
{ 1

2θ
(−x + y cot θ

2

)
if θ �= 0

y if θ = 0
.

(9)

For two left-invariant vector fields X = ∑3
i=1 x

iAi and Y =∑3
i=1 y

iAi the Baker–Campbell–Hausdorff (BCH) formula
(see, e.g., [49]) gives:

1 Due to the fact the metric tensor is degenerate in the A3 direction
(tangent vectors are always contained within Δ) it is not possible to
represent the metric tensor in a standard form as an invertible symmet-
ric 3×3matrix. This is, however, possible when including an additional
term ε−2ξ2|u3|2(t) after which the tensor becomes (anisotropic) Rie-
mannian [12,52]. This Riemannian approximation converges to the
sub-Riemannian tensor when ε → 0 [9, App. A] and [24, Thm. 2].

Log(Exp(X)Exp(Y )) = X + Y + 1

2
[X ,Y ]

+ 1

12
([X , [X ,Y ]] + [Y , [Y , X ]])

+O([·, [·, [·, ·]]]), (10)

whereO([·, [·, [·, ·]]]) denotes higher-order nested brackets.
Since the Lie algebra se(2) is not nilpotent it has non-
vanishing Lie brackets of order ≥ 2 [cf. the commutator
relations in (5)] the BCH formula gives an infinite series of
nested Lie brackets.

Here, we approximate the BCH formula SE(2) as2

Log(Exp(X)Exp(Y )) ≈ X + Y + 1

2
[X ,Y ], (11)

by omitting the Lie brackets of order 2 (once nested brackets)
and higher, as if our Lie algebra se(2) is nilpotent of step 2.
Then, together with the commutator relations [Ai , Ai ] = 0,
A3 = [A1, A2], and again omitting Lie brackets of order
2 (i.e., setting [A1, A3] = [A1, [A1, A2]] = 0), the BCH
formula defines a group product on the vector space R

3 of
the canonical coordinates of the first kind via

(x1, x2, x3) · (y1, y2, y3)

=
(
x1 + y1, x2 + y2, x3 + y3 + 1

2
(x1y2 − x2y1)

)
.

(12)

The new group product (12), where the elements are
expressed in coordinates of the first kind [cf. Eq. (8)], gives
rise to a nilpotent Heisenberg group. It is a local3 approxi-
mation of the true group product g1 ·g2 = Exp(

∑3
i=1 x

i Ai ) ·
Exp(

∑3
i=1 y

i Ai ) given by (1). We denote this group by
(SE(2))0 = H(3), with H(3) the three-dimensional (nilpo-
tent) Heisenberg group. Note that if (x1, x2, x3) and
(y1, y2, y3) were coordinates of the first kind for a group
with a step 2 nilpotent algebra, then this new group would be
globally isomorphic to that group. The new group (SE(2))0
defines a homogeneous Carnot groupwith respect to the dila-
tions

δs(c) = (s c1, s c2, s2 c3). (13)

2.3.2 Homogeneous Norms on (SE(2))0 and the
Fundamental Solution of the Sub-Laplacian

In our approximation of the sub-Riemannian distance d0 of
Eq. (7) we make use of the following homogenous norm on

2 Note that such approximations of the BCH formula were already
introduced in [43, Thm. 2.22] in the general setting by Nagel et al. [43].
3 With g1, g2 ∈ SE(2) chosen close enough such that higher-order
terms in (10) can be neglected.
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(SE(2))0:

‖c‖ζ := 4
√

(|c1|2 + |c2|2)2 + ζ |c3|2, (14)

with constant ζ > 0 a relative penalty for the non-horizontal
part. For ζ = 16 this norm coincides with the well-known
Folland–Kaplan–Korányi gauge, which is a widely studied
norm on Carnot groups due to its relation to fundamental
solutions of sub-Laplacians [6]: Folland found that ‖c‖2−Q

16 ,
with homogeneous dimensions Q, is (a constant multiple of)
the fundamental solution of the canonical sub-Laplacian on
the Heisenberg group [29]; Kaplan showed that this rela-
tion more generally holds for H-type (Carnot) groups [33];
Korányi derived many more of its properties in relation to
harmonic analysis and potential theory [35].

In relation to sub-Riemannian geometry on SE(2) and its
sub-Laplacian L := A2

1 + A2
2, we find that the fundamental

solution Γ ofL can be approximated by the (explicit) funda-
mental solution of the canonical sub-Laplacian L0 := X 2

1 +
X 2
2 , with Jacobian basisX1 = ∂c1 + c2

2 ∂c3 ,X2 = ∂c2 − c1
2 ∂c3

on (SE(2))0. This solution in fact coincides with one of
the approximations of Γ found by Duits and Franken [22].
There, the fundamental solution of L was first approximated
by relying on a contraction of SE(2) to a three-dimensional
Heisenberg group (via dilations on the group SE(2)) and then
derived the Gaussian estimates based on the homogeneous
norm ‖·‖1, i.e., ζ = 1, with exponential coordinates derived
from the contraction.

In our study on the sub-Riemannian distance approxima-
tions we found that even sharper estimates could be obtained
by relying on the explicit formula for the fundamental solu-
tion of the (Kohn) sub-Laplacian on H(3) (which is up to a
constant given by ‖c‖−2

16 ). In this context we thus obtain an
estimate of the fundamental solution of L by estimating it
with ‖c‖−2

16 , which is proportional to the exact fundamental
solution of L0 on our approximated group (SE(2))0.

2.3.3 Approximation of the Sub-Riemannian Distance

Finally we arrive at the sub-Riemannian distance approx-
imations. By the Ball–Box theorem (see, e.g., [4]) and
equivalence of homogeneous norms, there exists a constant
c such that

c−1‖Log(g)‖ζ ≤ d0(e, g) ≤ c‖Log(g)‖ζ ,

with Log(g) defined by Eq. (9). The logarithmic norm is
locally equivalent to the sub-Riemanniandistance,whichwas
proved in full generality in [43, Thm. 2 and 4]. Via a scaling
of the generators Ã2 = ξ−1A2 and Ã3 = ξ−1A3 we define
the ξ -isotropic norm

‖c‖ξ,ζ := 4
√

(|c1|2 + |c̃2|2)2 + ζ |c̃3|2

= 4
√

(|c1|2 + ξ2|c2|2)2 + ζ ξ2|c3|2, (15)

with c̃2 = ξc2 and c̃3 = ξc3, and the ci given in (9). The
norm ‖·‖ξ,ζ closely approximates the sub-Riemannian dis-
tance d0(e, ·) for C = 1 (no data adaptivity) via

d0(g, h) ≈ |Log(g−1h)|ξ,ζ , |Log(g)|ξ,ζ := ‖c‖ξ,ζ (16)

with c the coordinates of the first kind obtained via (9). In
view of the Folland–Kaplan–Korányi gauge setting ζ = 16
in ‖·‖ξ,ζ would be a sensible choice.Wedo observe, however,
that ζ = 44 gives an even sharper approximation; see Fig. 3
for a visual comparison to the sub-Riemannian distance d0
and “Appendix A” for a quantitative comparison. The setting
ζ = 44 is used in all experiments on SE(2).

3 Sub-Riemannian Distance and Its
Approximation in SE(3)

In this section we extend the concepts of the previous section
to the group SE(3) of 3D translations and rotations. In the end
we again obtain an approximation for the sub-Riemannian
distance, which allows us to do perceptual grouping in 3D
images as well.

3.1 The Lie Group SE(3)

3.1.1 SE(3)

The Lie group SE(3) = R
3
� SO(3) is the semi-direct prod-

uct of the group of 3D translations R
3 and the group of 3D

rotations SO(3). The group product and inverse for elements
g = (x,R), g′ = (x′,R′) ∈ SE(3) are defined by

g · g′ = (x,R) · (x′,R′) = (x + Rx′,RR′),
g−1 = (−R−1x,R−1). (17)

In the 3D case, we define the space of coupled positions and
orientations as a Lie group quotient of SE(3):

R
3

� S2 := SE(3)/(0 × SO(2)).

The group action of g ∈ SE(3) onto (y,n) ∈ R
3 × S2 is

defined by

g · (y,n) = (x,R) · (y,n) = (x + Ry,Rn).

We can identify the element (x,n) ∈ R
3 × S2 with group

elements (x,Rn) ∈ SE(3)/(0 × SO(2)), where Rn is any
rotation matrix such that Rnez = n.
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Fig. 3 Distances on SE(2) for ξ = 1, C = 1. Top row: level sets of the
distance volumes on SE(2). Bottom row: minimum intensity projec-
tions of the distances to the plane R

2 with level set contours. From left
to right: the sub-Riemannian distance d0(e, ·), see Eq. (7); Homogenous

norms ‖·‖ξ,ζ , see Eq. (15), of the nilpotent approximation (SE(2))0 for,
respectively, ζ = 44, ζ = 16 (Folland–Kaplan–Korányi gauge) and
c = ζ ; The (ξ -isotropic) Riemannian distance d1(e, ·) on SE(2), see
Table 1 for an overview of the different distances

3.1.2 The Lie Algebra, Exponential Map and Commutators

Analogously as in theSE(2) case,we associatewith the group
SE(3) the Lie algebra se(3) using the exponential and loga-
rithmic maps. This is most easily done using an isomorphism
with the corresponding matrix group:

(x,Rγ,β,α) ↔
(
Rγ,β,α xT

0 1

)
.

A basis for the corresponding matrix Lie algebra is given by

X1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , X2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

X3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , X4 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

X5 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , X6 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(18)

and their equivalents Ai in the tangent space of SE(3) span
the Lie algebra se(3). Since it will be clear from the context if
we are in the SE(2) or SE(3) case, we use the same notation
for the generators of the Lie algebra as previously. Now the
left-invariant vector fields are again obtained using the push
forward of the left multiplication (Lg)

∗, but they depend on
the choice of coordinates. In this paper we mostly rely on
ZYZ Euler angles in the parameterization of SO(3), i.e.,

Rγ,β,α = Rez ,γRey ,βRez ,α, (19)

with Rn,α a rotation with angle α around n. Then, the left-
invariant vector fields are given by

A1|g = (cosα cosβ cos γ − sin α sin γ )∂x

+ (sin α cos γ + cosα cosβ sin γ )∂y − cosα sin β∂z

A2|g = (− sin α cosβ cos γ − cosα sin γ )∂x

+ (cosα cos γ − sin α cosβ sin γ )∂y + sin α sin β∂z,

A3|g = sin β cos γ ∂x + sin β sin γ ∂y + cosβ∂z

A4|g = cosα cot β∂α + sin α∂β − cosα

sin β
∂γ ,

A5|g = − sin α cot β∂α + cosα∂β + sin α

sin β
∂γ

A6|g = ∂α, (20)

for β �= 0, π .
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Remark 1 A second coordinate chart is needed to cover the
entire SO(3), for which, for example, ZYX angles can be
used, as is done in, e.g., [23], where also the expressions for
the vector fields in this alternative coordinate chart are given.
In fact, the basis elements Ai of the Lie algebra correspond
to partial derivatives with respect to the ZYX angles, similar
to the SE(2)-case.

We can express each element se(3) in terms of the basis
with coefficients c = (c1, . . . , c6)T . Furthermore, we define
c(1) := (c1, c2, c3)T and c(2) := (c4, c5, c6)T , the spatial and
rotational coefficients, respectively. We can make the expo-
nential map ExpSE(3) : se(3) → SE(3) and logarithmic map
LogSE(3) : SE(3) → se(3) explicit using these coefficients.
For a 3 × 3 matrix � of the form

� :=
⎛
⎝

0 −c6 c5

c6 0 −c4

−c5 c4 0

⎞
⎠ , (21)

we obtain a rotation using the exponential map of matrices,
i.e., R = exp(�). The relation between the spatial coeffi-
cients c(1) and (x,R) is given by

c(1) =
(
I − 1

2
� + q−2

(
1 − q

2
cot

(q
2

))
(�)2

)
x, (22)

where q = ||c(2)|| and � such that R = exp(�). Now

LogSE(3)(g) =
6∑

i=1

ci (g)Ai , and

ExpSE(3)

(
6∑

i=1

ci (g)Ai

)
= g,

(23)

using the relations above.

3.2 Sub-Riemannian Geometry in SE(3)

In the SE(3) case, a horizontal path is a curve γ :
R → SE(3) with tangent vectors γ̇ (t) ∈ Δ|γ (t) :=
span{A3|γ (t) , A4|γ (t) , A5|γ (t)}, where Δ is now the sub-
bundle of full tangent bundle spanned by {Ai }6i=1. In this
case we have one spatial control u3 and two “angular” con-
trols u4 and u5, so that the sub-Riemannian metric tensor
becomes:

Gξ,C
∣∣
γ (t) (γ̇ (t), γ̇ (t)) := C(γ (t))2

(
ξ |u3(t)|2

+ |u4(t)|2 + |u5(t)|2) ,
(24)

The sub-Riemannian distance between two elements
g1, g2 ∈ SE(3) is still defined as in (7), but now the
infimum is taken over Lipschitz continuous curves γ ∈

Lip([0, T ],SE(3)) with γ (0) = g1, γ (1) = g2 and γ̇ (t) =
u3(t) A3|γ (t) + u4(t) A4|γ (t) + u5(t) A5|γ (t).

3.3 A Nilpotent Approximation (SE(3))0 of SE(3) and
the Approximated Sub-Riemannian Distance

It is important to realize that the logarithmic map is only
well defined on the group SE(3) and not on the quotient
R
3
�S2, i.e., different choices forα in the rotational part result

in different values for the coefficients ci . Here, we choose
the approach of [46] and set α = −γ such that expected
symmetries are preserved. With that choice the logarithm
(23) gives for each (x,n) ∈ R � S2 a unique vector c, on
which we can put a norm:

|LogSE(3)(g)|ξ,ζ := ||c||ξ,ζ

:= 4
√

(ξ2|c3|2 + |c4|2 + |c5|2)2 + ζ (ξ2(|c1|2 + |c2|2) + |c6|2),
(25)

where c = c(g) according to (23).
Also here, the Folland–Kaplan–Korányi-type norm can be

used to approximate the fundamental solutions of the sub-
Laplacian on SE(3). The norm ||c||ξ,ζ with ζ = 1 was, for
example, used in [23] approximations of the heat kernel and
the fundamental solution on SE(3), of which only recently
exact solutionswere found in [47]. In the context of this paper
we can approximate the exact solutions of the sub-Laplacian
on SE(3) by ‖c‖2−Q

1,16 , with homogeneous dimensions Q = 9,
as the exact solution of the sub-Laplacian on the approx-
imation group (SE(3))0. The group (SE(3))0 that locally
approximates SE(3) is again obtained via a nilpotent step
2 approximation of the BCH formula and is defined by the
group product

(x1, x2, x3, x4, x5, x6) · (y1, y2, y3, y4, y5, y6)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 + y1 + 1
2 (x

5y3 − x3y5)

x2 + y2 + 1
2 (x

3y4 − x4y3)

x3 + y3

x4 + y4

x5 + y5

x6 + y6 + 1
2 (x

4y5 − x5y4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (26)

with xi , yi coordinates of the first kind given by the logarith-
mic map (22). This new group is a free-nilpotent group of
rank 3 and step 2.

We approximate the sub-Riemannian distance d0 onSE(3)
via the norm (25). That is,

d0(g, h) ≈ |LogSE(3)(g
−1h)|ξ,ζ , (27)
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Fig. 4 Distances on SE(3) for ξ = .1, C = 1, with the origin placed
at e = (0, ex ). Top row: Level sets of the spatial projections (minimum
intensity projections over S2) of the distance volumes on SE(3). Rows
two to four: glyph visualizations in which each distance volume d is
visualized with a “Gaussian” density U (g) = e−d(e,g)2 . For an inter-
pretation of the glyphs see Remark 2. Row two: glyph visualizations of
sub-volume. Row three: glyph visualization of slice at z = 0. Row four:

zoomed in glyph visualization of the slice a z = 0. From left to right:
the sub-Riemannian distance d0(e, ·) on SE(3); see Eqs. (7) and (24);
homogenous norms ‖·‖ξ,ζ , see Eq. (25), of the nilpotent approximation
(SE(3))0 for, respectively, ζ = 100, ζ = 16 (Folland–Kaplan–Korányi
gauge) and ζ = 1; the (ξ -isotropic) Riemannian distance d1(e, ·) on
SE(3); see Table 1 for an overview of the different distances

and as such again obtain an approximation of the distance in
the sense of Rothschild and Stein [50]. Based on the quan-
titative comparison to the sub-Riemannian distances d0 in
“Appendix A” and the visualizations in Fig. 4 of the level
sets we conclude that the approximated sub-Riemannian
distance of (27) quite accurately approximates the true sub-
Riemannian distance on SE(3). In our analysis we found that
the logarithmic normwith ζ = 100 gave the best approxima-
tion, and as suchweused this norm in the perceptual grouping
experiments of Sec. 5.2.

Remark 2 The glyph at each grid point y in Fig. 4 is given
by the surface {y+ νU (y,n)n|n ∈ S2}, for a specific choice
ν > 0, and with density U : R

3 × S2 → R
+. The color

of each orientation n = (n1, n2, n3) ∈ S2 on the glyph is
defined by the RGB color (n1, n2, n3).

4 Perceptual Grouping, Fast Marching and
Key Point Tracking

In this section the algorithms used in this paper are explained.
Ourmain application of interest is that of grouping/clustering
of points on blood vessels via the perceptual grouping
algorithm, which is explained in Sect. 4.1. The perceptual
grouping algorithm takes as input a set of key points that are
obtained via the minimal path tracking with key points algo-
rithm [5], explained in Sect. 4.3, which is an adaptation of
the fast marching algorithm, explained in Sect. 4.2. Finally
since different metrics are used throughout the experiments
(both for generating key points and for perceptual grouping)
we end this section with an overview of the used metrics in
this paper in Sect. 4.4.
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4.1 The Perceptual Grouping Algorithm

The perceptual grouping algorithm presented in this paper is
a modification of the original algorithm proposed by Cohen
[13], and which was later adapted for perceptual grouping
based on anisotropic distances [8]. In recent work [11], the
perceptual grouping algorithmwas extended for the grouping
of n closed contours for an a priori specified n. Like in [8]
and [11], we use the main algorithm of [13] as a backbone,
but we change the metric used for perceptual grouping and
we impose an additional constraint to avoid closed loops
(which are physically not realistic in the vessel networks of
interest). Our adapted perceptual grouping algorithm is given
in pseudo-code in Algorithm 1.

input : S: a set of key points;
d(gi , g j ): distances between gi , g j ∈ S;
smax : max spatial length of geodesics;

variables: D̃S : set of possible edges;
δi : node degree of xi ;

output : DS : final set of edges;

Initialization:
Compute the distances d(gi , g j ) (and corresponding geodesics)
between all key points gi , g j ∈ S.
Initialize D̃S with the set of all edges between each gi , g j ∈ S
whose connecting geodesic has spatial arc length smaller then
smax , and set DS = Ø.

Main algorithm:
while D̃S �= Ø do

1. Select edge and remove it from D̃S :
(gi , g j ) ← argmin

(g,h)∈D̃S
d(g, h);

D̃S = D̃S − (xi , x j );
2. Check topology and update network:

if δi < 2 and δ j < 2 and gi , gi are not
already in the same subgraph in DS
then DS = DS + (gi , g j );

δi = δi + 1;

end

Algorithm 1: Perceptual grouping.

The goal of the perceptual grouping algorithm is to con-
struct a graph out of a set S of points of interest in which the
edges DS are true connections (represented by geodesics)
between points. Following the terminology of [5,10,17] we
will refer to the points of interest as key points. Each key
point is only linked to at most 2 other key points (i.e., node
degree δi is 2 at most). The final graph thus only contains
sets of non-bifurcating vessel segments. The graph is build
up by inserting one by one the edges which have the short-
est geodesic distance (if the node degree allows). As such,
only the strongest connections (shortest geodesics) appear
in the final graph network. Since the original algorithm in

[13] (and also [8]) does not include a mechanism to avoid
closed loops we include an additional check in themain algo-
rithm to prevent this. Finally, in order to avoid connecting key
points which are too far apart from each other we only con-
sider edges of which the spatial arc length of the connecting
geodesic does not exceed a certain a priori threshold smax .

In summary our changes relative to the works [8,11,13]
are that we

– keep the choice for distance d(xi , x j ) open. In our
experiments the distances d will be mainly based on sub-
Riemannian geometry in SE(n).

– explicitly avoid making long distance connections by fil-
tering out such possible connections in an initialization
step.

– avoid closed loops by not making connections between
nodes that belong to the same subgraph.

– group crossing lines without pre-specifying the number
of groups.

In particular, it is the use of a sub-Riemannian metric on
SE(n) that allows for the grouping of crossing lines. A first
(successful) feasibility study on the possibility of percep-
tual grouping of crossing lines was performed by Chen et al.
[11] using a (sub-)Finsler metric (based on the Euler elastica
model) on position orientation space. There it was success-
fully demonstrated on phantom images that their algorithm
is able to deal with crossing closed contours; however, it
required specification of the number of contours (which is not
always a priori known). Furthermore, their metric relies on
a notion of directionality (instead of just orientations) which
is useful in grouping closed contours, but may be disadvan-
tages for grouping non-closed contours. Here, we focus on
the grouping of non-closed crossing contours without speci-
fying the number of contours. Furthermore, we quantify the
performance of perceptual grouping of crossing lines on a
large set of both retinal images in 2D, and phantom images
in 3D.

4.2 Fast Marching

Most of the distances (except for the fast analytic approxima-
tions) and the geodesics used in this paper are computed via
the fast marching algorithm, which is an efficient numerical
solver of the eikonal equation andwhich can be used to obtain
globally optimal geodesics [14]. Let g0 be an arbitrary source
point in a domain M of interest, let G|g : Tg(M)×Tg(M) →
R

+ be a metric tensor defined on the tangent space Tg(M) at
g ∈ M, and let

U (g) := d(g0, g) = inf
γ∈S(g0,g)

∫ 1

0

√
G|γ (t) (γ̇ (t), γ̇ (t))dt

(28)
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its associated distance map, where the infimum is taken over
the set S(g0, g) of Lipschitz continuous curves with γ (0) =
g0, γ (1) = g, and with γ̇ (t) ∈ Tγ (t)(M). Then the distance
mapU is the unique viscosity solution of the eikonal equation

{√
G (∇GU (g),∇GU (g)

) = 1,

U (g0) = 0,
↔

{ ‖∇GU (g)‖G = 1,
U (g0) = 0,

(29)

with ∇G := G−1dU the intrinsic gradient with inverse
metric G−1 and dU the differential of U , and ‖·‖G the
norm with respect to the metric tensor. In the standard
(data-adaptive) Euclidean case with M = R

2, g0 = 0,
g = x, γ̇ (t) = u1(t)∂x + u2(t)∂y ∈ Tγ (t)(R

2), and
with G|γ (t)(γ̇ (t), γ̇ (t)) = C(γ (t))2(|u1(t)|2 + |u2(t)|2) the
eikonal equation is given by ‖∇U (x)‖ = C(x).

The fast marching algorithm efficiently solves the eikonal
equation in a one pass algorithm. It computes the values of
U in increasing order [starting withU (g0) = 0] based on the
Bellman principle of optimality, in a manner very similar to
the Dijkstra algorithm for shortest paths on graphs [18]. The
minimal geodesic connecting g0 with g is then obtained via
a gradient descent on U from g back to the origin g0, i.e.,
solving the ODE

{
γ̇ (t) ∝ −G−1dU (γ (t)),
γ (0) = g0.

For details on the fast marching algorithm on isotropic man-
ifolds we refer to [54,56], to [32,41] for anisotropic fast
marching, and to [52] and [24] for fast marching in sub-
Riemannian manifolds in SE(2) and SE(3), respectively.

4.3 Generating Key Points

The key point method is based on keeping track of a spa-
tial arc length map Ul (in which the spatial lengths of the
minimizing geodesics γ defining U are stored) and stops as
soon as a certain distance threshold is passed [17]. The ratio-
nale behind this algorithm is that among all points with equal
geodesic distance values U , the points reached by geodesics
γ that best follow the data (paths along which C is low)
have maximum spatial distance l(γ ). Such a point maximiz-
ing spatial distance in a given level set in U is called a key
point. The fast marching algorithm is highly suited for keep-
ing track of a spatial arc length map Ul , in addition to U ,
due to the local updating approach (wavefront propagation).
Moreover, the algorithm can stop early if one is only inter-
ested in finding the first key point with length larger than lmax

[17].
In summary a key point is detected as follows. The spatial

arc length map is defined as

Ul(g) := l(γg0,g), (30)

with γg0,g = argmin
γ∈S(g0,g)

∫ 1
0

√G|γ (t) (γ̇ (t), γ̇ (t))dt the mini-

mizing geodesic in (28), and with

l(γ ) =
∫ 1

0
‖ẋ(t)‖dt (31)

the spatial arc length of γ , with ẋ(t) = PRn γ̇ (t) ∈ R
n the

spatial components of the tangents γ̇ (t).4 The fast marching
algorithm stops as soon as there is a g for which Ul(g) ≥
lmax , and g will be called a key point.

With the above criteria one can iteratively detect new key
points based on geodesic distances to previously found key
points, a method known as minimal path tracking with key
point detection [5]. One can make several choice on when to
stop the key point tracking algorithm [5,10,34]. In this work
we rely on the approach by Chen et al. [10], where we only
add key points on locations which lie in a masked region (we
use a binary vessel centerlinemaskm : M → {0, 1}), i.e., we
only add a key point when bothUl(g) ≥ lmax andm(g) = 1.
The algorithm is stopped as soon Ul(g) ≥ 3 lmax .

4.4 Overview of Distances Used in this Paper

Table 1 gives an overview of the different distances discussed
in this paper and used in the experiments. The isotropic
Euclidean metrics are used the generate key points in R

2

and R
3 using the algorithm of Subsec. 4.3. The isotropic

Euclidean distances are also used in comparison to the other
distances on SE(n) in the perceptual grouping experiments.
The sub-Riemannian distances on SE(2) and SE(3) are
explained, respectively, in Sects. 2.2 and 3.2. In the Rieman-
nian distances the full tangent bundle on SE(n) is considered.
This means that now also non-horizontal curves in SE(n)

are considered, i.e., points on the curves γ are allowed to
move sideways by the non-horizontal controls u3(t) in the
SE(n) case, and u1(t), u2(t) in the SE(3) case. Recall that
in this case the blue and red oriented particles in Fig. 1 do
have the same distance to the source (black arrow). Finally,
the sub-Riemannian distance approximations, denoted by
|LogSE(n)(g

−1h)|ξ,ζ , are discussed and defined in, respec-
tively, Sect. 2.3 and Eq. (16) for SE(2) and Sect. 3.3 and
Eq. (25) for SE(3).

4.4.1 The Cost C

The cost functions C are constructed from functions U f :
R
n × Sn−1 → R on the orientation-lifted space. These func-

4 In the lifted problem SE(2) the spatial components are, for example,
given by ẋ(t) = u2(t)A2|γ (t) + u3(t)A3|γ (t), and in the SE(3) case
ẋ(t) = u1(t)A1|γ (t) + u2(t)A2|γ (t) + u3(t)A3|γ (t).
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Table 1 Overview of the metrics used in this paper

Distance notation Manifold M Tangent b. T (M) Tangent vectors γ̇ Metric tensor G

Isotropic Euclideana

‖g − h‖ R
2 T (R2) γ̇ (t) = u1(t)∂x + u2(t)∂y G|γ (t) = C(γ (t))2(|u1(t)|2 + |u2(t)|2)

‖g − h‖ R
3 T (R3) γ̇ (t) = u1(t)∂x + u2(t)∂y

+ u3(t)∂z
G|γ (t) = C(γ (t))2

( |u1(t)|2 + |u2(t)|2
+|u3(t)|2

)

(Full) Riemannian SE(n)

d1(g, h) SE(2) T (SE(2)) γ̇ (t) =
3∑

i=1
ui (t)Ai |γ (t) G|γ (t) = C(γ (t))2

(
3∑

i=1
ξ2i |ui (t)|2

)
, with

ξ2 = ξ3 = ξ and ξ1 = 1

d1(g, h) SE(3) T (SE(3)) γ̇ (t) =
5∑

i=1
ui (t)Ai |γ (t) G|γ (t) = C(γ (t))2

(
5∑

i=1
ξ2i |ui (t)|2

)
, with

ξ1 = ξ2 = ξ3 = ξ and ξ4 = ξ5 = ξ6 = 1

Sub-Riemannian SE(n)

d0(g, h) SE(2) Δ γ̇ (t) = u1(t)A1|γ (t) + u2(t)A2|γ (t) G|γ (t) = C(γ (t))2(|u1(t)|2 + ξ2|u2(t)|2)
d0(g, h) SE(3) Δ γ̇ (t) = u3(t)A3|γ (t) + u4(t)A4|γ (t)

+ u5(t)A5|γ (t)
G|γ (t) = C(γ (t))2

(
ξ2|u3(t)|2 + |u4(t)|2
+|u5(t)|2

)

Sub-Riemannian approximation

|LogSE(2)(g
−1h)|ξ,ζ Approximation of the sub-Riemannian distance on SE(2), cf. Eq. (16)

|LogSE(3)(g
−1h)|ξ,ζ Approximation of the sub-Riemannian distance on SE(3), cf. Eq. (25)

aThe isotropic Euclidean distances are used in key point generation and perceptual grouping. The other distances are only used in the perceptual
grouping algorithm

tions U f are obtained via an orientation score transform
[21,31] of image f : R

n → R by correlating the image
with a set of anisotropic wavelets ψ : R

n → R:

U f (g) = (Ugψ, f )L2(Rn), (32)

with ( f , g)L2(Rn) = ∫
Rn f (x)g(x)dx the standard inner

product on L2(R
n), with the overline denoting complex con-

jugation, andwhereUg denotes the left regular representation
of the Lie group on images f . For the group SE(2) acting on
images f ∈ L2(R

2) it is defined as

(Ug f )(y) := f (R−1
θ (y − x))

with g = (x, θ) ∈ SE(2) (recall the group definitions in
Sect. 2.1.1). For the group SE(3) acting on images f ∈
L2(R

3) it is defined as

(Ug f )(y) := f (R−1
n (y − x))

with g = (x,Rn) ∈ SE(3) (recall the group definition in
Sect. 3.1.1).

The wavelets used in the orientation score transform [21,
31] are designed in such away that all rotated version together
cover the full Fourier spectrum. With this design no data are
lost in the transformation and a stable invertible transform
(from orientation score) back to image exists. For details on
thiswavelet-type transform for lifting 2D images to functions

on SE(2) we refer to [21], and for lifting 3D images to 3D
orientation scores we refer to [31]. In all experiments we
define the cost in the following form

C(g) = 1

1 + λV(g)p
, (33)

with V a vessel (or centerline) enhancement obtained by pro-
cessing of the orientation scoreU f , and which is normalized
between 0 and 1. Parameters λ and p then control, respec-
tively, the influence of the cost (data adaptivity) and p the
contrast.

Good choices for V for tracking of vessels in 2D position
orientation space may be via the vessel enhancements of [58]
or [30], similar to the SE(2) tracking experiments in [3]. For
tracking in 3D orientation scores V may be obtained via the
crossing preserving vessel enhancements of [19]. In related
tracking problems in lifted spaces the lifts are obtained via
tubularity measures [11,36,38], or by correlating the image
with a set of rotated templates [44].

4.4.2 Projective Line Bundle

Finally, we remark that when dealing with geodesic dis-
tances in SE(n) we have to take into account that these are
defined for positions and orientations on the full sphere Sn−1.
The distances discussed in this paper thus make a distinc-
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Table 2 Perceptual grouping performance for the 2D retinal image
experiments in terms of percentage of correct key point connections (#
of false connections in parentheses)

Distance C = 1 C �= 1

‖x − y‖ (R2 |Eucl.) 89.99% (362) 95.96% (146)

d1(g, h) (SE(2)|Riem.) 97.51% (90) 99.64% (13)

d0(g, h) (SE(2)|Sub-Riem.) 99.75% (9) 99.83% (6)

|Log(g−1h)|ξ,ζ (SE(2)| ≈ Sub-Riem.) 99.72% (10) –

tion between forward and backward arrival directions, i.e.,
d(e, (x, θ)) �= d(e, (x, θ + π)).

In practice, and in particular in our perceptual grouping
problem,we often do not know the direction of the vessel, but
we only have orientations. As such, we would actually want
to compute distances on the projective line bundleR

n×Pn−1,
with Pn−1 := Sn−1/ ∼ with identification of antipodal
points n1 ∼ n2 ↔ n1 = ±n2. We define the distances d̃
on the projective line bundle by distances d on SE(n) via

d̃(g, (x,n)) = min {d(g, (x,n)), d(g, (x,−n))} , (34)

with n ∈ Sn−1, and g, (x,±n) ∈ SE(n). Note that in the
SE(2) case we have with n(θ) = (cos θ, sin θ) ↔ θ and
−n(θ) = n(θ + π). For a more detailed analysis on data-
adaptive sub-Riemannian geodesics on the 2D projective line
bundle we refer [2].

5 Experiments

In the experiments we aim to quantify the performance
of perceptual grouping with different distances. For a fair
comparison we therefore generate automatically the most
reasonable key points by using a vessel centerline mask
m : R

n → [0, 1] (see Sect. 4.3) based on the ground-truth
data.Moreover, this guarantees that the key points are always
located on the ground-truth centerlines, which allows us to
quantify performance using the ground-truth data. In both
the 2D and 3D case the key points are then generated using
the isotropic Euclidean metric tensor, and with V(x) = m(x)
(see Sect. 4.4.1). In all experiments we set p = 1, λ = 100
to compute the cost [cf. Eq. (33)].

In the perceptual grouping experiments the cost functions
are constructed from orientation score transforms U f of the
mask m on R

n . The costs on SE(n) are then constructed via
the modulus of the score:

V(g) = VSE(n)(g) := |U f (g)|. (35)

For equal comparison the costs on R
n are then constructed

via V (x) = max
n∈Sn−1

VSE(n)(x,n), i.e., via amaximum intensity

projection over orientations n.

5.1 Perceptual Grouping in SE(2)

5.1.1 Experimental Setup

The data for the 2D retinal vessel grouping experiments
consist of 52 retinal image patches in which the vessels
have complicated topologies (each patch contains at least
1 crossing, and at least 1 bifurcation). For each retina patch
the centerlines were semiautomatically traced, after which
the connectivity (bifurcation relations) between the vessel
segments were manually determined. The set of images con-
tained in total 313 separate vessel segments. A connection
between two nodes was determined to be a true positive if
both nodes lie on the same vessel tree.

The minimum distance between key points in the retina
experiments (with patch sizes of ≈ 400 × 400 pixels) was
set to lmax = 30 pixels. The maximum geodesic arc length
distance in the perceptual grouping algorithm was set to
smax = 80 pixels. The orientations θ at each key point x was
estimated by the orientation that gave maximum response
in the orientation score, i.e., θ = argmax

θ∈S1
VSE(2)(x, θ). The

circle S1 was sampled with Nθ = 32. All distances were
computing via the fast marching algorithm of [41,42] except
for the sub-Riemannian approximations, which were com-
puted directly using (9) and (15). The position orientation
balancing parameter was set to ξ = 0.01.

5.1.2 Results

Table 2 gives a quantitative overview of the results, and
Figs. 5 and 6 show the results on two of the 52 retina patches.
From Table 2 we make the following observations and con-
clusions:

1. Perceptual grouping is preferred in the lifted domain
SE(2) instead of in the based domain R

2. This suggest
that taking orientation into account in the grouping is
essential.

2. A sub-Riemannian geometry on SE(2) is preferred over
a (ξ -isotropic) Riemannian geometry. This suggests that
a sub-Riemannian geometry is necessary to deal with the
complex geometry at crossings and parallel tracks (cf.
Figs. 5 and 6).

3. The results obtained with the sub-Riemannian distances
on SE(2) for C = 1 are almost equal. This suggests
that the approximations are quite accurate, and that for
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Fig. 5 Example 1 of the retinal vessel grouping experiments. Each
connected component has its own color (note that the colors might not
match between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

mentswith data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)

Fig. 6 Example 2 of the retinal vessel grouping experiments. Each
connected component has its own color (note that the colors might not
match between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

mentswith data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)
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C = 1 the analytic approximations may be preferred due
to speed and algorithm complexity considerations.

4. Overall, results forC �= 1 are better than forC = 1.Note,
however, that the sub-Riemannian distances on SE(2) for
C = 1 are still better then the Euclidean distance on R

2

and Riemannian distance on SE(2) for C �= 1, and only
slightly under performs relative to the sub-Riemannian
C �= 1 case. This again shows that sub-Riemannian
geometry is preferred, whether data are included in the
metric tensors or not.

We conclude that in perceptual grouping of 2D vessels
a sub-Riemannian geometry in SE(2) is preferred over a
Euclidean geometry in R

2, or a Riemannian geometry in
SE(2). When accurate vesselness maps are available, it is
preferable to use these in the distances. Furthermore, if one
aims to design a easy to implement and efficient perceptual
grouping pipeline, approximate sub-Riemannian distances
should be used. With only a 2D key point tracking algo-
rithm, a method for estimating orientations and the analytic
approximate distances (15) one obtains very accurate group-
ing results.

Table 3 Perceptual grouping performance for the 3D synthetic volume
experiments in terms of percentage of correct key point connections (#
of false connections in parentheses)

Distance C = 1 C �= 1

‖x − y‖ (R3 |Eucl.) 89.99% (78) 97.97% (16)

d1(g, h) (SE(3)|Riem.) 93.02% (54) 98.32% (13)

d0(g, h) (SE(3)|Sub-Riem.) 96.79% (25) 98.32% (13)

|Log(g−1h)|ξ,ζ (SE(3)| ≈ Sub-Riem.) 97.17% (22) –

5.2 Perceptual Grouping in SE(3)

5.2.1 Experimental Setup

To quantify and study the influence of different distances in
perceptual grouping algorithms for 3D vessels we make use
of synthetic 3D images. For these experiments 10 volumes
were generated, each with 6 random paths. Each path was
generated with a Monte Carlo simulation of a random walk
in SE(3) (see, e.g., [59, Ch. 3.5]). Due to the random con-

Fig. 7 Example 1 of the 3D synthetic vessel grouping experiments.
Each connected component has its own color (note that the colors might
notmatch between experiments as the number of recovered components
may differ), and false connections are indicated in red. Top row: experi-

mentswith data-adaptive distances (C �= 1), and the ground-truth vessel
components including the automatically generated key points. Bottom
row: experiments without data-adaptive distance (C = 1) (Color figure
online)
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Fig. 8 Mean squared errors between the sub-Riemannian distance on
SE(2) [see Eq. (7)] and its approximation [see Eq. (16)]. The errors is
computed for varying choices of ζ and on a varying grid size (from
x, y ∈ [−0.5, 0.5] to x, y ∈ [−4, 4])
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Fig. 9 Mean squared errors between the sub-Riemannian distance on
SE(3) [see Eqs. (7), (24)] and its approximation [see Eq. (27)]. The
errors is computed for varying choices of ζ and on a varying grid size
(from x, y, z ∈ [−0.5, 0.5] to x, y, z ∈ [−4, 4])

struction it might occur that 2 paths cross each other. This is
physiologically unrealistic (vessels in 3D might bifurcate or
touch, but never grow through each other), but it does make
the experiments more challenging.

For each volume a binary centerlinemaskwas constructed
using the generated ground-truth paths. The volumes were of
size 51×51×51 voxels. The distance between key pointswas
set to lmax = 5 voxels. The maximum geodesic arc length
distance in the perceptual grouping algorithm was set to
smax = 15 voxels. The orientation at each key pointwas again
estimated as the orientation that gave maximum response in
VSE(n) [Eq. (35)]. The sphere S2 was sampled with 200 ori-
entations using Euler angles with n(β, γ ) = Rγ,β,α.ez , with
β ∈ { π

2Nβ
, 2 π

2Nβ
, . . . , π − π

2Nβ
}, γ ∈ {0, π

Nβ
, . . . , 2π − π

Nβ
},

with Nβ = 10, and with Rγ,β,α given by (19). In the lifted
metric tensor we set ξ = 1.

5.2.2 Results

Table 3 gives a quantitative overview of the results, and Fig. 7
shows the results on one of the ten synthetic volumes. From
Table 3 we can draw the same conclusions as for the SE(2)
case (using a sub-Riemannian geometry and including data

adaptivity improves results). Here, however, we make two
additional observations

1. Data-adaptive fast marching seems less sensitive to the
choice of metric, but tracking in the lifted domain SE(3)
still improves results. This can be explained by the fact
that the volume is relatively sparse, and by the fact that
the cost functionC is constructed from ground-truth data
(the best possible cost). If the cost function dominates the
metric, then the intrinsic energy/geometry has a smaller
influence.

2. Out of allC = 1 distances (no data adaptivity) the group-
ing via the nilpotent distance approximations on SE(3)
give best performance, even better then for the true sub-
Riemannian distance. This can be explained by the fact
that for long distances from the origin, the approximation
gradually looses their sub-Riemannian nature and allows
more non-horizontal behavior, as in theRiemannian case.
It could be that, due to the discrete sampling of the
sphere, not all orientations are accurately estimated. The
grouping based on the sub-Riemannian distance approx-
imations seems less sensitive to such errors.

6 Conclusion

In this paper we have proposed an efficient approach for per-
ceptual grouping of local orientations via nilpotent approxi-
mations of sub-Riemannian distances in the roto-translation
group SE(n). The quantitative experiments on grouping of
retinal blood vessels in 2D images, and perceptual group-
ing in challenging 3D synthetic volumes, showed that (1)
sub-Riemannian geometry is essential in achieving top per-
formance and (2) that the grouping approach via the fast
analytic approximations performs almost equally, or better,
than the data-adaptive fast marching approaches.

The sub-Riemannian distances on SE(2) and SE(3) were
approximated via norms on exponential coordinates of the
first kind (obtained via the logarithmic map). In both quanti-
tative and visual comparison it was found that the approxima-
tions accurately follow the true sub-Riemannian distances, a
conclusion which was further supported by the equal per-
formance in quantitative perceptual grouping experiments.
We also numerically showed that the weighted logarithmic
norms used in this paper provide a more accurate approach
for approximating the heat kernel and fundamental solu-
tion of the sub-Laplacian on SE(n), compared to previous
approaches [12,22,47].

Since the sub-Riemannian distance approximations are
analytic, they are easy to implement and fast to compute.
An interesting line of further research would be to embed the
sub-Riemannian distances in other algorithms that rely on the
quantification of the distance between local orientations. The
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results of this paper could be further improved by augmenting
the sub-Riemannian distances with additional features (like
cross-sectional profile descriptors) and use a global graph
optimization approach as in [26,57]. The potential of using
sub-Riemannian distances in such problems is demonstrated
by the experiments of this paper.
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A Optimization of the Folland–Kaplan–
Korányi Gauge Parameter ζ

In Figs. 3 and 4 we visually compared the nilpotent approxi-
mations of the sub-Riemannian distance on SE(2) and SE(3),
respectively. In this appendixwe support bymeans of a quan-
titative comparison our choices for ζ = 44 and ζ = 100
which appear in the logarithmic approximations (Folland–
Kaplan–Korányi gauge) of |Log(g−1h)|ξ,ζ as defined in (16)
and (27) on, respectively, SE(2) and SE(3).

A.1 Optimization of ζ for the SE(2) Approximations

In the quantitative comparison on SE(2) we computed
the L2 error between d0(g, h) and the approximation
|Log(g−1h)|ξ,ζ with ξ = 1 on a grid with a varying spa-
tial domain size (from x, y ∈ [−0.5, 0.5] to x, y ∈ [−4, 4]),
and with varying choices of ζ . The results are shown in Fig. 8
and are computed as follows.

The reference sub-Riemannian distance d0 on SE(2) was
computed once via an anisotropic fast marching algorithm
[41,42] on a gridwhich sampled x, y ∈ [−4, 4] at a sub-pixel
resolution of 0.01 with 128 orientations. The numerically
computed sub-Riemannian distance volume was thus of
dimensions 801 × 801 × 128.

In each experiment (with fixed spatial range and ζ ) the
squared error between d0 and its approximation was sampled

on a regular grid that covered the specified domain with 41×
41 × 128 points. The averaged errors are plotted in Fig. 8.

Here we see that the approximation becomes more accu-
rate toward the origin (x, y ∈ [−0.5, 0.5]) and that parameter
ζ has to be chosen larger in order to keep the anisotropy for
longer distances from the origin. The choice ζ = 44 gener-
ally gave the best approximations and we rely on this setting
in the experiments on SE(2).

A.2 Optimization of ζ for the SE(3) Approximations

In the quantitative comparison on SE(3) we computed
the L2 error between d0(g, h) and the approximation
|Log(g−1h)|ξ,ζ with ξ = 1 on a grid with a varying spatial
domain size (from x, y, z ∈ [−0.5, 0.5] to x, y, z ∈ [−4, 4]),
and with varying choices of ζ . The results are shown in Fig. 9
and are computed as follows.

The reference sub-Riemannian distance d0 on SE(3) was
also computed once via an anisotropic fast marching algo-
rithm [41,42] on a grid which sampled x, y, z ∈ [−4, 4] at
a sub-pixel resolution of 0.1 with 31 × 62 Euler angles (cf.
Sect. 5.2). The numerically computed sub-Riemannian dis-
tance volume was thus of dimensions 201 × 201 × 201 ×
31 × 62.

In each experiment (with fixed spatial range and ζ ) the
squared error between d0 and its approximation was sampled
on a regular grid that covered the specified domain with 21×
21× 21× 31× 62 points. The averaged errors are plotted in
Fig. 9.

Here we see that the approximation becomes more accu-
rate toward the origin (x, y, z ∈ [−0.5, 0.5]). However,
compared to the SE(2) experiments we do see a less stable
localization of the optimal parameter ζ with varying spa-
tial resolutions. This behavior can be explaind by (1) the
sub-Riemannian distances are numerically computed via a
fast marching algorithm using Euler angles (which do not
uniformly sample the sphere) and (2) the spatial resolution
of the computed reference sub-Riemannian distance vol-
ume was only 0.1 (due to computer memory constraints).
Although very accurate from an application point of view,
the sub-Riemannian distances on SE(3) are not exact, and the
numerical errors induced by the algorithm may explain the
variation in optimal ζ (in particular for the region close to the
origin). Overall, the choice ζ = 100 seems to be reasonable
in all ranges, and this was confirmed by visual comparison
of the distance maps in Fig. 4.
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