10,786 research outputs found

    An Online Decision-Theoretic Pipeline for Responder Dispatch

    Full text link
    The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time.Comment: Appeared in ICCPS 201

    ITS implementation plan for the Gold Coast area

    Get PDF
    ITS needs to be used to reinforce the planned major changes to the road functional hierarchy in the District, namely: • the use of Southport-Burleigh Rd. (SBR) as the major regional corridor; • the removal of through traffic from the GCH; • the use of Oxley Dr./Olsen Av./Ross St./NBR as another major north-south by-pass; • the use of Smith St.; NSR/Queen St.; NBR and Reedy Creek Rd. – West Burleigh Road as the major east-west access corridors. There is a need to integrate the proposed ITS measures into the current related plans for the Pacific Motorway and into the overall traffic control strategies for the area as a whole. In addition, the staging of the proposed plan needs to take into account the planned DMR capital Works Program. An index representing the degree of priority to be attached to each network link was developed to assist in the phased implementation of ITS technologies over the next 5 years. 'ITS Index' is made up of five variables, namely: • Accident rate factor • AADT • Volume/Capacity ratio • Delay • % Commercial Vehicles The main components of the ITS plan are shown diagrammatically in Figure 1. The latter assumes that the high level of ITS implementation on the Pacific Motorway will be extended in time to the remainder of that Highway. To assist in the implementation of the road hierarchy system, a new static signage plan should be implemented. This plan needs to reinforce the changes by clearly assigning single road names to corridors and by placing new signs at appropriate locations. Capturing Traffic Data The following corridors should be equipped with automatic traffic monitoring capability in priority order: High Priority ? SBR corridor from Smith St. connection to Reedy Creek Rd. ? Smith St. from Pacific Highway to High St. ? GCH from Pacific Highway to North St. Medium Priority ? Nerang-Broadbeach Rd/Ross St. to Nerang-Southport Rd. ? Nerang-Southport Rd from Pacific Highway to SBR ? Nerang-Broadbeach Rd from Pacific Highway to SBR The Smith St. link from the Pacific Motorway to Olsen Ave. should be considered as a freeway for monitoring purposes. The GCH along the coastal strip needs to be treated as a local distributor rather than as the major corridor. As a result, the future traffic surveillance priority should be low. At least one permanent environmental (vehicle emissions) monitoring station should be set up as part of the ITS plan. The most appropriate site for such a station would seem to be on the SBR corridor at the vicinity of Hooker Blv. intersection. Pacific Highway The Pacific Motorway project will set the benchmark for freeway incident detection and traffic management in the State. The high level of ITS implementation on the Motorway section will create a significant gap in performance and expectation, relative to the remainder of the Highway. It is recommended that the southern sections of the Pacific Highway be equipped to the equivalent level of traffic data collection and surveillance as the newly upgraded Motorway section, under a staged program. Travel Time Savings The travel time benefits of the full implementation of ITS over the network are likely to be of the order of at least 5 percent of vehicle-hours travelled on the affected links. At a discount rate of 6 percent, the total present value of the gross travel time benefit over 10 years is of the order of $200 million

    Affection not affliction: The role of emotions in information systems and organizational change

    Get PDF
    Most IS research in both the technical/rational and socio-technical traditions ignores or marginalizes the emotionally charged behaviours through which individuals engage in, and cope with the consequences of, IS practice and associated organizational change. Even within the small body of work that engages with emotions through particular conceptual efforts, affections are often conceived as a phenomenon to be eradicated – an affliction requiring a cure. In this paper, I argue that emotions are always implicated in our lived experiences, crucially influencing how we come to our beliefs about what is good or bad, right or wrong. I draw from the theoretical work of Michel Foucault to argue for elaborating current notions of IS innovation as a moral and political struggle in which individuals’ beliefs and feelings are constantly tested. Finally, I demonstrate these ideas by reference to a case study that had considerable emotional impact, and highlight the implications for future work

    RTA Analysis & Existing Modelling for Emergency Medical Service

    Get PDF
    Prevention of accidents is extremely difficult in absence of present situation analysis, as the aim to identify the incident locations and safety deficiency area is the key to work out the effective solution. To access the feasibility of using Geographic Information System (GIS) for mapping of incident locations with an existing data source is vital to estimate variation of RTAs (Road Traffic Accidents) pattern by interpolating. Generally, accident particulars like location, date, time, sex and suspect are included in GIS database. Here, Arc GIS (10.2.1) software is applied to identify incident locations in Karachi district. To reduce the accidents in particular area/study area and in order to sustain coverage for emergency response, there may be such more factors including the number of ambulances deployed, their position/location, and dispatching strategies that affect the EMS system, authors strictly recommended covering based probabilistic model for (Rescue-15) solving the problem of ambulance locations. GIS facilitates the respective authority to do assessment and to analyze the entire position of the accident with the help of GPS or additional sources of information while consequences are utilized as part of the preparation progression is based on the acuity of the patient in time

    Optimal allocation of defibrillator drones in mountainous regions

    Get PDF
    Responding to emergencies in Alpine terrain is quite challenging as air ambulances and mountain rescue services are often confronted with logistics challenges and adverse weather conditions that extend the response times required to provide life-saving support. Among other medical emergencies, sudden cardiac arrest (SCA) is the most time-sensitive event that requires the quick provision of medical treatment including cardiopulmonary resuscitation and electric shocks by automated external defibrillators (AED). An emerging technology called unmanned aerial vehicles (or drones) is regarded to support mountain rescuers in overcoming the time criticality of these emergencies by reducing the time span between SCA and early defibrillation. A drone that is equipped with a portable AED can fly from a base station to the patient's site where a bystander receives it and starts treatment. This paper considers such a response system and proposes an integer linear program to determine the optimal allocation of drone base stations in a given geographical region. In detail, the developed model follows the objectives to minimize the number of used drones and to minimize the average travel times of defibrillator drones responding to SCA patients. In an example of application, under consideration of historical helicopter response times, the authors test the developed model and demonstrate the capability of drones to speed up the delivery of AEDs to SCA patients. Results indicate that time spans between SCA and early defibrillation can be reduced by the optimal allocation of drone base stations in a given geographical region, thus increasing the survival rate of SCA patients

    EVALUATION OF TRAFFIC CONGESTION AND RE-ENGINEERING SOLUTIONS FOR CENTRAL AREAS OF SOUTH AFRICAN CITIES: A CASE STUDY OF KIMBERLEY CITY

    Get PDF
    Published Conference ProceedingsTraffic congestion in and around the central business districts (CBD) of South African cities is a major challenge. Apparently, it is engendering undesirable consequences that include impeding vehicular flow, causing vehicular and pedestrian conflicts, escalating travel time, and frequenting vehicular crashes. So, using a case study of Kimberley city in South Africa, this study assessed the causes and degree of traffic congestion on the roads in and around the CBD area; and examined the impact of plausible re-engineering measures to alleviate the challenge. Survey research methods were used to collect data. Land use and urban functions influencing urban movements, road, and traffic scenario data were collected through physical and traffic survey at different selected road sections and junctions of the CBD area by following appropriate survey protocols. Besides, road user perception and travel behaviour survey were conducted among 208 (N= 208) road users by using random sampling process at important nodes of the city. Relevant empirical models were used to assess the causes and level of traffic congestion, and to examine the impact of reengineering solutions on the current and forecasted traffic scenarios. Findings suggest an appreciable level of traffic congestion is experienced currently in some of the roads of the CBD area and the situation will be aggravated in future, specifically during the peak hours, whereas a number of roads are highly underutilised. Re-engineering solutions such as appropriate traffic assignment and modal split, i.e., traffic diversion ranging between 9.0% and 40.5% from different congested roads and restriction of plying of heavy vehicles on the congested roads during peak hours and assigning them to connected underutilised roads could ease traffic congestion, increase speed and reduce travel time and consequently enable optimal use of the majority of the roads in and around the CBD area of the city

    Studying the impacts of primary incidents on freeways to identify secondary incidents

    Full text link
    Freeway incidents are associated with different impacts such as traffic congestion, delays, fuel consumption, secondary incidents etc. Secondary incidents are caused due to primary incidents and require the same personnel who are already engaged. This thesis studies various impacts caused by primary incident in space and time occurring on the freeways and these results are applied to identify secondary incidents. Three types of impacts are identified and proposed in this study. Dynamic nature of queue length in the direction of accident is studied. Dynamic nature of congestion in the opposite direction of the freeway till the accident is cleared is also studied. Dynamic nature of movement of distraction point on the opposite side of the freeway as the queue gets cleared in accident direction is studied. Finally, simulations are carried out by using Las Vegas freeway traffic volumes to show the effect of these impacts in Las Vegas region. The simulation results are applied to real time data to identify secondary incidents

    Review of current practices in recording road traffic incident data: with specific reference to spatial analysis and road policing policy

    Get PDF
    Road safety involves three major components: the road system, the human factor and the vehicle element. These three elements are inter-linked through geo-referenced traffic events and provide the basis for road safety analyses and attempts to reduce the number of road traffic incidents and improve road safety. Although numbers of deaths and serious injuries are back to approximately the 1950s levels when there were many fewer vehicles on the road, there are still over 100 fatalities or serious injuries every day, and this is a considerable waste of human capital. It is widely acknowledged that the location perspective is the most suitable methodology by which to analyse different traffic events, where by in this paper, I will concentrating on the relationship between road traffic incidents and traffic policing. Other methods include studying road and vehicle engineering and these will be discussed later. It is worth noting here that there is some division within the literature concerning the definitions of ‘accident’ and ‘incident’. In this paper I will use ‘incident’ because it is important to acknowledge a vast majority of ‘road accidents’ are in fact crimes. However I will use the term ‘accident’ where it is referred to in the literature or relevant reports. It is important to mention here that a road traffic accident can be defined as ‘the product of an unwelcome interaction between two or more moving objects, or a fixed and moving object’ (Whitelegg 1986). Road safety and road incident reduction relates to many other fields of activity including education, driver training, publicity campaigns, police enforcement, road traffic policing, the court system, the National Health Service and Vehicle engineering. Although the subject of using GIS to analyse road traffic incidents has not received much academic attention, it lies in the field of crime mapping which is becoming increasingly important. It is clear that studies have been attempted to analyse road traffic incidents using GIS are increasingly sophisticated in terms of hypotheses and statistical technique (for example see Austin, Tight and Kirby 1997). However it is also clear that there is considerable blurring of boundaries and the analysis of road accidents sits uncomfortably in crime mapping. This is due to four main reasons: - Road traffic incidents are associated with road engineering, which is concerned with generic solutions while road traffic analysis is about sensitivity to particular contexts. - Not all road traffic incidents are crimes - It is not just the police who have an interest in reducing road traffic incidents, other partners include local authorities, hospitals and vehicle manufacturers - The management of road traffic incidents is not just confined to the police GIS has been used for over thirty years however it has only been recently been used in the field of transportation. The field of transportation has come to embrace Geographical Information Systems as a keytechnology to support its research and operational need. The acronym GIS-T is often employed to refer to the application and adaptation of GIS to research, planning and management in transportation. GIS-T covers a broad arena of disciplines of which road traffic incident detection is just one theme. Others include in vehicle navigation systems. Initially it was only used to ask simple accident enquiries such as depicting the relative incidence of accidents in wet weather or when there is no street lighting, or to flag high absolute or relative incidences of accidents (see Anderson 2002). Recently however there has been increased acknowledgement that there is a requirement to go beyond these simple questions and to extend the analyses. It has been widely claimed by academics and the police alike that knowing where road accidents occur must lead to better road policing, in order to ensure that road policing becomes better integrated with other policing activities. This paper will be used to explore issues surrounding the analysis of road traffic accidents and how GIS analysts, police and policy makers can achieve a better understanding of road traffic incidents and how to reduce them. For the purpose of this study I will be trying to achieve a broader overview of the aspects concerning road accident analysis with a strong emphasis on data quality and accuracy with concern to GIS analysis. Data quality and accuracy are seen as playing a pivotal role in the road traffic management agenda because they assist the police and Local Authorities as to the specific location whereby management can be undertaken. Part one will consider the introduction to road incidents and their relationship with geography and spatial analysis and how this were initially applied to locating ‘hotspots’ and the more recent theory of ‘accident migration’. Part two will address current data issues of the UK collection procedure. This section will pay particular reference to geo-referencing and the implication of data quality on the procedure of analysing road incidents using GIS. Part three addresses issues surrounding the spatial analysis of road traffic incidents, including some techniques such as spatial autocorrelation, time-space geography and the modifiable area unit problem. Finally part four looks at the role of effective road traffic policing and how this can be achieved due to better understanding of the theory and issues arising from analysing road traffic incidents. It will also look at the diffusion and use of GIS within the police and local authorities
    • …
    corecore