1,527 research outputs found

    Automating Inspection of Tunnels With Photogrammetry and Deep Learning

    Get PDF
    Asset Management of large underground transportation infrastructure requires frequent and detailed inspections to assess its overall structural conditions and to focus available funds where required. At the time of writing, the common approach to perform visual inspections is heavily manual, therefore slow, expensive, and highly subjective. This research evaluates the applicability of an automated pipeline to perform visual inspections of underground infrastructure for asset management purposes. It also analyses the benefits of using lightweight and low-cost hardware versus high-end technology. The aim is to increase the automation in performing such task to overcome the main drawbacks of the traditional regime. It replaces subjectivity, approximation and limited repeatability of the manual inspection with objectivity and consistent accuracy. Moreover, it reduces the overall end-to-end time required for the inspection and the associated costs. This might translate to more frequent inspections per given budget, resulting in increased service life of the infrastructure. Shorter inspections have social benefits as well. In fact, local communities can rely on a safe transportation with minimum levels of disservice. At last, but not least, it drastically improves health and safety conditions for the inspection engineers who need to spend less time in this hazardous environment. The proposed pipeline combines photogrammetric techniques for photo-realistic 3D reconstructions alongside with machine learning-based defect detection algorithms. This approach allows to detect and map visible defects on the tunnel’s lining in local coordinate system and provides the asset manager with a clear overview of the critical areas over all infrastructure. The outcomes of the research show that the accuracy of the proposed pipeline largely outperforms human results, both in three-dimensional mapping and defect detection performance, pushing the benefit-cost ratio strongly in favour of the automated approach. Such outcomes will impact the way construction industry approaches visual inspections and shift towards automated strategies

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Echo state model of non-Markovian reinforcement learning, An

    Get PDF
    Department Head: Dale H. Grit.2008 Spring.Includes bibliographical references (pages 137-142).There exists a growing need for intelligent, autonomous control strategies that operate in real-world domains. Theoretically the state-action space must exhibit the Markov property in order for reinforcement learning to be applicable. Empirical evidence, however, suggests that reinforcement learning also applies to domains where the state-action space is approximately Markovian, a requirement for the overwhelming majority of real-world domains. These domains, termed non-Markovian reinforcement learning domains, raise a unique set of practical challenges. The reconstruction dimension required to approximate a Markovian state-space is unknown a priori and can potentially be large. Further, spatial complexity of local function approximation of the reinforcement learning domain grows exponentially with the reconstruction dimension. Parameterized dynamic systems alleviate both embedding length and state-space dimensionality concerns by reconstructing an approximate Markovian state-space via a compact, recurrent representation. Yet this representation extracts a cost; modeling reinforcement learning domains via adaptive, parameterized dynamic systems is characterized by instability, slow-convergence, and high computational or spatial training complexity. The objectives of this research are to demonstrate a stable, convergent, accurate, and scalable model of non-Markovian reinforcement learning domains. These objectives are fulfilled via fixed point analysis of the dynamics underlying the reinforcement learning domain and the Echo State Network, a class of parameterized dynamic system. Understanding models of non-Markovian reinforcement learning domains requires understanding the interactions between learning domains and their models. Fixed point analysis of the Mountain Car Problem reinforcement learning domain, for both local and nonlocal function approximations, suggests a close relationship between the locality of the approximation and the number and severity of bifurcations of the fixed point structure. This research suggests the likely cause of this relationship: reinforcement learning domains exist within a dynamic feature space in which trajectories are analogous to states. The fixed point structure maps dynamic space onto state-space. This explanation suggests two testable hypotheses. Reinforcement learning is sensitive to state-space locality because states cluster as trajectories in time rather than space. Second, models using trajectory-based features should exhibit good modeling performance and few changes in fixed point structure. Analysis of performance of lookup table, feedforward neural network, and Echo State Network (ESN) on the Mountain Car Problem reinforcement learning domain confirm these hypotheses. The ESN is a large, sparse, randomly-generated, unadapted recurrent neural network, which adapts a linear projection of the target domain onto the hidden layer. ESN modeling results on reinforcement learning domains show it achieves performance comparable to lookup table and neural network architectures on the Mountain Car Problem with minimal changes to fixed point structure. Also, the ESN achieves lookup table caliber performance when modeling Acrobot, a four-dimensional control problem, but is less successful modeling the lower dimensional Modified Mountain Car Problem. These performance discrepancies are attributed to the ESN’s excellent ability to represent complex short term dynamics, and its inability to consolidate long temporal dependencies into a static memory. Without memory consolidation, reinforcement learning domains exhibiting attractors with multiple dynamic scales are unlikely to be well-modeled via ESN. To mediate this problem, a simple ESN memory consolidation method is presented and tested for stationary dynamic systems. These results indicate the potential to improve modeling performance in reinforcement learning domains via memory consolidation

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 128, November 1980

    Get PDF
    This bibliography lists 419 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1980

    GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer

    Get PDF
    This thesis is divided into two parts:Part I: Analysis of Fruits, Vegetables, Cheese and Fish based on Image Processing using Computer Vision and Deep Learning: A Review. It consists of a comprehensive review of image processing, computer vision and deep learning techniques applied to carry out analysis of fruits, vegetables, cheese and fish.This part also serves as a literature review for Part II.Part II: GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer. This part introduces to an end-to-end deep neural network architecture that can predict the degree of acceptability by the consumer for a guava based on sensory evaluation

    Intelligent Feature Extraction, Data Fusion and Detection of Concrete Bridge Cracks: Current Development and Challenges

    Full text link
    As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.Comment: Published at Intelligence & Robotics; Its copyright belongs to author

    Machine Learning Methods for Rapid Inspection of Automated Fiber Placement Manufactured Composite Structures

    Get PDF
    The advanced manufacturing capabilities provided through the automated fiber placement (AFP) system has allowed for faster layup time and more consistent production across a number of different geometries. This contributes to the modern production of large composite structures and the widespread adaptation of composites in industry in general and aerospace in particular. However, the automation introduced in this process increases the difficulty of quality assurance efforts and inspection. The AFP process can induce a number of manufacturing defects including wrinkles, twists, gaps, and overlaps. The manual identification of these defects is often laborious and requires a measure of expert knowledge. A software package for the assistance of the inspection process has been used in conjunction with automated inspection hardware for the automated inspection, identification, and characterization of AFP manufacturing defects. Image analysis algorithms were developed and demonstrated on a number of defect types. Defects are identified in scan images and exact size and shape characteristics are extracted for export

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications
    • …
    corecore