6 research outputs found

    On the use of rapid-scan, low point density terrestrial laser scanning (TLS) for structural assessment of complex forest environments

    Get PDF
    Forests fulfill an important role in natural ecosystems, e.g., they provide food, fiber, habitat, and biodiversity, all of which contribute to stable ecosystems. Assessing and modeling the structure and characteristics in forests can lead to a better understanding and management of these resources. Traditional methods for collecting forest traits, known as “forest inventory”, is achieved using rough proxies, such as stem diameter, tree height, and foliar coverage; such parameters are limited in their ability to capture fine-scale structural variation in forest environments. It is in this context that terrestrial laser scanning (TLS) has come to the fore as a tool for addressing the limitations of traditional forest structure evaluation methods. However, there is a need for improving TLS data processing methods. In this work, we developed algorithms to assess the structure of complex forest environments – defined by their stem density, intricate root and stem structures, uneven-aged nature, and variable understory - using data collected by a low-cost, portable TLS system, the Compact Biomass Lidar (CBL). The objectives of this work are listed as follow: 1. Assess the utility of terrestrial lidar scanning (TLS) to accurately map elevation changes (sediment accretion rates) in mangrove forest; 2. Evaluate forest structural attributes, e.g., stems and roots, in complex forest environments toward biophysical characterization of such forests; and 3. Assess canopy-level structural traits (leaf area index; leaf area density) in complex forest environments to estimate biomass in rapidly changing environments. The low-cost system used in this research provides lower-resolution data, in terms of scan angular resolution and resulting point density, when compared to higher-cost commercial systems. As a result, the algorithms developed for evaluating the data collected by such systems should be robust to issues caused by low-resolution 3D point cloud data. The data used in various parts of this work were collected from three mangrove forests on the western Pacific island of Pohnpei in the Federated States of Micronesia, as well as tropical forests in Hawai’i, USA. Mangrove forests underscore the economy of this region, where more than half of the annual household income is derived from these forests. However, these mangrove forests are endangered by sea level rise, which necessitates an evaluation of the resilience of mangrove forests to climate change in order to better protect and manage these ecosystems. This includes the preservation of positive sediment accretion rates, and stimulating the process of root growth, sedimentation, and peat development, all of which are influenced by the forest floor elevation, relative to sea level. Currently, accretion rates are measured using surface elevation tables (SETs), which are posts permanently placed in mangrove sediments. The forest floor is measured annually with respect to the height of the SETs to evaluate changes in elevation (Cahoon et al. 2002). In this work, we evaluated the ability of the CBL system for measuring such elevation changes, to address objective #1. Digital Elevation Models (DEMs) were produced for plots, based on the point cloud resulted from co-registering eight scans, spaced 45 degree, per plot. DEMs are refined and produced using Cloth Simulation Filtering (CSF) and kriging interpolation. CSF was used because it minimizes the user input parameters, and kriging was chosen for this study due its consideration of the overall spatial arrangement of the points using semivariogram analysis, which results in a more robust model. The average consistency of the TLS-derived elevation change was 72%, with and RMSE value of 1.36 mm. However, what truly makes the TLS method more tenable, is the lower standard error (SE) values when compared to manual methods (10-70x lower). In order to achieve our second objective, we assessed structural characteristics of the above-mentioned mangrove forest and also for tropical forests in Hawaii, collected with the same CBL scanner. The same eight scans per plot (20 plots) were co-registered using pairwise registration and the Iterative Closest Point (ICP). We then removed the higher canopy using a normal change rate assessment algorithm. We used a combination of geometric classification techniques, based on the angular orientation of the planes fitted to points (facets), and machine learning 3D segmentation algorithms to detect tree stems and above-ground roots. Mangrove forests are complex forest environments, containing above-ground root mass, which can create confusion for both ground detection and structural assessment algorithms. As a result, we needed to train a supporting classifier on the roots to detect which root lidar returns were classified as stems. The accuracy and precision values for this classifier were assessed via manual investigation of the classification results in all 20 plots. The accuracy and precision for stem classification were found to be 82% and 77%, respectively. The same values for root detection were 76% and 68%, respectively. We simulated the stems using alpha shapes in order to assess their volume in the final step. The consistency of the volume evaluation was found to be 85%. This was obtained by comparing the mean stem volume (m3/ha) from field data and the TLS data in each plot. The reported accuracy is the average value for all 20 plots. Additionally, we compared the diameter-at-breast-height (DBH), recorded in the field, with the TLS-derived DBH to obtain a direct measure of the precision of our stem models. DBH evaluation resulted in an accuracy of 74% and RMSE equaled 7.52 cm. This approach can be used for automatic stem detection and structural assessment in a complex forest environment, and could contribute to biomass assessment in these rapidly changing environments. These stem and root structural assessment efforts were complemented by efforts to estimate canopy-level structural attributes of the tropical Hawai’i forest environment; we specifically estimated the leaf area index (LAI), by implementing a density-based approach. 242 scans were collected using the portable low-cost TLS (CBL), in a Hawaii Volcano National Park (HAVO) flux tower site. LAI was measured for all the plots in the site, using an AccuPAR LP-80 Instrument. The first step in this work involved detection of the higher canopy, using normal change rate assessment. After segmenting the higher canopy from the lidar point clouds, we needed to measure Leaf Area Density (LAD), using a voxel-based approach. We divided the canopy point cloud into five layers in the Z direction, after which each of these five layers were divided into voxels in the X direction. The sizes of these voxels were constrained based on interquartile analysis and the number of points in each voxel. We hypothesized that the power returned to the lidar system from woody materials, like branches, exceeds that from leaves, due to the liquid water absorption of the leaves and higher reflectivity for woody material at the 905 nm lidar wavelength. We evaluated leafy and woody materials using images from projected point clouds and determined the density of these regions to support our hypothesis. The density of points in a 3D grid size of 0.1 m, which was determined by investigating the size of the branches in the lower portion of the higher canopy, was calculated in each of the voxels. Note that “density” in this work is defined as the total number of points per grid cell, divided by the volume of that cell. Subsequently, we fitted a kernel density estimator to these values. The threshold was set based on half of the area under the curve in each of the distributions. The grid cells with a density below the threshold were labeled as leaves, while those cells with a density above the threshold were set as non-leaves. We then modeled the LAI using the point densities derived from TLS point clouds, achieving a R2 value of 0.88. We also estimated the LAI directly from lidar data by using the point densities and calculating leaf area density (LAD), which is defined as the total one-sided leaf area per unit volume. LAI can be obtained as the sum of the LAD values in all the voxels. The accuracy of LAI estimation was found to be 90%. Since the LAI values cannot be considered spatially independent throughout all the plots in this site, we performed a semivariogram analysis on the field-measured LAI data. This analysis showed that the LAI values can be assumed to be independent in plots that are at least 30 m apart. As a result, we divided the data into six subsets, where each of the plots were 30 meter spaced for each subset. LAI model R2 values for these subsets ranged between 0.84 - 0.96. The results bode well for using this method for automatic estimation of LAI values in complex forest environments, using a low-cost, low point density, rapid-scan TLS

    The use of Unmanned Aerial Vehicle based photogrammetric point cloud data for winter wheat intra-field variable retrieval and yield estimation in Southwestern Ontario

    Get PDF
    Precision agriculture uses high spatial and temporal resolution soil and crop information to control the crop intra-field variability to achieve optimal economic benefit and environmental resources sustainable development. As a new imagery collection platform between airborne and ground measurements, Unmanned Aerial Vehicle (UAV) is used to collect high spatial resolution images at a user selected period for precision agriculture. Most studies extract crop parameters from the UAV-based orthomosaic imagery using spectral methods derived from the satellite and airborne based remote sensing. The new dataset, photogrammetric point cloud data (PCD), generated from the Structure from Motion (SfM) methods using the UAV-based images contains the feature’s structural information, which has not been fully utilized to extract crop’s biophysical information. This thesis explores the potential for the applications of the UAV-based photogrammetric PCD in crop biophysical variable retrieval and in final biomass and yield estimation. First, a new moving cuboid filter is applied to the voxel of UAV-based photogrammetric PCD of winter wheat to eliminate noise points, and the crop height is calculated from the highest and lowest points in each voxel. The results show that the winter wheat height can be estimated from the UAV-based photogrammetric PCD directly with high accuracy. Secondly, a new Simulated Observation of Point Cloud (SOPC) method was designed to obtain the 3D spatial distribution of vegetation and bare ground points and calculate the gap fraction and effective leaf area index (LAIe). It reveals that the ground-based crop biophysical methods are possible to be adopted by the PCD to retrieve LAIe without ground measurements. Finally, the SOPC method derived LAIe maps were applied to the Simple Algorithm for Yield estimation (SAFY) to generate the sub-field biomass and yield maps. The pixel-based biomass and yield maps were generated in this study revealed clearly the intra-field yield variation. This framework using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost alternative for final yield estimation at the sub-field scale. The results of this thesis show that the UAV-based photogrammetric PCD is an alternative source of data in crop monitoring for precision agriculture

    Three dimensional estimation of vegetation moisture content using dual-wavelength terrestrial laser scanning

    Get PDF
    PhD ThesisLeaf Equivalent Water Thickness (EWT) is a water status metric widely used in vegetation health monitoring. Optical Remote Sensing (RS) data, spaceborne and airborne, can be used to estimate canopy EWT at landscape level, but cannot provide information about EWT vertical heterogeneity, or estimate EWT predawn. Dual-wavelength Terrestrial Laser Scanning (TLS) can overcome these limitations, as TLS intensity data, following radiometric corrections, can be used to estimate EWT in three dimensions (3D). In this study, a Normalized Difference Index (NDI) of 808 nm wavelength, utilized in the Leica P20 TLS instrument, and 1550 nm wavelength, employed in the Leica P40 and P50 TLS systems, was used to produce 3D EWT estimates at canopy level. Intensity correction models were developed, and NDI was found to be able to minimize the incidence angle and leaf internal structure effects. Multiple data collection campaigns were carried out. An indoors dry-down experiment revealed a strong correlation between NDI and EWT at leaf level. At canopy level, 3D EWT estimates were generated with a relative error of 3 %. The method was transferred to a mixed-species broadleaf forest plot and 3D EWT estimates were generated with relative errors < 7 % across four different species. Next, EWT was estimated in six short-rotation willow plots during leaf senescence with relative errors < 8 %. Furthermore, a broadleaf mixed-species urban tree plot was scanned during and two months after a heatwave, and EWT temporal changes were successfully detected. Relative error in EWT estimates was 6 % across four tree species. The last step in this research was to study the effects of EWT vertical heterogeneity on forest plot reflectance. Two virtual forest plots were reconstructed in the Discrete Anisotropic Radiative Transfer (DART) model. 3D EWT estimates from TLS were utilized in the model and Sentinel-2A bands were simulated. The simulations revealed that the top four to five metres of canopy dominated the plot reflectance. The satellite sensor was not able to detect severe water stress that started in the lower canopy layers. This study showed the potential of using dual-wavelength TLS to provide important insights into the EWT distribution within the canopy, by mapping the EWT at canopy level in 3D. EWT was found to vary vertically within the canopy, with EWT and Leaf Mass per Area (LMA) being highly correlated, suggesting that sun leaves were able to hold more moisture than shade leaves. The EWT vertical profiles varied between species, and trees reacted in different ways during drought conditions, losing moisture from different canopy layers. The proposed method can provide time series of the change in EWT at very high spatial and temporal resolutions, as TLS instruments are active sensors, independent of the solar illumination. It also has the potential to provide EWT estimates at the landscape level, if coupled with automatic tree ii segmentation and leaf-wood separation techniques, and thus filling the gaps in the time series produced from satellite data. In addition, the technique can potentially allow the characterisation of whole-tree leaf water status and total water content, by combining the EWT estimates with Leaf Area Index (LAI) measurements, providing new insights into forest health and tree physiology.Egyptian Ministry of Higher Educatio
    corecore