1,098 research outputs found

    Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint

    Get PDF
    In this article, we investigate the profitability of remanufacturing option when the manufactured and remanufactured products are segmented to different markets and the production capacity is finite. It is assumed that remanufactured products can be substituted by the manufactured ones. A single period profit model under substitution is constructed to investigate the system conditions under which remanufacturing is profitable. We present analytical findings and computational results to show profitability of remanufacturing option under substitution policy subject to a capacity constraint of the joint manufacturing/remanufactruing facility

    Disposition Choices Based on Energy Footprints instead of Recovery Quota

    Get PDF
    This paper addresses the impact of disposition choices on the energy use of closed-loop supply chains. In a life cycle perspective, energy used in the forward chain which is locked up in the product is recaptured in recovery. High quality recovery replaces virgin production and thereby saves energy. This so called substitution effect is often ignored. Governments worldwide implement Extended Producer Responsibility (EPR). Policies are based on recovery quota and not effective from an energy point of view. This in turn leads to unnecessary emissions of amongst others CO2. This research evaluates current EPR policies and presents six policy alternatives from an energy standpoint. The Pareto-frontier model used is generic and can be applied to other closed loops supply chains under EPR, exploiting the substitution effect. The measures modeled are applied to five WEEE cases. We discuss results, pros an cons of various alternatives and complementary measures that might be taken.extended producer responsibility;disposition;energy perspective;substitution effect;government policies;Pareto efficiency

    A Perspective on Remanufacturing Business: Issues and Opportunities

    Get PDF
    The purpose of this section, then, is to dissect the business of remanufacturing in order to highlight their strengths and weaknesses, its opportunities and its dangers. In the forth section we sum up some results of this study and future possible developments

    Integration of resource efficiency and waste management criteria in European product policies – Second phase. Report n° 1. Analysis of Durability

    Get PDF
    The present report aims at: 1) identifying key issues concerning the durability of products; 2) analysing methods and standards for the assessment of durability; 3) identifying potential product’s policy criteria for durability. The report is subdivided in 3 Chapters: Chapter 1 analyses scientific publications and standards to identify potential methods for the assessment of the durability of products. Also potential approaches to extend the operating time of products have been illustrated. Chapter 2 applies the method for the environmental assessment of durability to two exemplary washing machines. Chapter 3 illustrates hot spots for durability of washing machines, meaning those key components/parts that are functionally critical for the lifetime of the product. The analysis has been based on researches published in scientific literature and feedback from stakeholders. Potential environmental benefits for the washing machine product group due to extension of product’s lifetime have been also estimatedJRC.H.8-Sustainability Assessmen

    Remanufacturing as a potential means of attaining sustainable industrial development in Indonesia

    Get PDF
    Remanufacturing industries account for a considerable share of small medium enterprises (SMEs) in both developed and developing countries. There is an urgent need for a sustainable manufacturing strategy for remanufacturing SMEs in developing countries in order for them to gain global market competitiveness through minimizing environmental impact while maximizing the economic and social benefits of SME manufacturing activities. This research uses Indonesian remanufacturing SMEs as a case study for sustainable manufacturing in developing countries

    Environmental and economic assessments of electric vehicle battery end-of-life business models

    Get PDF
    Paper I is excluded from the dissertation until it is published.The number of electric vehicles is rapidly and continuously increasing due to the transport sector’s electrification to reduce emissions such as greenhouse gases. Each electric vehicle is powered by a battery that can contain remaining capacity after first use and several potentially valuable materials. The demand for energy storage systems accelerates the need for these batteries. Considering the upcoming volumes of used electric vehicle batteries, a circular economy for batteries is crucial to enhance environmental and economic sustainability. Circular economy business models aim to strategically reduce the use of resources by closing, narrowing, and slowing material loops, enabling economically and environmentally sustainable business. However, the potential environmental benefits of such circular economy efforts are not explicit. The aim of this work is to provide recommendations for global economic and environmental sustainability of used electric vehicles batteries by considering a circular economy. This objective requires an interdisciplinary approach, building on existing research fields and methods within business and engineering sciences. This interdisciplinary approach prevents problem shifting between environmental and economic sustainability performance of the circular business models identified and assessed. In order to address the main thesis aim, four research questions were developed, and four corresponding publications were produced as a result. Paper I explores market opportunities and limitations for used electric vehicle batteries in Norway, a country with a high market share of electric cars in new car sales. The work qualitatively models the used electric vehicle batteries business ecosystem based on interviews with the industrial ecosystem actors. The globally relevant findings from paper I identify realistic end-of-life alternatives for paper II. Paper II identifies and discusses the globally recommended circular business model to enhance a circular economy for batteries from electric vehicles. The Delphi panel viii method enables a battery expert panel to elaborate on a suitable circular business model for the upcoming volumes of used electric vehicle batteries. Paper III assesses the identified circular business model from paper II to discuss how such a business model can be economically viable and realistic. The techno-economic assessment considers multiple scenarios to detect economic factors for circular business model success. Paper IV assesses the identified circular business models from paper II to discuss how such a business model can benefit the climate and natural environment. Life cycle assessment methodology can calculate the environmental impacts of decisions between business models. Life cycle assessment can detect problems shifting between ecological impact categories, such as greenhouse gas emissions and contamination of the natural environment. The research reveals that repurposing electric vehicle batteries in appropriate second-life applications can reduce their environmental impact and extend their useful lifespan. Eventually, the materials must be recycled to the extent possible. This circular business model’s key environmental benefit is the potential reduction in the demand for new batteries, which could help displace primary production and avoid emissions and other environmental impacts from these industrial processes. However, there is a risk this circular business model may be economically unviable. Several factors must be considered and combined to improve profitability and realistic commercial operations, including the state of health, ageing, lifetime of the battery after its first life, price of used batteries, ownership model, location, second-life application, potential grid connection, and electricity profile of the battery system.publishedVersio
    • 

    corecore