2 research outputs found

    CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters

    Get PDF
    The airflow in dairy barns is affected by many factors, such as the barn's geometry, weather conditions, configurations of the openings, cows acting as heat sources, flow obstacles, etc. Computational fluids dynamics (CFD) has the advantages of providing detailed airflow information and allowing fully-controlled boundary conditions, and therefore is widely used in livestock building research. However, due to the limited computing power, numerous animals are difficult to be designed in detail. Consequently, there is the need to develop and use smart numerical models in order to reduce the computing power needed while at the same time keeping a comparable level of accuracy. In this work the porous medium modeling is considered to solve this problem using Ansys Fluent. A comparison between an animal occupied zone (AOZ) filled with randomly arranged 22 simplified cows' geometry model (CM) and the porous medium model (PMM) of it, was made. Anisotropic behavior of the PMM was implemented in the porous modeling to account for turbulence influences. The velocity at the inlet of the domain has been varied from 0.1 m s(-1) to 3 in s(-1) and the temperature difference between the animals and the incoming air was set at 20 K. Leading to Richardson numbers Ri corresponding to the three types of heat transfer convection, i.e. natural, mixed and forced convection. It has been found that the difference between two models (the cow geometry model and the PMM) was around 2% for the pressure drop and less than 6% for the convective heat transfer. Further the usefulness of parametrized PMM with a velocity adaptive pressure drop and heat transfer coefficient is shown by velocity field validation of an on-farm measurement

    Assessment of porous media instead of slatted floor for modelling the airflow and ammonia emission in the pit headspace

    No full text
    In order to reduce the emission, proper understanding of the transportation behaviour of gaseous ammonia inside the slurry pit is required. Numerical simulation by the aid of computational fluid dynamics (CFD) technique can be used for this purpose. However, direct modelling of slatted floors is complicated and may be replaced by the porous media model (PMM) as shown in earlier studies. The objective of our study is to improve the quality of simulation results by PMM, and to assess the effects of air velocity above the slatted floor (as affected by wind), pit headspace height (as affected by amount of slurry in the pit) and sidewall height (as affected by the dairy house sidewall) on the airflow features inside the pit and ammonia emission from the pit. Three different CFD models of a slatted floor were developed to evaluate whether porous media is capable to represent a slatted floor for modelling the airflow inside and ammonia emission from the slurry pit, and to study the effect of turbulence treatment in the porous media on the modelling results: a slatted floor model (SFM) which models the slatted floor as it is, a turbulent porous media model (PMM-T) and a laminar porous media model (PMM-L). Both PMM-T and PMM-L represent the slatted floor by porous media, the PMM-T assumes turbulent airflow and the PMM-L assumes laminar airflow in the porous media. The SFM was verified for a dataset acquired from a 1:8 scale wind tunnel model of the slurry pit. Results showed that the PMM (PMM-T and PMM-L) were able to predict both the airflow features inside the slurry pit and the ammonia emission from the slurry pit if the resistance parameters and flow regime of the porous media were properly set. In comparison to the SFM, the PMM-T predicted the flow pattern better, but overestimated the turbulence intensity and the consequent emission rate. PMM-L performed better in predicting the ammonia emission rate because of the relatively accurate prediction of turbulence intensity. Simulation results also showed that the ammonia emission rate increased with a higher mean airflow velocity, a smaller headspace height and the presence of sidewalls.</p
    corecore