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Abstract 

Precision agriculture uses high spatial and temporal resolution soil and crop information to 

control the crop intra-field variability to achieve optimal economic benefit and environmental 

resources sustainable development. As a new imagery collection platform between airborne 

and ground measurements, Unmanned Aerial Vehicle (UAV) is used to collect high spatial 

resolution images at a user selected period for precision agriculture. Most studies extract crop 

parameters from the UAV-based orthomosaic imagery using spectral methods derived from 

the satellite and airborne based remote sensing. The new dataset, photogrammetric point cloud 

data (PCD), generated from the Structure from Motion (SfM) methods using the UAV-based 

images contains the feature’s structural information, which has not been fully utilized to extract 

crop’s biophysical information. This thesis explores the potential for the applications of the 

UAV-based photogrammetric PCD in crop biophysical variable retrieval and in final biomass 

and yield estimation. 

First, a new moving cuboid filter is applied to the voxel of UAV-based photogrammetric PCD 

of winter wheat to eliminate noise points, and the crop height is calculated from the highest 

and lowest points in each voxel. The results show that the winter wheat height can be estimated 

from the UAV-based photogrammetric PCD directly with high accuracy. Secondly, a new 

Simulated Observation of Point Cloud (SOPC) method was designed to obtain the 3D spatial 

distribution of vegetation and bare ground points and calculate the gap fraction and effective 

leaf area index (LAIe). It reveals that the ground-based crop biophysical methods are possible 

to be adopted by the PCD to retrieve LAIe without ground measurements. Finally, the SOPC 

method derived LAIe maps were applied to the Simple Algorithm for Yield estimation (SAFY) 

to generate the sub-field biomass and yield maps. The pixel-based biomass and yield maps 

were generated in this study revealed clearly the intra-field yield variation. This framework 

using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost 

alternative for final yield estimation at the sub-field scale. The results of this thesis show that 

the UAV-based photogrammetric PCD is an alternative source of data in crop monitoring for 

precision agriculture.    
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Lay Summary 

Precision farming is defined as a farm management system using field and crop information to 

identify, analyze, and manage variability within fields for optimum profitability, sustainability, 

and protection of the farm field. Simply, precision farming aims to do the right management 

practices at the right location, at the right rate, and at the right time. Precision farming offers 

several benefits, including improved efficiency of field inputs, increased crop productivity or 

quality, and reduced fertilizer contamination in the environment. Conventional agricultural 

management operations in the field are based on crop walking and a limited number of sample 

measurements. As one of the most important elements in precision farming, remote sensing 

acquires information about the crop and field characteristics without making physical contact 

with the vegetation and ground surface. The remote sensing techniques help farmers to monitor 

crop and field status and provide real-time information, including crop water stress, fractional 

cover, nitrogen content monitoring, biomass, and yield estimation. Furthermore, the products 

of remote sensing in agriculture can be used by government agencies to make regional policies, 

track agriculture activities, and provide valuable guidance for farmers on aspects such as crop 

health status, inventory, and expected market value. In this thesis, the potential of the UAV 

derived 3D point cloud data was evaluated and analyzed to demonstrate this type of data could 

be used to extract crop biophysical parameters and estimate the final biomass and yield in a 

field scale. The results of this thesis reveal that the UAV-derived 3D point cloud data is an 

alternative in field-scale crop monitoring and forecasting. 
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surface. 

DHP Digital hemispherical photograph. A type of image was collected using 
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on the Earth’s surface. 

DTM Digital terrain model. DTM is simply an elevation surface of bare earth. 
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fraction of the incoming solar radiation in the photosynthetically active 
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Chapter 1  

1 Introduction 

1.1 Background 

Canadian agriculture offers over 2.3 million work opportunities within 158.7 million acres 

of farm area in 2016, rating Canada as one of the largest agricultural countries in the world. 

(Agriculture and Agri-Food Canada, 2017; Statistics Canada, 2017). As of 2016, the 

Canadian agricultural system has experienced a growth of more than 7% between 2012 and 

2016, which generated more than $110 billion annually, accounting for 6.7% of Canada’s 

gross of domestic product (GDP) (Agriculture and Agri-Food Canada, 2017). Agricultural 

practices in Canada raise concerns about environmental issues, such as greenhouse gas 

emissions, nutrient run-off, and fertilizer overdose (Tilman, 1999). The resulting 

environmental impacts require a sustainable solution to meet current agricultural demands 

while preserving water and land resources. Precision agriculture has developed rapidly and 

has high potential for solving conflicts between economic benefits and preserving 

environmental resources. Precision agriculture is defined as a farm management system 

that uses field and crop information to help to identify, analyze, and manage variability  

intra-fields in order to optimize economic profitability, environmental sustainability, and 

resource protection on the farm fields (Banu, 2015). Precision agriculture aims to do the 

right management practices at the right location, at the right rate, and at the right time 

(Mulla & Miao, 2018). Precision agriculture offers several benefits, including improved 

efficiency of field inputs, increased crop productivity or quality, and reduced fertilizer 

contamination in the environment (Khanal et al., 2017). Conventional agricultural 

management operations in the field are based on crop walking and a limited number of 

sample measurements. Precision agriculture requires a massive and dense amount of crop 

and soil information at the appropriate location and time, to ensure that the resulting crop 

status variability is represented in detail (Kukal & Irmak, 2018). The accurate crop 

parameter estimations with high spatial and temporal resolution play an important role in 

monitoring, analyzing, and interpreting the crop and field status in precision agriculture. 

Nowadays, precision farming uses Geographical Information System (GIS) and remote 



2 

 

sensing (RS) techniques to obtain crop and soil information and achieve many useful 

agriculture activities such as precise soil sampling, crop health monitoring, final yield 

prediction, and variable-rate fertilizer application on a field scale (meter to submeter level 

resolution). 

1.2 Satellite and airborne based remote sensing in 
agriculture 

One of the most common remote sensing systems in agriculture is satellite and manned 

airborne based optical remote sensing. It uses the spectral responses of vegetation, 

especially in the visible and near-infrared (NIR) region (400-900nm), to derive useful 

information about the physical and biological characteristics of the vegetation (John & 

Vaughan, 2010). The main features of the green vegetation spectral properties are the high 

absorption at visible wavelengths and the high reflectance at NIR wavelengths. Many 

studies achieve crop status monitoring using spectral indices from measurements at two or 

more wavelengths from widely adopted satellite and airborne based multispectral and 

hyperspectral remote sensing. Vegetation indices, such as normalized difference vegetation 

index (NDVI), green NDVI, and soil-adjusted vegetation index (SAVI) have been widely 

used to determine fractional vegetation cover and leaf area index (LAI) (Jiang et al., 2006; 

Nguy-Robertson et al., 2012; Boegh et al., 2013). In addition, hyperspectral data can 

produce narrowband spectral indices to measure leaf pigments and other vegetation 

characteristics, such as chlorophyll index (CI) and photochemical reflectance index (PRI) 

that were developed to estimate chlorophyll and xanthophyll in the leaf (Gitelson & 

Merzlyak, 1998; Daughtry, 2000; Wu et al., 2008). Although most vegetation indices are 

related to LAI or other crop characteristics, the relationship is usually non-linear. 

Furthermore, the relationship is restricted by specific areas and environmental conditions 

(John & Vaughan, 2010).  

Thermal remote sensing is another approach in the application of remote sensing in 

agriculture. It can measure the radiation emitted and reflected from the surface of the target, 

and the data are typically analyzed in the form of temperature. In agriculture, the water 

content in crops and soil could serve as a solvent of nutrients and transport nutrients 

between crops and the environment (Ehlders & Goss, 2016). Many studies have employed 
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satellite and airborne based thermal data to detect soil and crop moisture using thermal 

inertia method (Verhoef, 2004; Scheidt et al., 2010; Matsushima et al., 2012) triangle 

method (Price, 1990), and water stress index (Jackson et al., 1981). However, the satellite 

or airborne based thermal remote sensing methods are restricted in the agricultural 

application due to their low spatial and temporal resolution of thermal imagery. 

Satellite and airborne based Light Detection and Ranging (LiDAR) and Radio Detection 

and Range (Radar) remote sensing could also provide useful crop and field information in 

agriculture. These two common active remote sensing systems emit a certain wavelength 

signal and capture the echoes reflected by crop to detect the structural and physical 

information of crop canopy (Hosseini et al., 2015; Zheng et al., 2016; Liao et al., 2018). 

However, these two systems require expensive equipment to collect data and knowledge 

background to analyze data that is difficult to adopt by individual farms in crop or field 

management. 

1.3 UAV-based remote sensing in agriculture 

In the management of crop fields, precision agriculture activities require field-scale crop 

and soil monitoring to achieve long-term crop yield prediction (Courault et al., 2016). 

Besides considering plant genetic factors, plant growth is affected by many environmental 

factors. However, the variations of the regional environmental factors such as radiant 

energy, rainfall, temperature, and composition of the atmosphere are similar across a field. 

Without considering these regional factors, soil properties and plant light use efficiency 

(LUE) may be the dominant factors that restrict plant growth within the crop field. Soil 

moisture is one of the soil properties related to soil physical, chemical, and biological 

characteristics (Ribaudo et al., 2011). Crop height and LAI can be used to indicate canopy 

size and leaf structure, which are related to the LUE of the plant and the volume of biomass. 

These parameters can be obtained using remote sensing techniques, which have been 

widely applied in agricultural applications. With regards to precision agriculture, intra-field 

crop growth monitoring requires high spatial and temporal resolutions that are difficult to 

achieve using satellite and airborne remote sensing platforms due to cloud cover and cost 

restrictions. 
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Compared with low spatial or temporal resolution satellite and airborne data, Unmanned 

Aerial Vehicle (UAV)-based remote sensing has the advantage of providing high spatial 

and temporal resolution imagery for intra-field crop monitoring. A UAV has the capability 

to carry various types of sensors to achieve fine-scale crop monitoring at specific periods 

of time. UAV-based optical imagery provides a potential opportunity to fill in gaps 

between satellite or airborne based data and ground-based measurements. Currently, 

lightweight multispectral sensors have been mounted onto UAV systems to provide high-

resolution imagery satisfying both spatial and temporal aspects. Many studies have 

attempted to measure crop and soil parameters from UAV-based optical and thermal 

imagery using well-developed satellite and airborne based methods (Hunt et al., 2012; 

Coast et al., 2015). While the adoption of the methods derived from satellite and manned 

airborne platform are simple, they need a more accurate image correction process which 

increase the level of difficulty in the application of these methods. For example, vegetation 

indices derived from UAV-based multispectral imagery have been used to provide spectral 

information for crop monitoring during the growing season. The accuracy of the vegetation 

indices derived from UAV-based imagery may be influenced by several factors, such as 

shadow and illumination, in which case a radiometric calibration before and after the 

imagery collection is required to achieve accurate spectral measurements under different 

radiation conditions. The recent development of UAV systems and computer vision have 

shown that UAV-based remote sensing can generate dense 3D reconstructions to produce 

orthomosaic aerial images, Digital Surface Models (DSM), and photogrammetric 3D point 

cloud data (PCD) using Structure from Motion (SfM) approach (Carrivick et al., 2016). 

The UAV derived Digital Surface Model (DSM) on the crop surface can be used to provide 

the crop height variation within a field during the growing season (Bendig et al., 2014). 

The orthomosaic aerial images collected by UAV-based multispectral cameras can be used 

to generate vegetation indices for crop monitoring (Berni et al., 2009). However, up to date 

the 3D PCD has not been used effectively in extracting crop biophysical parameters. 

1.4 Point cloud data 

PCD is a type of data that uses millions of points to represent the objects in a three-

dimensional space or environment. The pixels in a digital image were used to represent the 
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position of the feature with two coordinates, X and Y. Correspondingly, the points in the 

PCD represent the specific position of objects with three coordinates, X, Y, and Z. PCD 

usually has accurate positional information of objects or environment, which can be used 

in 3D model reconstruction, geometry quality inspection, construction process tracking 

(Wang & Kim, 2019). PCD can be obtained from various sensors such as laser scanners 

and digital cameras. The Light Detection and Ranging (LiDAR) is a remote sensing method 

that uses a pulsed laser to measure the distance between objects and sensor to generate an 

accurate PCD to represent the shape and position of objects. Since LiDAR can penetrate 

vegetation branches and leaves and provide highly detailed information of canopy, LiDAR 

PCD can provide the vegetation canopy structure information in both horizontal and 

vertical directions. Another sensor for PCD collection is a digital camera, which used the 

photogrammetric method to reconstruct the terrain in 3D using high overlapping stereo 

images. The SfM methods was used to generate the point cloud for objects from the multi-

view stereo images. The photogrammetric point clouds were derived from the digital 

images, containing the RGB information for each point. Lidar and photogrammetric PCD 

could be used to reconstruct 3D models and represent the objects' spatial information. 

However, the PCD derived from these two types of sensors were used in different remote 

sensing methods, which results in PCD with different attributes. LiDAR PCD has accurate 

positional information, but the acquisition time and processing time should be considered 

in remote sensing applications. Although photogrammetric PCD cannot beat LiDAR PCD's 

accuracy, the low cost of acquisition makes it a more affordable solution in 3D mapping. 

1.5 Structure from Motion on crop biophysical parameter 
estimation 

Structure from Motion (SfM) is based on the innovative and mathematical models 

developed many decades ago in photogrammetry, such as triangulation and bundle 

adjustment methods (Thompson, 1965; Brown, 1976). SfM contains two major parts: 

Structure from Motion and Multi-View Stereo (MVS) (Carrivick et al., 2016). Although in 

many computer vision studies, SfM used to stand for this technique of SfM and MVS, the 

entire workflow should be named SfM-MVS, which includes the MVS algorithms used in 

the final stages to produce a useful fine scale dataset. SfM reconstructs a coarse 3D point 
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cloud model from 2D images for an object surface or a scene. MVS refines the coarse 3D 

points to a much finer resolution point cloud model. In general, SfM-MVS is a complex 

workflow that uses 2D image sets to produce 3D models. SfM-MVS can adopt a range of 

options on the imagery collection platform, from ground-based to airborne based devices. 

In crop monitoring processes that use 3D PCD derived from the SfM-MVS approaches, a 

high spatial resolution and large overlapping images are considered essential factors in 

achieving successful crop spatial variability monitoring. The UAV system is one of the 

best platforms for acquiring crop images for SfM-MVS approaches, as it provides a larger 

area coverage and lower cost when compared with ground measurements and airborne data 

collection, respectively. The automatic flight program of the UAV system can be used to 

collect imagery under consistent parameters which ensures the quality of the PCD. This 

PCD has spectral attributes based on different cameras, and the spatial information of 

targets can be used for vegetation monitoring (Dandois & Ellis, 2013). In addition, the 

photogrammetric PCD has a similar information content as LiDAR, which contains the 

structural information of crops negating the need for expensive sensors. However, the 

photogrammetric PCD cannot penetrate crop canopies and achieve multiple returns (Cao 

et al., 2019). Nevertheless, it can generate vertical points based on different view angles 

with less vertical structural information for dense crops. The SfM-MVS has been widely 

used to achieve accurate models of objects and surfaces at spatial scales ranging from 

centimeters to kilometers (Javernick et al., 2014; James et al., 2017). 

1.6 Research questions and objectives 

As the UAV has the advantage of acquiring imagery with a high spatial and temporal 

resolution, it can provide suitable data for crop status monitoring and analysis for precision 

agriculture. The UAV-based photogrammetric PCD derived from the SfM-MVS can be 

used to derive crop physical parameters such as plant height, cover area, and LAI. 

However, these parameter extractions using UAV-based photogrammetric PCD have not 

been evaluated. Therefore, this leads to the following research questions in this dissertation. 

(1) Can UAV-based photogrammetric PCD be used to retrieve crop physical 

parameters (such as height and LAI) with high accuracy and provide fine spatial and 

temporal resolution crop monitoring?  
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(2) Can UAV-based photogrammetric PCD be applied to estimate the final crop dry 

aboveground biomass (DAM) and yield with high accuracy and display the spatial 

variability? 

 The specific objectives are defined: 

(1) The photogrammetric PCD for crop field can be used to generate crop height, but 

it also produces outliers due to the misregistration on the smaller size of the leaves and 

stem, homogeneous crop canopy, and wind influence. One of the objectives in this thesis 

is to develop a noise removal method to improve plant height estimation accuracy and 

demonstrate the spatial variability in the crop growing season using UAV-based 

photogrammetric PCD. 

(2) One of the advantages of UAV-based photogrammetric PCD that it contains both 

3D spatial and spectral information. Besides the spectral information, the spatial 

information in the photogrammetric PCD can also contribute to the crop LAI estimation. 

One of the objectives is to develop a new effective LAI mapping method using the 3D 

spatial characteristics of the UAV-based photogrammetric PCD to monitor the spatial 

variability of crop LAI in the growing season. 

(3) In addition to observing and monitoring crop growth from the UAV-based 

photogrammetric PCD estimated crop biophysical parameters, these parameters should 

also be used by the crop growth models to estimate the crop final biomass and yield and 

help users to make optimal decisions in precision agriculture. This thesis’s last objective is 

to generate the final DAM and yield maps using the UAV-based photogrammetric PCD 

derived LAI estimates and crop growth model. 

1.7 Study areas 

Nearly 1 million acres of winter wheat has been seeded every year in Ontario because 

Ontario is located in the Great lakes drainage basin which had appropriate temperature and 

fertile soil that ensure the quality of winter wheat production (Ontario Ministry of 

Agriculture, 2020). This thesis focuses on the winter wheat crop monitoring parameter 

extraction and DAM or yield estimation using UAV-based photogrammetric PCD. The 



8 

 

study sites for Chapters 2, 3, and 4 are all located near Melbourne in southwest Ontario, 

Canada. This region of southwest Ontario has a single harvest per year for most crops, with 

a relatively short growing season from early April to October. The growing season for 

winter wheat starts from the previous October and continues until the end of July. In this 

region, it is not easy to obtain cloud-free satellite images. Therefore, UAV-based remote 

sensing technology is more suitable for frequent monitoring of this area. The field data 

collection includes plant height, LAI, phenology, crop DAM, and final yield during the 

winter wheat growing season. Multi-temporal UAV-based images were collected at the 

same time as the fieldwork. The study sites are shown in Figure 1-1. 
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Figure 1-1: Overview of the study sites. The study site in 2016 is used in Chapter 2. 

The study sites in 2019 are used in Chapters 3 and 4. 

1.8 Structure of the dissertation 

This dissertation is presented in an integrated-article format that contains five chapters. 

Chapter 1 introduces the research and provides a brief review of the literature on the 

research questions and the objectives of the research. In Chapter 2, I developed a noise 

removal method to improve the accuracy of winter wheat plant height estimation and 

Melbourne 
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display the spatial variability in the growing season using UAV-based photogrammetric 

PCD. In Chapter 3, I proposed a Simulated Observation of Point Cloud (SOPC) method to 

estimate LAI of winter wheat from the UAV-based photogrammetric PCD to monitor the 

spatial variability of the winter wheat LAI. In Chapter 4, I estimated the final winter wheat 

DAM and yield using the UAV-based photogrammetric PCD derived winter wheat LAI 

estimates and the SAFY semi-empirical crop growth model and generated the final winter 

wheat DAM and yield map. In Chapter 5, a summary and conclusion of this dissertation 

are given to address the research questions and objectives. A possible future research 

direction is discussed at the end. The relationship among Chapters 2, 3, and 4 are shown in 

Figure 1-2. 

 

Figure 1-2: The relationship among Chapters 2, 3, and 4.  
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Chapter 2  

2 Winter wheat canopy height extraction from Unmanned 
Aerial Vehicle (UAV)-based photogrammetric point 
cloud data with a moving cuboid filter 

2.1 Introduction 

The commercial applications of Unmanned Aerial Vehicle (UAV) systems in agriculture 

are emerging as a lucrative sector in crop forecasting (Freeman & Freeland, 2015). Many 

UAV-based applications help farmers by taking aerial images over an entire crop field, 

providing crucial data on crops and soil; these data assist farmers in crop management 

(Swain et al., 2010; Primicerio et al., 2012; Park et al., 2017). One of the most essential 

advantages of UAV applications in agriculture is that the intra-field variabilities of the 

development and health status in the crop can be monitored throughout the growing season 

with high spatial resolution images (Nebiker et al., 2008; C. Zhang & Kovacs, 2012; Lottes 

et al., 2017). Also, UAV-based high temporal resolution images can provide real-time data, 

which offers farmers the opportunity to make well-informed decisions on farming activities 

(Huang et al., 2013). Currently, several services can be available throughout the crop 

growing cycles using UAV-based remote sensing techniques, including two main 

categories: soil and field analysis and crop parameter monitoring. The applications of 

UAVs in soil and field analysis focus on field 3D mapping and assessment at the start of 

the crop season (D’Oleire-Oltmanns et al., 2012). Real-time UAV data collection provides 

a better solution for precise crop monitoring, including the crop canopy leaf area index 

(LAI), nitrogen status, water stress, and biomass (Hunt et al., 2010; Agüera et al., 2012; 

Kalisperakis et al., 2015; Hoffmann et al., 2016; Schirrmann et al., 2016; Park et al., 2017). 

The UAV-based data fill the gap in remotely sensed data between ground-based 

measurements and conventional airborne and satellite data collection (Kolejka & Plánka, 

2018). 

Crop height is an indicator of crop phenology, which can be used to predict crop biomass 

and final yield potential (Yin et al., 2011). Accurate estimation of intra-field biomass 

variability requires subfield-scale plant height estimation. Hence, accurate plant height 
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estimation at the subfield scale is desirable. One traditional approach to determine the 

height of an object via remote sensing is the photogrammetric method using a pair of stereo 

satellite images (Shaker, et al., 2011; Lagomasion et al., 2015). However, the spatial and 

temporal resolution of satellite images restricts the application of this method in frequent 

crop height determination (Li et al., 2016). Another approach is to estimate crop height 

using an airborne or ground-based LiDAR sensor (Zhang & Grift, 2012; Hoffmeister et al., 

2016). LiDAR has the advantage of high accuracy; however, the costs are prohibitively 

high, making it difficult in practice. The third approach is to use a depth camera such as 

the Microsoft Kinect to estimate crop height from a derived crop surface model (Hämmerle 

& Höfle, 2016), but the range limit of measurement restricts the mapping of the entire field 

(Dal Mutto et al., 2012). The fourth approach is manual measurement in the field, which 

requires a heavy workload and time consumption. 

The recent development in UAV systems and computer vision has enabled the UAV-based 

remote sensing generation of dense 3D reconstructions to produce orthomosaics, digital 

surface model (DSM), and 3D point clouds using the Structure from Motion (SfM) 

approach (Ryan et al., 2015; Smith et al., 2015; Carrivick, et al., 2016; Mlambo et al., 

2017). SfM is a computer vision technique that incorporates multi-view stereo images to 

match features, derive 3D structure, and estimate camera position and orientation (Harwin 

& Lucieer, 2012). The 3D point clouds derived from UAV-based images are a set of 3D 

data points that contains the spatial information of features and have a similar information 

content to LiDAR data (Smith et al., 2015; Mlambo et al., 2017). Many studies have 

estimated crop canopy height and biomass from UAV-based images using the SfM 

approach (Grenzdörffer, 2014; Khanna et al., 2015; Westoby et al., 2012; Anthony et al., 

2014; Bendig et al., 2014; Ota et al., 2015; Brocks et al., 2016; Gil-Docampo et al., 2019).  

Bendig et al. (Bendig et al., 2014) presented a method that used multiple crop surface 

models (CSMs) derived from UAV-based imagery and the SfM technique to estimate crop 

canopy height throughout the crop growing season. The canopy height was determined by 

measuring the difference between the CSMs and the digital terrain model (DTM). By using 

this CSMs method, many studies estimated crop height from UAV digital images (Birdal 

et al., 2017; Chang et al., 2017; Chu et al., 2018). The advantages of this method are its 
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accuracy and reliability for the entire crop growing season. However, the accuracy of the 

crop surface models and ground surface model are strongly related to the absolute accuracy 

of the 3D photogrammetric point cloud data (PCD), which is dependent on the number of 

images, the accuracy of the camera exterior and interior orientation, and accurate 

measurement of the ground control points. This method could achieve absolute accuracy 

of 15-30 mm with a Real-Time Kinematic (RTK)-Global Navigation Satellite System 

(GNSS). The labor-intensive measurements of control point positions using high-accuracy 

RTK-GNSS make this method difficult to operate in practice.  

Generally, the image-based multi-view stereo SfM method can also produce many noisy 

points due to imperfect images, inaccurate triangulation, matching uncertainty, and non-

diffuse surface (Wolff et al., 2016). Some studies attempted to apply outlier removal 

methods for LiDAR PCD to UAV-based photogrammetric PCD (Chen et al., 2018; Yilmaz 

et al., 2017). Since the UAV-based photogrammetric PCD are not able to penetrate dense 

vegetation canopy, the LiDAR filtering methods may not be applicable to remove the noise 

in the UAV-based point cloud (Zeybek & Şanlıoğlu, 2019). Moreover, the structure of a 

plant canopy is complicated. The different crop row distances, the crop height variability, 

and smaller size of the leaves and stems may be some of the causes that produce many 

outliers during the generation of point cloud datasets. In addition, the wind may induce 

motion of plants, affect image matching accuracy, and induces noise in point cloud 

generation. Due to the leaf and branch movement through the wind, the point 

misregistration could affect crop point cloud positional accuracy (Christian Rose et al., 

2015; Fraser et al., 2016; Zainuddin et al., 2016). Khanna et al. (Khanna et al., 2015) 

presented a canopy height estimation method for the early stage of winter wheat using 3D 

point cloud statistics analysis. A fixed threshold was applied to remove the top 1% of 

vegetation points which were considered as outliers in this study. Shin et al. (Shin et al., 

2018) estimated the forest canopy height from UAV-based multispectral images and SfM 

PCD. A fixed height threshold (4 m) was adopted by Shin et al. in their outlier removal 

method to clean the outliers on the top of the forest canopy. Although the fixed threshold 

is simple to apply in outlier removal for UAV-based photogrammetric PCD, the selection 

of threshold is influenced by the type and size of objects in the study area which may 

produce unstable accuracy after filtering. Therefore, in order to provide accurate canopy 
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height estimation, a specific outlier filter needs to be developed to eliminate noise points 

in the UAV-based photogrammetric PCD.  

The objective of this study is to estimate winter wheat canopy height using one set of 

photogrammetric PCD. A moving cuboid filter was developed and used to eliminate noise, 

as well as estimate canopy height of winter wheat at different growth stages. First, the PCD 

is divided into many 3D columns. Secondly, a moving cuboid filter is applied in each 

column and moved downward to eliminate noise points. The threshold of point numbers in 

the filter is calculated based on the distribution of points in the column. Finally, the single 

3D column is divided into 16 sub-columns, then the highest and lowest points in all sub-

columns are extracted and used to calculate the average canopy height in one single 3D 

column. 

2.2 Materials and Methods 

2.2.1 Site description and ground-based data collection 

The study site is a winter wheat field located near Melbourne in southwest Ontario, Canada. 

It is shown as a red point in Figure 2-1a. This region of southwest Ontario has a single 

harvest per year for crops, with a relatively short growing season from early April to 

October. The growing season for winter wheat starts from the previous October and 

continues until the end of June. In the study site, a 50 m by 50 m area was used to collect 

ground-based crop height measurements and UAV-based imagery. The winter wheat was 

planted in October 2015, and the row spacing was 18-20 cm. Fifteen sampling points were 

selected in the study area and are shown as black square points in Figure 2-1c. The samples 

were collected along the row of winter wheat which could minimize the damage to crops. 

The ground-based crop height measurements were conducted at each sampling point, and 

the UAV flight was performed directly after the ground-based measurements. At each 

sampling point, three crop height measurements were collected within a 2-meter area, and 

the average height was used to represent the canopy height in this study. In addition, 23 

ground control points (GCPs) were set up in the field using white and black target boards 

for the entire growing season. The points were used as tie points for the images and multi-

temporal UAV-based photogrammetric point cloud datasets during the point cloud 
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generation in UAV images processing software to increase the relative accuracy of the 

dataset. They are shown as blue points in Figure 2-1b. 

 

Figure 2-1: Study area and sampling points in the field. a) The study area in 

southwestern Ontario, Canada. b) The aerial image for study site. c) The sampling 

points in the study area. The blue points are the ground control points, and the 

black squares are ground-measured sampling points. 

(a) 

(b) 

(c) 

Melbourne 
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2.2.2 Remote sensing data acquisition and preprocessing 

Multitemporal UAV-based imagery was collected using a DJI Phantom 3 UAV system 

with a high-resolution digital red, green, and blue (RGB) camera (DJI Technology Co., 

Ltd, Shenzhen, China). The multitemporal 3D point cloud datasets were generated from 

UAV-based imagery using Pix4Dmapper Pro (Pix4D) v2.4 (Pix4D SA, Lausanne, 

Switzerland) (Pix4D, 2014). The output of the UAV-based 3D point cloud dataset has a 

similar format to LiDAR data but has a lower cost. Three UAV acquisitions at different 

crop growth stages were carried out on the winter wheat field on May 16, May 31, and 

June 9, 2016. The phenology of winter wheat measured by a framework of crop 

development scale, Biologische Bundesanstalt, Bundessortenamt und CHemische 

Industrie (BBCH) scale. The phenology measurements are BBCH 31, BBCH 65, and 

BBCH 83, which are early, middle, and late stages, respectively (Meier, 2001). These 

phenological stages were chosen for this study to evaluate the method using different crop 

heights.  

All UAV images in this study were captured in the nadir position. The flight height was 30 

m above the ground, and the overlapping of all images was 90% on all sides to help the 

point cloud generation. The spatial resolution for all three aerial images is 1.5 cm. The 

UAV flight dates, number of images, points in the dataset, point density, average ground 

measurements, and crop phenology are listed in Table 2-1. The images were processed 

using Pix4D software to generate orthomosaic aerial images and 3D point cloud datasets. 

The ground control points were used in the processing of the orthomosaic aerial images 

and point cloud generation in Pix4D. The preprocessing of the output PCD, including data 

clipping and data format conversion, was conducted in C++ with the point cloud library. 

The orthomosaic images and the elevation of corresponding point cloud datasets in 

perspective view are shown in Figure 2-2. 
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Table 2-1: Un manned Aerial Vehicle (UAV) flight dates, number of images, points 

in the dataset, point density, average ground measurements, and winter wheat 

growth phenology. 

Flight Date 
Number 

of images 

Points in 

the dataset 
Point density 

Measured 

average height 

of winter wheat 

Growth stage 

16-May-16 171 25443758 5933 pts/m2 42.3 cm 

Stem 

Extension 

(BBCH 31) 

31-May-16 235 19543425 4557 pts/m2 73.7 cm 
Heading 

(BBCH 65) 

9-Jun-16 226 14935952 3483 pts/m2 74.9 cm 
Ripening 

(BBCH 83) 

 

 

 

(a) (b) 
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(c) (d) 

 

(e) (f) 

Figure 2-2: 2D UAV orthomosaic images for the study area during three growth 

stages, a) May 16, c) May 31, e) June 9; 3D Point cloud dataset for the black 

boundary area in perspective view, b) May 16, d) May 31, f) June 9. The color 

scheme bar showed the elevation (above sea level) of the point cloud dataset. 
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2.2.3 Data analysis 

2.2.3.1 UAV-based point cloud distribution over crop fields 

We divided the point cloud dataset into many 3D square cross-section columns with a 

ground area of 2 m by 2 m, as shown in Figure 2-3. After dividing the point cloud dataset 

into many 3D columns, the Otsu’s method was used to classify the points within each 

column into two groups; one was bare ground points, and one was plant points (Nobuyuki, 

1979). The UAV-based photogrammetric PCD for crop fields at different stages provided 

different distribution histograms in each column. At different growth stages of winter 

wheat in this study, the histogram can be divided into seven classes that represent different 

crop phenology stages, as shown in Figure 2-4. 

 

Figure 2-3: Individual 3D square cross-section column within the point cloud 

dataset. 
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(g) 

Figure 2-4: Histograms of the point distribution of a typical 3D column in the crop 

field at different crop growth stages. The distribution of overall points, bare ground 

points, and plant points are represented by black, brown, and green bars. X-axis is 

the elevation of points and Y-axis is the frequency of points. a) The histogram of 

points distribution for bare ground points in October 2015. b) and c) The histogram 

of points distribution in the early growth stage of winter wheat (BBCH ≈ 31) on 

May 16, 2016. d) and e) The histogram of points distribution in the middle growth 

stage of winter wheat (BBCH ≈ 65) on May 31, 2016. f) and g) The histogram of 

points distribution in the late growth stage of winter wheat (BBCH ≈ 83) on June 9, 

2016. 

In Figure 2-4, the brown bars represent the histogram of the bare ground points, and the 

green bars represent the histogram of the plant points in each column. Before crop 

emergence, the points in each column are contributed by the bare ground (Figure 2-4a). 

The distribution of bare ground points showed that the estimated elevations of bare ground 

points have a variation of about 20 cm. This variation may be caused by the 

homogenization of the surface, which resulted in an inaccurate estimation of point position 

during the generation of the point cloud. After crop emergence, a plant point histogram 

appears but shows the same range of elevation as the bare ground points (Figure 2-4b and 

2-4c). As the crop grows, the histogram of plant points separates into two peaks, one made 
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by points at the plant bottom; one made by points at the canopy top. As the crop continues 

to grow taller, the number of points contributed by a crop will gradually increase, then the 

two peaks also become more apparent, and the distance between them increases (Figure 2-

4d and 2-4e). The overall histogram has two general peaks. The number of bare ground 

points decreases. With crop growth, the number of crop points will increase until the crop 

has a full canopy, and the first peak made by plant and bare ground points will gradually 

disappear in the histogram (Figure 2-4e to 2-4f). Finally, the histogram has only one peak, 

which is contributed by the crop canopy points (Figure 2-4g). 

2.2.3.2 The moving cuboid filter 

The 3D point cloud dataset was first divided into many 2 m by 2 m 3D columns. These 

grid dimensions provided enough variability for intra-field monitoring in the crop field 

since the data collection resolution is 3 meters for most farmers in our study area. The 

moving cuboid filter was applied in each column that satisfied two criteria at the same time: 

1) close to the point cloud dataset within a specific vertical distance; 2) have enough 

neighboring points within a certain 3D cuboid.  

The moving cuboid filter is shown in Figure 2-5. First, the 3D column (blue cuboid) which 

is one voxel in the entire PCD is divided into many same thickness slices (1cm thick). 

Similar with the concept of pixel that defines a point in two-dimensional space with x and 

y coordinates, the voxel is the basic unit of a point in three-dimensional space with x, y, 

and z coordinates. A moving orange cuboid filter includes five slices which moves down 

from the top of the column to the bottom in the z-direction, with a step of one slice. If the 

number of points in the moving cuboid filter is less than the threshold, all points within the 

cuboid filter are labeled as potential outliers. The cuboid filter contains five slices, and it 

moves down one slice in each step, so each point is labeled five times. Any point that has 

been labeled as a potential outlier more than half of the number of slices in the cuboid filter 

is considered an outlier and is trimmed from the column because the point is far from the 

point cloud datasets and has fewer neighboring points. In this study, the size of the moving 

cuboid filter was 2 m × 2 m × 5 cm and the moving step was 1 cm. The flow chart of the 

outlier filter is shown in Figure 2-6. 
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Figure 2-5: The principle of the moving cuboid filter in a single column. The orange 

cuboid is the moving cuboid filter. It starts from Step 1 and moves down one slice in 

Step 2. 𝒊 is the number of steps in the 3D column, and Step 𝒋 is the final step. 
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Figure 2-6: Flow chart of the moving cuboid filter. 
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After eliminating the outliers using this moving cuboid filter and thresholds, the clean 

single 3D column will be divided into many sub-columns at the size of 0.5 m by 0.5 m. 

Since the size of the 3D column is 2 m by 2 m, the number of sub-columns is 16 in each 

column. After dividing the 3D column into sub-columns, the highest and lowest points in 

each sub-column will be used to calculate the height of wheat canopy height. Then, all 16 

sub-columns heights will be used to calculate the average canopy height for one single 3D 

column to avoid the appearance of extreme results and make the height estimation more 

reliable. 

2.2.3.3 Threshold determination  

The total number and the distribution of the points in a 3D column will affect the number 

of points in the cuboid filter at each step 𝑖 during the downward movement of the cuboid 

filter. The threshold 𝑇 of the moving cuboid filter is the ratio of the number of points at 

each step 𝑖 and the total number of points 𝑁 in the 3D column. This ratio ensures the 

threshold 𝑇 will not change with the variation of the total number of points 𝑁 in the 3D 

column and is affected by the point cloud distribution only. 

According to Figure 2-4, the number of peaks will classify the histogram into two 

categories, one has one peak, and one has two peaks. When the histogram of point 

distribution has two peaks, the height value of the local minimum can be determined. The 

PCD will be separated into two parts: points that have a higher height value than the height 

of the local minimum in the histogram belong to the high part and points with lower height 

value belong to a low part. The number of points in the high and low parts corresponds to 

𝑁𝐻 and 𝑁𝐿. The ratio 𝛼 is defined as: 

𝛼 =  
𝑀𝑎𝑥 (𝑁𝐿 , 𝑁𝐻)

𝑀𝑖𝑛 (𝑁𝐿 , 𝑁𝐻)
 (2-1) 

When the histogram of point distribution has one peak, the value of 𝛼 is ∞ which is a 

special case in  𝛼  estimation. Therefore, a fixed threshold 𝑇0 will be adopted for a 3D 

column with one peak in the histogram, which is 𝑇 =  𝑇0. A changing threshold 𝑇𝛼 will be 

adopted for the 3D column with two peaks in the histogram. 𝑇𝛼 will be determined based 
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on the value of 𝛼. Since this study has limited sampling points, the range of 𝛼 is used to 

determine 𝑇𝛼,  and the entire range of 𝛼  is divided into multiple intervals, and 

𝑏1, 𝑏2, 𝑏3, … 𝑏𝑘 represent the interval nodes. The fixed values 𝑇1, 𝑇2, … 𝑇𝑘 will be adopted 

for 𝑇𝛼 based on the different intervals of 𝛼. 

𝑇𝛼 =    {

𝑇1                          𝛼 ∈ (𝑏1, 𝑏2)

𝑇2          𝑤ℎ𝑒𝑛     𝛼 ∈ (𝑏2, 𝑏3)
…

𝑇𝑘                     𝛼 ∈ (𝑏𝑘, 𝑏𝑘+1)

 (2-2) 

Therefore, the threshold of the moving cuboid filter will be written as: 

One peak:  

𝑇 =  𝑇0 (2-3) 

Two peaks: 

𝑇 = 𝑇𝛼 (2-4) 

An evaluation test will be performed on each of the 3D columns at the 15 sampling points 

in the winter wheat field on May 16 and May 31 to determine the acceptable range of the 

threshold 𝑇 where the relative difference between the estimated and measured crop heights 

was less than 10%. First, the histograms of all these 3D columns will be normalized to the 

same scale. Savitzky–Golay filtering will be applied to smooth each histogram and 

determine the number of peaks and the value of the local minimum in the histogram. The 

value of 𝛼 will be calculated after determining the local minimum. Next, the estimated crop 

height was determined at thresholds 𝑇 from 0.1% to 10% of the points in the 3D column, 

and the step was 0.1%. The relationship between 𝑇 and 𝛼 will be determined.  

2.2.3.4 Method assessment 

The ratio of the number of unsolved pixels and the total pixels in the study area will be 

calculated for all three winter wheat growth stages to verify the correctness of the moving 

cuboid filter. One pixel had an unacceptable estimation of crop height after applying the 
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moving cuboid filter was defined as an unsolved pixel. The canopy height for winter wheat 

at the same growing stage within a field should be similar. If any pixel has canopy height 

estimation much higher or lower than the average canopy height measured in the field, this 

pixel should be considered as an unsolved pixel. Hence, the absolute difference between 

the estimated height using the moving cuboid method and the average ground measurement 

was set to 20 cm in this study. 

The Root Mean Square Error (RMSE) will be applied to evaluate the prediction errors in 

this study. In addition, the Mean Absolute Error (MAE) will be used to evaluate the average 

magnitude of the error of predicted canopy height. The RMSE and MAE will be calculated 

from predicted and ground measured canopy height on each measurement date, and the 

overall RMSE and MAE will be calculated for all three dates together to evaluate the 

accuracy of the moving cuboid filter in canopy height estimation.  

For further validation, a comparison will be performed based on the RMSE, MAE, average 

height, standard deviation, and unsolved pixel rate between the estimated canopy height 

via both Khanna’s method and the moving cuboid filter and ground measurements. 

Khanna’s method firstly divided the point cloud dataset into many columns, which are 3D 

grid cells with the same area. Then Otsu’s method was used to determine the threshold and 

classify the points into ground and vegetation parts. The fixed threshold 1% will be only 

applied on the vegetation part to remove the top 1% of the vegetation points. The final 

canopy height was calculated from the highest and lowest points of the rest of the 

vegetation points in the column. 

2.3 Results 

2.3.1 Threshold T and range of α for winter wheat 

After evaluating the value of threshold 𝑇 at all sampling points on May 16 and May 31, we 

found that when the histogram of points in the 3D column had one peak (Figure 2-4a, 2-

4b, 2-4c), the acceptable range of threshold was from 0.1% to 0.2%. Therefore, we adopted 

a fixed threshold of 𝑇0 = 0.1%. When the histogram of points in the 3D column had two 

peaks, the acceptable range of threshold changes with 𝛼. The mean of the upper bound and 

the lower bound of the range is adopted as 𝑇. The relationship between 𝑇 and 𝛼 is shown 
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in Figure 2-7. 𝛼 is highly correlated with 𝑇 (R2 = 0.9191), and the data of 𝛼 and 𝑇 are 

shown in Table 2-2. Since the histograms of point cloud distribution on May 16 all had one 

peak, and on May 31 had two peaks, the fixed threshold 𝑇0 was determined from all 

sampling points on May 16, and the changing threshold 𝑇𝛼 was determined based on the 

value of 𝛼 from all sampling points on May 31. As the power regression was applied for 𝛼 

and 𝑇𝛼, the distribution was classified into three groups in this study, shown in Figure 2-

7b. Two classes are concentrated at the tail parts of the curve and one class was 

concentrated at the middle part of this curve. The nodes of the range of 𝛼 were determined 

as 𝑏1 = 0, 𝑏2 = 3.5, 𝑏3 = 8.5,  and 𝑏4 𝑖𝑠 ∞. The 𝑇𝛼 was adopted for this experiment is: 

𝑇𝛼 =  {

𝑇1 = 5%                           𝛼 ∈ (0, 3.5]

𝑇2 = 1.5%     𝑤ℎ𝑒𝑛       𝛼 ∈ (3.5, 8.5)

𝑇3 = 0.6%                        𝛼 ∈  [8.5, ∞)
                              (2-5) 
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Table 2-2: The results of α, range of optimal T, and mean optimal T for all 15 

sampling points on May 31. 

Sample ID Ratio (𝜶) 
Acceptable range 

of threshold (%)  

Mean Threshold 

(𝑻)(%) 

1 3.31325 4.5-5.2 4.85 

2 1.35944 4.6-10 7.30 

3 8.21014 1.2-2.1 1.65 

4 20.6328 0.4-0.7 0.55 

5 8.31921 0.8-1.9 1.35 

6 3.62604 0.2-4.0 2.10 

7 3.96090 1.2-3.5 2.35 

8 2.76710 0.8-7.3 4.05 

9 2.06070 2.0-9.8 5.90 

10 1.45030 3.6-5.9 4.75 

11 8.28516 0.2-2.8 1.50 

12 7.07155 0.1-2.5 1.30 

13 1.32538 0.1-1.1 5.60 

14 3.86219 0.3-4.9 2.60 

15 7.20453 0.9-2.9 1.90 
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(a) (b) 

Figure 2-7: Threshold 𝑻𝜶 determination using the relationship between the ratio (𝜶) 

and optimal mean threshold (𝑻). a) the relationship between 𝜶 and 𝑻; b) 

classification of 𝜶. 

2.3.2 Canopy height estimation at different growth stages using 
the moving cuboid filter 

To show the variation of this moving cuboid filter at different wheat growth stages, three 

raw maps of the wheat canopy height at different stages are shown in Figure 2-8. 
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(c) 

Figure 2-8: Raw maps of the winter wheat canopy height displayed as a cubic 

convolution interpretation. a) May 16; b) May 31; c) June 9. 

The average canopy height was the average of all ground-based measurements for each 

date, which were 42.3 cm, 73.7 cm, and 74.3 cm for May 16, May 31, and June 9. If the 

absolute difference of the estimated canopy height in a pixel and the average ground-based 

measurements is greater than 20 cm, this canopy height of the pixel was considered a failure 

estimation, as shown in Figure 2-9. The unsolved pixel rate was 0.8%, 8.3%, and 21.7% 

on May 16, May 31, and June 9, respectively. 
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(c) 

Figure 2-9: Map of the unsolved pixels (red points) at different growing stages for 

winter wheat. a) May 16; b) May 31; c) June 9. 

2.3.3 Canopy height maps after interpolating for unsolved pixels 

After determining the unsolved pixels in the map, the canopy height of these unsolved 

pixels was recalculated using the inverse distance weighted (IDW) algorithm based on the 

neighboring points. The final canopy height maps at different growing stages are shown in 

Figure 2-10. 
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(b) 



41 

 

 

(c) 

Figure 2-10: The final maps of canopy height in the study area at different growing 

stages. a) May 16; b) May 31; c) June 9. After removal of the unsolved pixels, the 

final map was generated using the inverse distance weighted (IDW) interpretation 

method and displayed as cubic convolution resampling. The black dash rectangle 

showed an area with a higher height estimation on the crop height map. 

The average canopy height was 40.1 cm on May 16, and the standard deviation was 0.06; 

the average canopy height was 76.7 cm with a standard deviation of 0.07 on May 31; the 

average canopy height was 70.3 cm with a standard deviation of 0.06 on June 9. To show 

the accuracy of the moving cuboid filter, the RMSE and MAE between the estimated and 

ground-measured canopy heights for 15 sampling points at all growing stages were 

compared. The RMSE was 6.5 cm on May 16, 4.5 cm on May 31, and 7.7 cm on June 9; 

the overall RMSE was 6.37 cm. The MAE was 5.1 cm on May 16, 3.8 cm on May 31, and 

6.4 cm on June 9; the overall MAE was 5.07 cm. 

In the northern part of the study area, one row of winter wheat had higher plant height 

estimations than the rest of the study area. This row is a vehicle trail made in the winter 

season before the wheat emergence which is within the black dash rectangle in Figure 2-
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10a. The trail could be clearly observed on the maps of canopy height on May 16 and May 

31, but not on June 9. The same observation can be made from the aerial images on May 

16, May 31, and June 9 (Figure 2-2); the trail gradually fades over time. 

2.3.4 Canopy height results using the point statistical method 
developed by Khanna 

The results generated from another statistical method developed by Khanna et al. (2015) 

are shown in Figure 2-11. The method developed in this study does not perform well in 

canopy height estimation on June 9, and Khanna’s method is designed for early wheat stage 

height estimation, so the May 16 and May 31 results were compared in this study. 

 

(a) 
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Figure 2-11: The winter wheat canopy height produced by Khanna’s method. (a) 

Canopy height map on May 16. (b) Canopy height map on May 31. (c) canopy 

height map with unsolved pixels on May 16. (d) Canopy height map with unsolved 

pixels on May 31. 

The average height of the winter wheat canopy estimated using Khanna’s method was 26 

cm on May 16 and 60.25 cm on May 31. The standard deviation was 11.33 and 12.26 on 

May 16 and May 31, respectively. The RMSE was 17.03 cm on May 16 and 9.03 cm May 

31. The MAE was 15.5 cm on May 16 and 7.51 cm on May 31. The unsolved pixel rates 

were 19.4% and 21.1% on May 16 and May 31, respectively. A comparison of the moving 

cuboid filter and Khanna methods is shown in Table 2-3. 
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Table 2-3: Comparison of the performance of the moving cuboid filter and Khanna 

methods 

 Date 

Average 

height 

Standard 

deviation 

Root Mean 

Square Error 

(RMSE) 

Mean 

Absolute 

Error 

(MAE) 

Unsolved 

pixel 

rate 

Moving 

cuboid 

filter 

16-May 40.10 cm 0.06cm 6.50 cm 5.10 cm 0.80% 

31-May 76.70 cm 0.07cm 4.50 cm 3.80 cm 8.30% 

Khanna's 

method 

16-May 26.00 cm 11.33cm 17.03 cm 15.50 cm 19.40% 

31-May 60.25 cm 12.26cm 9.03 cm 7.51 cm 21.10% 

2.4 Discussion 

2.4.1 Advantages of the moving cuboid filter 

The canopy height estimation from the UAV-based photogrammetric PCD uses the spatial 

structure information on image points so a commercial digital camera can be used for 

image acquisition rather than an expensive multispectral or hyperspectral camera. In 

addition, the PCD contains color information on each point (Chu et al., 2018). Many studies 

have used a crop height model (CHM) to retrieve crop and forest canopy height from the 

calculation between DTM and DSM. The CHM methods could achieve crop height 

estimation for the entire growing season; however, the complexity of ground control points 

collection must be considered for multi-temporal data collection. As compared with the 

CHM model, the moving cuboid filter presented in this study reduced the workload in the 

field to one UAV data collection. In addition, ground control points acquisition does not 

require high-accuracy RTK-GNSS since the ground control points in this study are used to 

align adjacent images and multi-date datasets. These advantages of the moving cuboid filter 

enable simple UAV operation in the field for crop height monitoring. 

In this study, the moving cuboid filter method is tested at three winter wheat growth stages 

and it is used to estimate the canopy heights with a fixed threshold 𝑇0  or a changing 

threshold 𝑇𝛼. The moving cuboid filter performed better than the Khanna’s simple fixed 

threshold filter on wheat canopy height estimation at these three growing stages in terms 
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of estimation range, RMSE and MAE, and unsolved pixel rate. According to the results 

derived from the above tests, a changing threshold with a moving cuboid filter was more 

adaptable to different point distribution due to the canopy changes in different growing 

stages than a fixed threshold filter. To remove outliers from crop PCD, the moving cuboid 

filter did not only consider the relationship between point and its neighboring points but 

also considered the continuity of points in the vertical direction. The thresholds determined 

from the point distribution in each voxel were different. Compared with studies that adopt 

a simple fixed threshold or practical value, the moving cuboid filter had better performance 

on crop outlier removal at different growing stages which may reduce human error. 

2.4.2 Limitations and uncertainties of the moving cuboid filter 

In this study, the number of peaks was determined from the histogram of the PCD 

distribution in each column before applying the moving cuboid filter. According to Figures 

2-4a, 2-4b, and 2-4c, the bare ground and the crop at phenology of BBCH 31 has only one 

peak in the histogram of point distribution. From the observation of the distribution of bare 

ground points in October of the previous year, it can be found that the bare ground points 

presented a variation in the estimation of evaluation. This issue will affect the crop height 

estimation in early plant developing stages when the crop height is low, such as early leaf 

development and tillering stages (Grenzdörffer, 2014). This method performed well on the 

canopy height estimation of wheat at the phenology of BBCH 31. A fixed threshold of 

0.1% was adopted in this study rather than a fixed threshold of 1% of plant points in 

Khanna’s method. The reason that different thresholds are selected is that the total numbers 

and densities of points in these two studies are different. The threshold 𝑇 may change due 

to the different data collection methods and types of crops; hence it will need to be 

determined in different cases. According to Figures 2-4d and 2-4e, most of the columns 

have two peaks in the histograms of point distributions on May 31. For this reason, the 

threshold 𝑇𝛼  was established based on all sampling points from the dataset on May 31. A 

regression model between 𝛼 and 𝑇 was established in this study to determine the threshold 

𝑇𝛼 from the calculation of 𝛼. However, this inversion method could introduce thresholds 

out of the acceptable range of thresholds and result in incorrect canopy height estimation. 

Therefore, instead of calculating 𝑇𝛼 from the inversion of the regression model, three 𝑇𝛼 
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values were adopted based on three intervals of the range of 𝛼 in this study. Since the 

sampling points were limited in this winter wheat dataset and only three intervals of the 

range of α and 𝑇𝛼 were classified in this study, the unsolved pixels were still present in the 

results. Increase of the sampling points could help to narrow the interval of the range of 𝛼 

and 𝑇𝛼 and improve the accuracy of crop height estimation in the future study. 

After evaluating the acceptable range of the threshold 𝑇, we found that the estimated crop 

canopy height in each column reduces as the threshold increases. Due to the human error 

of in-situ crop height measurements, the threshold is an acceptable range instead of an 

optimal value. In this study, the acceptable range of threshold for the 3D column with one 

peak in its histogram of point distribution ranged from 0.1% to 0.2%. Therefore, it was 

easy to determine 𝑇0. However, the acceptable range of threshold for the 3D column with 

two peaks varies greatly. For example, the changes in the estimated canopy height and 

threshold selections from 0.1% to 10% of the total number of points in the column of 

sample point eight on May 31 are shown in Figure 2-12. The in-situ canopy height was 

69.7 cm in this column. When the absolute difference from the ground-measured and the 

estimated canopy height is less than 10%, the corresponding threshold range is the 

acceptable range of thresholds. In this case, within the acceptable range of thresholds from 

0.9% to 7.4%, the estimated canopy height was 64.1 cm to 76.3 cm, and the optimal 

estimated canopy height is 70.38 cm at the 5% threshold. However, according to Figure 2-

12, the estimated canopy height suddenly reduced more than 40 cm when the threshold 

exceeded 7.4%. Figure 2-13 shows the result of threshold selection in this column trimmed 

using the moving cuboid filter at different thresholds 7.4% (Figure 2-13a, 2-13b) and 7.5% 

(Figure 2-13c, 2-13d). The trimmed outliers are shown as red points in Figure 2-13. If the 

selection of threshold is out of the acceptable range of thresholds, the overestimates and 

underestimates could affect the final canopy height estimation. This is one of the sources 

of the unsuccessful estimations of canopy height and unsolved pixel on May 31 data. 
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Figure 2-12: The relationship between the threshold and estimated crop canopy 

height for one sampling point. 
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(c) (d) 

Figure 2-13: The results after applying the proposed moving cuboid filter with 

different thresholds; the red points represent outliers and the green points are the 

points that are kept after filtering. a) and b) threshold of 7.4%; c) and d) threshold 

of 7.5%. 

The number of unsolved pixels significantly increased from May 31 to June 9. In addition 

to the issue of selecting a threshold that was out of the effective threshold range, the 

primary source of unsolved pixels was from the dataset itself on June 9. The growing stage 

of the winter wheat on June 9 was the ripening stage (BBCH is 83), corresponding to 

complete heading and starting fruiting. At this stage, the winter wheat should have an 

almost complete canopy, and the histogram of point distributions in all columns should be 

close to the histogram in Figure 2-4f and 2-4g. In the case of Figure 2-4g, the point cloud 

dataset may only contain the points of the top canopy and no bare ground points because 

the camera is unable to penetrate the crop canopy and capture soil images from any 

observation angle. Due to the missing bare ground information, part of the canopy height 

on June 9 was estimated lower than that on May 31, which can be observed from canopy 

height map on May 31 and June 9 (Figure 2-10). This shows that the moving cuboid filter 

had difficulty estimating the winter wheat canopy height after the full canopy stages. 
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2.4.3 Applications of the moving cuboid filter 

Although the proposed method is challenging when estimating canopy height after the full 

canopy emerges, the average height does not change significantly after the heading stages 

in winter wheat. In this study, this method achieved the canopy height estimation between 

the stem extension and heading stages. These stages are essential in winter wheat 

monitoring. The information from these stages can be used in biomass and final yield 

estimation (Li et al., 2016). Since this method enables a simple operation of UAV in the 

field, it could be an effective method that can be widely used to help an end-user to monitor 

their crops and support real-time decision making for farm management.  

The proposed moving cuboid filter uses both the bare ground and plant canopy point in the 

point cloud dataset to estimate winter wheat canopy height. Although the structure of wheat 

canopy is complicated due to the different row distance, variable crop heights, and different 

sizes of leaves and stems, the PCD can still provide the information of both bare ground 

and plant points before the wheat has a full canopy. This method could be applied to other 

crops with simple canopy structure and less density, such as corn and tobacco, but the 

parameter of moving cuboid filter and thresholds may need to be adjusted accordingly. To 

implement this method on other crops, the UAV system should maintain a relatively low 

flight altitude, and a high-resolution camera will help to collect fine resolution images. 

2.5 Conclusion 

The applied moving cuboid filter provides a suitable method for eliminating noise from 

UAV-based 3D point cloud datasets for winter wheat fields. First, this moving cuboid filter 

considers the density of points in a horizontal direction. A fixed threshold 𝑇0 is used for 

outlier removal in the early stage of winter wheat. A changing threshold 𝑇𝛼 is used for 

outlier removal in the later stages of winter wheat. According to the range of 𝛼 , the 

changing threshold 𝑇𝛼 is selected based on the different histograms of point distribution. 

In addition to the horizontal direction, the moving cuboid filter also considers the 

continuation of points in a vertical direction. After labeling all points in the 3D column, 

points with more labels are trimmed as outliers. The filter has stable performance in canopy 

height estimation before the winter wheat has a full canopy and lower RMSE and MAE 
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than ground measurements. Although this method has a relatively higher RMSE at early 

growth stages and a lower accuracy at the full canopy stage, it provides a canopy height 

monitoring window for winter wheat from the beginning of the stem extension stage to the 

end of the heading stage (BBCH 31 to 65). The accuracy of this method decreases as the 

winter wheat grew. 

This method provides a potential direction for crop height estimation using UAV-based 

photogrammetric PCD, which could help farmers easily monitor farm fields and quickly 

obtain real-time crop height information. Future canopy height studies using UAV-based 

photogrammetric PCD should focus on the estimation of 𝑇𝛼 to resolve the issue of unsolved 

pixels. A larger field area and more ground sampling points might provide useful 

information for 𝑇𝛼 selection. In addition, more parameter adjustment studies such as height 

extraction from low-density point cloud datasets and final map generation with lower 

resolutions should be conducted to reduce processing time. The moving cuboid filter could 

also be evaluated for different crop types such as corn and soybean in future studies.   
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Chapter 3 

3 Estimating effective Leaf Area Index of winter wheat 
using Simulated Observation on UAV-based 
photogrammetric point cloud data  

 

3.1 Introduction 

Remote sensing offers an effective alternative for field data collection. The image data can 

be processed and analyzed to derive information for improving crop management 

decisions. In particular, high spatial and temporal resolution images can offer the spatial 

details and temporal frequencies for precision farming at the subfield scale.  Leaf area index 

(LAI) is a critical vegetation descriptor that affects crop’s interception of photosynthetic 

radiation, water transpiration, gas and energy exchange between plants and the Earth-

atmosphere system (Zheng et al., 2013). LAI is identified as one half of the total green leaf 

area per unit horizontal ground surface area. It has been used in many crop growth models 

to predict other crop parameters including, chlorophyll content, biomass, and final yield 

(Botha et al., 2007; Liu et al., 2010; Jin et al., 2019). Therefore, many remotely sensed 

studies have developed many methods based on different theories to estimate LAI for crop 

monitoring.  

One of the most widely applied methods for LAI estimation is the empirical method using 

vegetation indices (VI) derived from multispectral or hyperspectral images (Huete et al., 

2002; Haboudane et al., 2004). However, determination of LAI using VI has many 

disadvantages: 1) VI methods are highly dependent on the radiation conditions at the time 

of imaging; 2) VI methods tend to saturate at high LAI values and dense vegetation canopy 

later in the crop growth season (Kross et al., 2015; Shang et al., 2015); 3) the establishment 

of regression relationship requires ground measurements during the calibration procedure; 

4) the relationship between LAI and VIs is largely influenced by biological, geographical, 

and environmental conditions, which will require recalibration with the change of time and 

geographical locations (Qi et al., 2000). Hence, empirical method used to predict LAI over 

a large area is labor intensive and time-consuming (Zheng & Moskal, 2009). 
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The spatial and temporal resolution of satellite imagery restricts the operational application 

of empirical methods to LAI monitoring for a single field. Due to the rapid development 

of UAV in recent years, many studies used statistical method to estimate LAI from UAV-

based multispectral images to overcome the spatial and temporal resolution restrictions of 

satellite imagery (Hunt et al., 2008; Yao et al., 2017; Zhou et al., 2017). The UAV data can 

achieve long-term high spatial and temporal LAI monitoring for a single field, but the 

accuracy of the UAV-based multispectral image is affected by image radiometric 

correction and image alignment. Also, the UAV-based statistical method requires ground-

based LAI measurement from numerous samples.  

LAI has also been estimated from physical-based simulation models by establishing 

relationships between crop spectral information, canopy architecture, biophysical, and 

biochemical parameters (Thorp et al., 2012; Propastin & Panferov, 2013). The remote 

sensing spectral information including reflectance and VIs was used as an input parameter 

for LAI estimation in the inversed simulated physical, such as radiative transfer models 

(Atzberger & Richter, 2012; Atzberger et al., 2015; Kimm et al., 2020). However, crop 

physical-based simulation models require extensive ground measurements including 

weather conditions, vegetation structural properties, and biochemical parameters to 

simulate crop development. LAI estimation from physical model inversion will also require 

these parameters which exclude the model from operational applications to large areas due 

to intensive ground data requirement. Furthermore, the quality of remote sensing data can 

also have a significant impact on the performance of the inversion.  

Ground based LAI measurements have often been used as a reference for model calibration 

and validation in many remote sensing studies. Two categories of ground measurement 

approaches, direct and indirect, have been used for field LAI estimation. The direct 

approach measures the actual leaf area using a destructive method, which is challenging 

for large areas and long-term LAI monitoring. The indirect approach retrieves effective 

LAI (LAIe) or actual LAI using non-destructive methods by measuring radiation 

transmittance through canopy using radiative transfer theories. The LAIe is one half of the 

total area of leaves that intercepts the light per unit horizontal ground surface area (Zheng 

& Moskal, 2009). If the leaves in the crop canopy satisfies the assumption of a random 
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spatial distribution, the gap fraction in the canopy is equivalent to canopy transmittance. 

The LAIe can then be calculated from canopy gap fraction (M. Weiss et al., 2004). The 

vertical and 57.5° gap fraction measurements obtained from digital color photography on 

the ground have been used for crop LAIe estimation under certain conditions The vertical 

method requires assumptions on leaf angle distribution and the 57.5° gap fraction method 

requires correction for woody area and assumes gaps can be measured. They achieved good 

agreement with the actual LAI measurements (M. Weiss et al., 2004; Baret et al., 2010; 

Liu & Pattey, 2010; Liu et al., 2013). Downward facing Digital Hemispherical photography 

(DHP) is another approach to retrieve crop LAIe using the gap fraction measurements. 

DHP can be captured by a digital camera equipped with a fish-eye lens. The photographs 

are classified into vegetation and soil or vegetation and sky to calculate the gap fraction 

from different angles. The LAIe calculation can be achieved using specific DHP processing 

software such as CAN-EYE v6.4 (M. Weiss & Baret, 2017) and Gap Light Analyzer v2.0 

(GLA) (Frazer, 1999).  

In addition to the optical gap fraction method, many studies have also attempted to use 

terrestrial laser scanning (TLS) derived 3D point cloud data (PCD) to estimate gap fraction 

or LAI of forest (Hancock et al., 2014; Zheng et al., 2016). The 3D PCD models the forest 

canopy structure, which can then be used to retrieve the spatial distribution of foliage and 

LAIe. However, the method for using the TLS system can only estimate the LAI for a 

specific location, which is difficult for a large-scale LAI monitoring. Many studies have 

attempted to adopt airborne LiDAR to achieve forest LAI estimation (Zhao & Popescu, 

2009; Luo et al., 2013). The LiDAR-derived LAI map can serve as a reference for 

validating satellite LAI products at regional scales. Although airborne LiDAR could 

provide LAI maps for a small area, its high cost is a barrier to its wide-spread adoption for 

farm fields.  

UAV has been recognized as an effective remote sensing platform for crop status 

monitoring over a single crop field. UAV-based photogrammetry can generate 3D PCD 

similar to LiDAR, which contains crop structural information. Some studies have retrieved 

winter wheat height and vineyard structure using UAV-based photogrammetric PCD 

(Marie Weiss & Baret, 2017; Song & Wang, 2019). However, to our best knowledge, there 
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has been no reported application of using UAV-based 3D crop structural information for 

winter wheat LAIe estimation. Therefore, the purpose of this research was to estimate crop 

LAIe using the structural information of UAV-based photogrammetric PCD and ground-

based gap fraction method.  

3.2 Methodology 

3.2.1 LAIe estimation using gap fraction on UAV-based 
photogrammetric point cloud data 

The gap fraction method was adopted as an indirect and non-contact method for canopy 

structure analysis. According to Poisson distribution, the relationship between canopy gap 

fraction and LAIe is given as follows (Zheng, et al., 2016): 

𝐿𝐴𝐼𝑒 =  
− cos(𝜃)𝑙𝑛𝑃(𝜃)

𝐺(𝜃)
=  

−𝑙𝑛𝑃(𝜃)

𝑘(𝜃)
                                             (3-1) 

where 𝑃(𝜃) is the gap fraction at a certain view angle, 𝐿𝐴𝐼𝑒 is the estimated LAIe, 𝐺(𝜃)is 

the fraction of foliage projected towards view angle 𝜃 , and 𝑘(𝜃) is canopy extinction 

coefficient. 

The vertical gap fraction method estimates crop LAIe using vegetation cover fraction at 

the nadir view (Liu & Pattey, 2010; Liu et al., 2013). This method adopted the gap fraction 

at zenith angle 𝜃 equal to 0°. Assuming the leaf angle distribution is uniform in azimuth, 

and following a spherical distribution for the inclination, the value of 𝐺 is equal to 0.5 at 

any direction (Pekin & Macfarlane, 2009; Liu & Pattey, 2010). The formula is shown 

below: 

𝐿𝐴𝐼𝑒0 =  −2 ln (𝑃0(0))                                                   (3-2) 

where 𝑃0(𝜃) is the gap fraction at a nadir direction, and 𝑒𝐿𝐴𝐼0 is the estimated LAIe using 

the vertical gap fraction measurement. 

The method of gap fraction at zenith angle 𝜃 equal to 57.5° has been used to estimate crop 

LAIe (Weiss et al., 2004; Baret et al., 2010; Liu et al., 2013). Since the extinction 
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coefficient 𝑘 is dependent on the value of 𝐺(𝜃), when 𝐺(𝜃) is 0.5 at zenith angle 57.5°, 

the value of 𝑘 is 0.93 correspondingly. The formula can be written as follows: 

𝐿𝐴𝐼𝑒57.5 =  
− ln (𝑃0(57.5°))

0.93
                                                   (3-3) 

According to the Beer-Lambert Law that the distance of light travelled in the medium is 

proportional to the attenuation of light, equation (3-4) gives the relationship between 

foliage density and the gap fraction of the crop canopy. 

−𝑙𝑛𝑃(𝜃) = 𝐺(𝜃)𝜇𝑆(𝜃)                                                (3-4) 

where μ is the foliage density, and 𝑆(𝜃) is the pathlength through the canopy for each view 

angle 𝜃. Miller (1967) gives an exact solution for foliage density as shown below: 

𝜇 =  −2 ∫
ln (𝑃(𝜃))

𝑆(𝜃)

𝜋 2⁄

0
𝑠𝑖𝑛𝜃𝑑𝜃                                        (3-5) 

For canopy structure such as corn and wheat, 𝑆(𝜃)could be calculated from height 𝑧, which 

is 𝑆(𝜃)  = 𝑧/𝑐𝑜𝑠𝜃; and LAIe could be calculated from foliage density and canopy height, 

which is 𝜇 ×  𝑧, so Equation 3-2  can be rewritten as, 

𝐿𝐴𝐼𝑒 =  −2 ∫ ln(𝑃(𝜃)) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃
𝜋 2⁄

0
                         (3-6) 

Many devices such as LAI-2200 and fisheye camera use a hemispherical lens to measure 

the canopy gap fraction at different zenith angles. LAI-2000 adopts five rings (7°, 23°, 38°, 

53°, 68°) with a weighted sum approach to calculate LAIe. In our study, we adopted these 

observation angles and use a weighted sum approach to calculate LAIe. The formula is 

shown below: 

𝐿𝐴𝐼𝑒 =  −2 ∑ ln(𝑃(𝜃𝑖)) cos(𝜃𝑖) sin (𝜃𝑖)∆𝜃𝑖
5
𝑖=1                  (3-7) 

where 𝜃𝑖 is the centre zenith angle of the ring 𝑖, and ∆𝜃𝑖 is the range of the zenith angles 

for this ring 𝑖. 

This theory has been adopted by many studies and commercial devices to retrieve in-situ 

indirect LAIe measurements. This indirect LAIe measurement  showed good performance 
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on crops such as wheat and corn and has been used as reference in many remote sensing 

studies (Welles & Cohen, 1996; Liu et al., 2012; Shang et al., 2014). 

3.2.2 Site description and ground based DHP data collection  

The study site is a winter wheat field located in southwest Ontario, Canada. (Figure 3-1b). 

Winter wheat in this region is usually planted the previous October and goes dormant in 

winter and continues to grow until the end of June, with a single harvest per year. Due to 

the cold spring in 2019, winter wheat had a late growing season and lasted till mid-July in 

this study site. A 120 m by 240 m area was used to collect multi-temporal ground-based 

LAI and UAV-based red, green, and blue (RGB) images from early May to mid-June. 

Thirty-two samples were collected along the row direction of the winter wheat to minimize 

damage to crops by surveyors and ensure the quality of future UAV images. The locations 

of all sampling points are shown in Figure 3-1b. Gap fraction was measured on the ground 

using a non-destructive method with a Nikon D300s camera equipped with a 10.5mm 

fisheye lens. At each sampling point, seven digital hemispherical photographs were taken 

at a downward direction for winter wheat canopy within a 2 m by 2 m area. All photos 

were captured with the lens held at 1 m above the top of the canopy. The CAN-EYE v6.4 

software was used to process the DHPs to calculate the LAIe used in this study, and the 

hemispherical photo derived LAIe was used as a reference to validate UAV derived LAIe 

estimation. In addition, 12 black and white chess boards (2 by 2 cells) were set up at 

selected sampling points during the entire growing season. The size of the chess board is 1 

ft. by 1 ft. with two corresponding black and white rectangles 0.5 ft. by 0.5 ft. These target 

boards were used as tie points for multi-temporal UAV based point cloud datasets 

registration to ensure the accuracy of relative position among datasets. Their locations were 

shown as green circles over the sampling points in Figure 3-1b. 
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Figure 3-1: Study area and sampling locations in the test field. a) The study area in 

Southwestern Ontario, Canada. b) The aerial map of study area. c)The sampling 

locations in the study area. The black points are the ground measurements location, 

and the green circles are the ground control points. 

3.2.3 UAV data collection and processing 

Multi-temporal UAV based imagery was collected using a DJI Phantom 4 RTK UAV 

system with a 5K high-resolution digital RGB camera and an RTK base station. The UAV 

flights were performed on cloud-free days between 10 am and 2 pm to reduce the shadow 

(b) 

(a) 

(c) 

Melbourne 
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influence on images. The UAV image processing software Pix4Dmapper Pro (Pix4D) v2.4 

(Pix4D SA, Lausanne, Switzerland) was used to generate 3D point cloud data from UAV-

based imagery using photogrammetry method (Pix4D, 2014). The output of the 3D point 

cloud dataset has a similar format to LiDAR data, which contains positions and the RGB 

information at each point. This photogrammetry 3D PCD has a low cost and can still 

provide structural and optical information of features. Four UAV acquisitions at different 

crop growth stages were carried out over the winter wheat field on May 11, May 21, May 

27, and June 3 in 2019 (Figure 3-2). The phenology of winter wheat represented by BBCH-

scales was 21, 31, 39, and 49 on these dates respectively, covering the leaf development 

stages for the winter wheat field under investigation (Lancashire et al., 1991). The field 

landscape and close-up images for these four growth stages are shown in Figure 3-3. 

 

Figure 3-2: UAV orthomosaic aerial images for all four growth stages over the study 

area, a) May 11 (BBCH=21); b) May 21 (BBCH=31); c) May 27 (BBCH=39); and d) 

June 3 (BBCH=49). 
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Figure 3-3: Landscape and close-up winter wheat photos at four growth stages in 

the field. a) and e) landscape and close-up images at stage of BBCH 21; b) and f) 

landscape and close-up images at stage of BBCH 31; c) and g) landscape and close-

up images at stage of BBCH 39; d) and h) landscape and close-up images at stage of 

BBCH 49. 
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Table 3-1: Unmanned Aerial Vehicle flight data and crop growth stage. 

Flight 

Date 

Number of 

Images 

Points in the 

dataset 

Point 

Density 

(pts/m2) 

Average 

in-situ 

LAIe 

(m2/m2) 

Growth Stage 

(BBCH) 

11-May-19 1257 118114965 4299 0.49 Tillering (21) 

21-May-19 1157 160528594 5843 0.87 Stem Elongation (31) 

27-May-19 1157 179352912 6528 1.14 Stem Elongation (39) 

3-Jun-19 1157 171010292 6224 1.22 Booting (49) 

All UAV images were captured at nadir position at a height of 30 m above ground. The 

overlap of all images was 90% on all sides to ensure the success of image mosaicking on 

the homogeneous crop canopy. The spatial resolution for all four aerial images is 9 mm. 

The UAV flight date, number of images, points in the dataset, point density, average 

ground measurements, and crop phenology are listed in Table 3-1. The images were 

processed using Pix4Dmapper Pro (Pix4d) v2.4 to generate orthomosaic aerial images and 

3D point cloud datasets. The 3D PCD processing, including data clipping and data format 

conversion, was conducted in C++ with the point cloud library. The aerial images and 

close-up winter wheat field photos are shown in Figure 3-2 and 3-3.  

3.2.4 Simulated observation of point cloud 

We developed an approach named Simulated Observation of Point Cloud (SOPC) to divide 

the photogrammetric PCD into many slices with different observation zenith angles and 

investigated the 3D spatial distribution of points in each slice. A grid of observation points 

was generated above the photogrammetric PCD with a resolution of 2 m by 2 m. This 

selected resolution of simulated observation points will be used to demonstrate the intra-

field LAIe variation of the study area. Under the simulated observation point, an area of 
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observation was selected within the point cloud dataset. The size of the area was calculated 

based on the height of the observation point. Since the ground based LAIe measurement 

adopted the height of the fisheye camera as 1 m, the height of simulated observation points 

was set to 1 meter higher than the PCD in this study. Each observation point was used as 

the origin point 𝑂 to calculate the bounding box of the area of observation. Since the 

maximum observation angle was 75° in this study, the maximum radius was determined to 

be 8 m to cover all points within the field of view. The position of observation points and 

the area of observation are shown in Figure 3-4. The projected observation point on the 

ground is the simulated origin point 𝑂 for the area of observation. Any point in the PCD 

with a horizontal distance of less than 8 meters to the origin point 𝑂 will be selected. A 

total of 5,977 observation areas was generated in this study. From the simulated 

observation point to the ground surface in each observation area, the field of view was 

divided into many slices with a specified azimuth and zenith angle. The angles of the slice 

∆𝜑 and  ∆𝜃 on horizontal and vertical directions were 15° in this study for the multi-view 

angles gap fraction method. Five observation rings were generated, and each ring was 

divided into 24 slices. The points in each slice were then used to calculate the gap fraction. 

The schematic of SOPC is illustrated using Figure 3-5. 
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(a)                                            (b)                                          (c) 

Figure 3-4: The locations of simulated observation points and area of observation 

within the point cloud dataset. a) the simulated observation points at the resolution 

of 2 m by 2 m; b) the area of observation for one simulated observation point with a 

radius of 6 m; c) the 3D perspective view of the point cloud data (PCD) in the 

observation area. 

 

Figure 3-5: Three-dimensional schematic of the SOPC for one area of observation. 

The area of observation is divided into five concentric observation rings A, B, C, D, 

and E. The observation angle for each ring is ∆𝜽. Each observation ring will be 

divided into many slices with an angle of  ∆𝝋. 
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3.2.5 Gap fraction calculation using UAV-based photogrammetric 
point cloud data 

The distribution of vegetation and bare ground points for the winter wheat 3D point cloud 

dataset has been described by a recent UAV-based point cloud study (Song & Wang, 2019). 

The bare ground points in a point cloud dataset decrease as the winter wheat grows and 

disappear after full covered canopy growth is achieved. According to the variation of bare 

ground points in the point cloud dataset, it is assumed that the vegetation leaf is a black 

body which has no light penetrating the vegetation points, and the gap fraction could be 

calculated from the ratio of bare ground points 𝑛 and the total number of points 𝑁 in a 

specific slice at certain view angles of ∆𝜑 and ∆𝜃. The greenness of each pixel calculated 

from the native red, green, and blue color has been used to classify the bare ground and 

green vegetation from the ground digital images on winter wheat (Atzberger, et al., 2015). 

In this study, the greenness of each point will be calculated for the entire point cloud 

dataset. 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 =  2𝐺 − 𝐵 −   𝑅       (3-8) 

where R, G, and B are the intensity values recorded by the UAV camera. Then, the 

threshold of classification for 5,977 observation areas separated from the entire point cloud 

dataset will be determined individually. Otsu’s method was applied to the PCD of each 

observation area to determine the threshold automatically. After classifying the points into 

vegetation and bare ground, the points will be projected onto a plane surface using different 

projection techniques for vertical, multi-view angles gap fraction methods. The lower point 

will be removed from the projected plane surface when two points have the same location 

after projection.  

Three methods were developed to calculate vertical, 57.5°, and multi-view angle gap 

fraction in this study. 1) The SOPC vertical gap fraction method (SOPC-V) was used to 

calculate the vertical gap fraction of crop in the PCD. All points in the PCD will be 

projected to the ground surface using parallel projection. After removing the duplicate 

points on the ground surface, the gap fraction was then calculated from the ratio of bare 

ground and the total points. Since the vertical gap fraction has a small observation area, the 
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vertical gap fraction was determined based on many 2 m by 2 m voxels divided from the 

point cloud dataset in this study. 2) The SOPC fixed gap fraction (SOPC-F) was used to 

calculate the 57.5° gap fraction in the PCD. After using SOPC to determine the simulated 

observation points and area, all points in the PCD was projected onto the ground surface 

using the central projection to remove the duplicate points on the ground. The 57.5° gap 

fraction will be calculated from the ratio of bare-ground and total points in a specific 

observation ring which is between the view angles 53° and 61°. The spatial resolution of 

simulated observation points was 2 m by 2 m in this study. 3) The SOPC multi-view angle 

gap fraction (SOPC-M) was used to calculate gap fraction at different observation rings. 

The central projection will be used to remove duplicate points. The spatial resolution of 

simulate observation points was set to 2 m by 2 m in this study. Ultimately, the LAIe results 

will be calculated using equation (3-2), (3-3), and (3-7), respectively. The general 

flowchart of SOPC method is shown in in Figure 3-6. 
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Figure 3-6: Flowchart of effective LAI estimation using simulated observation of 

point cloud (SOPC) methods from UAV-based photogrammetric PCD. 

UAV-based 
2D RGB 
imagery

UAV-based 
3D point 

cloud data

Simulated 
observation points 

and areas 
generation

Generation of 
point cloud voxels

Parallel 
projection

Central 
projection

Central 
projection

Gap fraction 
calculation

Remove lower 
overlapping points

SO
PC

SOPC-V SOPC-F SOPC-M

Classification of 
vegetation and bare 

ground points

SOPC: Simulated observation of point cloud
SOPC-V: vertical view
SOPC-F: Fixed view angle at 57.5 
SOPC-M: Multi-view angle from 0 to 75 

Effective LAI 
calculation



73 

 

3.2.6 Methods assessment 

The in-situ LAIe measurements were used to evaluate the accuracy of UAV-based point 

cloud LAIe in this study. The relationship between in-situ and UAV-derived LAIe on 

multiple dates were used to evaluate the long-term LAIe trend. The Root Mean Square 

Error (RMSE) was used to evaluate the prediction error of LAIe. In addition, the Mean 

Absolute Error (MAE) was used to evaluate the average magnitude of the LAIe error. For 

comparison purposes, the map of winter wheat LAIe was generated in this study using the 

SOPC-V, SOPC-F, and SOPC-M methods. The performances of winter wheat LAIe 

estimation using the three methods will be compared and discussed in this study.  

3.3 Results 

3.3.1 The estimation of effective LAI with the SOPC-V methods 

The relationship between the SOPC-V derived LAIe using UAV-based photogrammetric 

PCD and the ground DHP derived LAIe is associated, with an R2 = 0.6989 for all 128 

samples (Figure 3-7). The LAIe maps generated using the SOPC-V method are shown in 

Fig. 3-8. The overall variation of the LAIe was in the range of 0 to 1.27. The maximum, 

minimum, mean, stand deviation, RMSE, and MAE for all four LAIe maps are listed in 

Table 3-2. The RMSE of the overall four growth stages is 0.42, and the MAE is 0.38. 
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Figure 3-7: Comparison between the SOPC-V method derived effective leaf area 

index (LAIe) and ground DHP derived LAIe. The sampling points were represented 

by different colors on May 11, May 21, May 27, and June 3. The solid line is the 

trend line, and the dashed line the is 1:1 ratio line. 
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Figure 3-8: Effective Leaf area index (LAIe) map generated using the SOPC-V 

method on UAV-based 3D point cloud dataset for four growth stages, a) May 11, 

BBCH = 21; b) May 21, BBCH = 31; c) May 27, BBCH = 39; d) June 3, BBCH = 49. 

The scale was normlized from 0 to 1.27. 
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Table 3-2: Statistics of the SOPC-V method derived effective LAI. The maximum 

and minimum of effective leaf area index (LAIe), mean, stand deviation (STD), 

RMSE, and MAE for all 32 sampling points at different growth stages and the 

overall study period derived by the SOPC-V method. 

 
11-May 21-May 27-May 3-Jun Overall 

Maximum 0.44 0.99 1.29 1.27 
 

Minimum 0.09 0.11 0.20 0.28 
 

Mean 0.25 0.49 0.73 0.73 
 

STD 0.04 0.10 0.15 0.13 
 

Bias -0.23 -0.37 -0.39 -0.52  

RMSE 0.25 0.39 0.43 0.56 0. 42 

MAE 0.18 0.35 0.56 0.41 0.38 

3.3.2 The estimation of effective LAI with the SOPC-F method 

The relationship between the SOPC-F derived LAIe using UAV-based photogrammetric 

PCD and the ground DHP derived LAIe is associated, with an R2 = 0.6785 for all 128 

samples, as shown in Figure 3-9. The LAI maps generated using the SOPC-F method are 

shown in Figure 3-10. The overall variation of the LAIe was in the range of 0 to 6.43. The 

maximum LAIe, minimum LAIe, mean LAIe, stand deviation, RMSE, MAE for all four 

LAIe maps are listed in Table 3-3. The RMSE of the overall four growth stages is 0.24, 

and MAE was 0.19. 
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Figure 3-9: Comparison between the SOPC-F method derived effective leaf area 

index (LAIe) and ground DHP derived LAIe. The sampling points were represented 

by different colors on May 11, May 21, May 27, and June 3. The solid line is the 

trendline, and the dash line is 1:1 ratio line. 
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Figure 3-10: Effective Leaf area index (LAIe) map generated using the SOPC-F 

method on UAV-based 3D point cloud dataset for four growth stages, a) May 11, 

BBCH = 21; b) May 21, BBCH = 31; c) May 27, BBCH = 39; d) June 3, BBCH = 49. 

The scale was normalized from 0 to 6.43. 
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Table 3-3: Statistics of the SOPC-F method derived effective LAI. The maximum 

and minimum of effective leaf area index (LAIe), mean, stand deviation (STD), 

RMSE, and MAE for all 32 sampling points at different growth stages and the 

overall study period derived by the SOPC-F method. 
 

11-May 21-May 27-May 3-Jun Overall 

Maximum 1.32 2.78 4.68 5.54 
 

Minimum 0.01 0.06 0.11 0.12 
 

Mean 0.46 0.75 1.29 1.44 
 

STD 0.14 0.32 0.54 0.62 
 

Bias -0.01 -0.06 0.09 0.01  

RMSE 0.12 0.25 0.29 0.27 0.24 

MAE 0.09 0.22 0.24 0.22 0.19 

3.3.3 The estimation of effective LAI with the SOPC-M method 

A relationship between the SOPC-M derived LAIe using the UAV-based photogrammetric 

PCD and LAIe derived from DHP captured by the fisheye camera is shown in Figure 3-11.  

The estimated LAIe values are highly correlated with the ground fisheye derived LAIe 

value, R2= 0.7621, for 128 samples, which includes the data from May 11 to June 3. The 

R2 was 0.7646 for all 96 samples from May 11 to May 27. After applying the SOPC-M 

method to calculate LAIe on the UAV-based point cloud dataset, four LAIe maps of the 

winter wheat at different growth stages are shown in Figure 3-12. In this figure, the LAIe 

value has been normalized to the same scale from 0 to 4.3. 
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(a) 

  

 

(b) 

Figure 3-11: The relationship between the SOPC-M method derived effective leaf 

area index (LAIe) using UAV-based photogrammetric PCD and ground DHP 

derived effective LAI. a) May 11 to June 3, b) May 11 to May 27. The sampling 

points were represented by different colors on May 11, May 21, May 27, and June 3. 

The solid line is the trend line, and the dash line is 1:1 ratio line. 
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Figure 3-12: Effective Leaf area index (LAIe) map generated using the SOPC-M on 

UAV-based 3D point cloud dataset for four growth stages, a) May 11, BBCH = 21; 

b) May 21, BBCH = 31; c) May 27, BBCH = 39; d) June 3, BBCH = 49.  The scale 

was normalized from 0 to 4.29. 
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Table 3-4: Statistics of the SOPC-M method derived effective LAI. The maximum 

and minimum of effective leaf area index (LAIe), mean, stand deviation (STD), 

RMSE, and MAE for all 32 sampling points at different growth stages and the 

overall study period derived by the SOPC-M method. 
 

May 11 May 21 May 27 June 3 Overall (May 

11 to June 3) 

Overall 

(May 11 to 

May 27) 

Maximum 0.92 2.09 3.67 4.29   

Minimum 0.15 0.25 0.36 0.51   

Mean 0.48 0.78 1.31 1.46   

STD 0.09 0.23 0.39 0.48   

Bias -0.001 -0.02 0.13 0.04   

RMSE 0.08 0.20 0.25 0.19 0.19 0.19 

MAE 0.06 0.16 0.21 0.15 0.14 0.14 

3.3.4 SOPC-M effective LAI maps at different winter wheat growth 
stages 

The LAIe intra-field variation maps from the early growth stage (BBCH 21) to the full 

leave growth stages (BBCH 61) are displayed in Figure 3-13. The average values of LAIe 

were 0.48, 0.78, 1.31, and 1.46 on May 11, May 21, May 27, and June 3 respectively. To 

show the accuracy of this method, the RMSE and MAE were compared between the SOPC-

M LAIe and ground-based DHP derived LAIe for all 32 sampling points at all four growth 

stages. The RMSE was 0.08 on May 11, 0.20 on May 21, 0.25 on May 27, and 0.19 on 

June 3; the overall RMSE for all four growth stages was 0.19. The MAE was 0.06 on May 

11, 0.16 on May 21, 0.21 on May 27, and 0.15 on June 3; the overall MAE was 0.14. The 

maximum, minimum, mean, stand deviation, RMSE, and MAE of the estimation LAIe 

results for all four maps are listed in Table 3-4. 
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Figure 3-13: The individual winter wheat effective leaf area index (LAIe) maps 

using SOPC-M method at different growth stages. a) May 11; b) May 21; c) May 27; 

and d) June 3. 
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3.4 Discussion 

3.4.1 Comparisons between SOPC-V, SOPC-F, and SOPC-M 
methods derived effective LAI estimates 

The greenness of each pixel calculated from the native red, green, and blue color has been 

used to classify the bare ground and green vegetation from the ground digital images on 

winter wheat (Liu & Pattey, 2010). In this study, the study area was divided into 5,977 

observation areas, and the threshold for each observation area was determined individually. 

Otsu’s method was applied on PCD of each observation area to determine the threshold 

automatically. New classification methods or more spectral information could be 

considered in future studies to improve the efficiency and accuracy in the determination of 

threshold.  

A comparison among the SOPC-V, SOPC-F, and SOPC-M methods had been performed 

on UAV-based photogrammetric PCD. They were compared against the ground based 

DHP LAIe results, and their relationships are shown in Figure 3-7, Figure 3-9, and Figure 

3-11. The SOPC-V and SOPC-F methods derived LAIe had similar coefficient of 

determinations, which were lower than the SOPC-M method derived LAIe. The SOPC-V 

measured the gap fraction from a 2D perspectives; SOPC-F method measured gap fraction 

from 3D perspectives at a certain view angle. In contrast, the SOPC-M method used the 

maximum gap fraction information at multiple view angles, which is like the DHP method 

in considering the integrated gap fraction of crop canopy. The comparison of the coefficient 

of determination for these three methods was challenging to indicate the performance of 

all three methods in LAIe estimation because SOPC-V and F are based on different 

principles from the DHP method. However, the relationship between the SOPC and DHP 

derived LAIe demonstrated the potential of the SOPC method in LAIe estimation using the 

UAV-based photogrammetric PCD. The actual LAI retrieved from the destructive method 

or measured from LAI-2000 could be used in future studies to better evaluate the 

performances of the three SOPC methods. 

According to Table 3-2, Table 3-3, and Table 3-4, the SOPC-V had a larger bias with 

consistently smaller LAIe values than the DHP method, whereas the SOPC-F and M 
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methods had similar small bias. Fig. 3-14 displays the uncertainty of all three SOPC 

methods compared with the DHP method. The SOPC-V method had the smallest 

uncertainty which is as large as the DHP method. The SOPC-F method had the largest 

uncertainty among three SOPC methods for all four dates. The SOPC-M and the DHP 

method had similar uncertainties and smaller bias. In addition, the mean of LAIe for SOPC 

and DHP methods increased significantly from May 11 to May 27 (Figure 3-14). For the 

booting stage (June 3), the mean of LAIe for SOPC methods decreased. In contrast, the 

DHP method derived means of LAIe increased continuously. Therefore, the LAIe map on 

June 3 had more noisy estimations. The lower mean value on June 3 for all three SOPC 

methods indicated the limitation on LAI estimations at booting stage. 

 

Figure 3-14: The error bars of all SOPC and DHP methods on May 11, May 21, 

May 27, and June 3. The column bars represent the mean values of LAIe, and the 

error bars represent the upper and lower limit of the errors. 

Shadow effect could be one of the reasons limiting the LAIe estimation in the later growth 

stages using UAV-based photogrammetric PCD. Although all UAV flights were performed 

between 10 am to 2 pm to reduce the shadow effects in the field, the shadow can still be 

observed on the images. In the winter wheat field, two categories of shadow pixels can be 

observed: one is the leaf shadow projected on the bare ground, and the other is the leaf 
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shadow projected on other leaves within the crop canopy, which has a small area in the 

images. Small shadow areas observed from different directions may have shape distortion 

in the UAV-based imagery, which is difficult to match and generate the shadow points in 

the PCD. Figure 3-15 shows the UAV-based photogrammetric PCD and the UAV imagery 

at the same location in the field. The small shadow areas were significantly reduced in the 

UAV-based photogrammetric PCD (Figure 3-15b). The removal of small shadow areas 

will reduce the size of vegetation and bare ground points leading to inaccurate LAIe 

estimation. In addition, the classification method using the greenness feature can 

effectively extract the green leaves in both sunlit and shaded conditions for winter wheat 

in the early growth stage before canopy closure (Liu & Pattey, 2010). The large shadow 

areas were treated as the bare ground point after classifying the PCD (Figure 3-15c).  

According to the field image, the winter wheat rows had a southwest-northeast direct, the 

shadow appears on the northwest side of the crop row. The angles of facing against and 

facing away from the sun were different due to the difference in imaging time on the day 

of the UAV operation. The UAV flights were operated at 10:40 am, 12:30 pm, 10:40 am, 

and 1:20 pm on May 11, May 21, May 27, and June 3, the azimuth angles of the sun and 

shadow were different on these dates. The gap fraction at different observation angles was 

evaluated to analyze the illumination influence in the UAV-based photogrammetric PCD. 

Figure 3-16 shows the gap fraction at different observation angles (φ). The dashed lines 

represent four sampling points selected from each sampling row, and the solid line 

represents the average gap fraction for all 32 samples in the field. The grey and blue bars 

represent the position of the sun and shadow. After comparing all 32 sampling points on 

all four monitoring dates, the average gap fractions at the angles of facing against and 

facing away from the sun were very close. The values of gap fraction do not vary 

significantly at different observation angles. The illumination effect on gap fraction 

measurements on the UAV-based photogrammetric PCD is not significant. 
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(a) 

 

(b) 

 

(c) 

Figure 3-15: Illustration of shadow in winter wheat on May 21. a) UAV image, b) 

UAV-based photogrammetric PCD, green points represent the wheat plant points 

and light-yellow points represent the bare ground, c) the vegetation points after 

point cloud classification. The shadows within the canopy and on the ground are 

shown in the red and blue blocks. 
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(d) 

Figure 3-16: The values of gap fraction at different observation angles for four 

sampling points on May 11, May 21, May 27, and June 3. a) May 11, b) May 21, c) 

May 27, and d) June 3. The grey and blue rectangles represent the observation 

angles facing against and facing away from the sun at the specific time on the 

monitoring day. The solid black line represents the average gap fraction for 32 

sampling points. 

Data resolution could be another factor influencing the LAIe estimation in the booting stage 

using the UAV-based photogrammetric PCD. During the ground data collection, the DHP 

was captured at one meter above the canopy. The center of the DHP has a resolution of 

0.3mm, which can easily capture the shaded leaves under the crop canopy. More shaded 

leaf pixels can be correctly extracted using the high-resolution DHP images. The UAV-

based photogrammetric PCD contains 0.4 million points for the simulate observation area, 
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is 1 cm. At this resolution, the shaded leaves within the canopy will be treated as shadows. 

The unmatched shadow area within the crop canopy will produce empty spots in the 

photogrammetric PCD and generate fewer vegetation points. The fewer vegetation points 

will lead to a lower LAIe estimation in the later growth stage with a dense canopy. For 

example, the ratios of the vegetation and the total points in the observation area before the 

projection for sampling point 12 on May 11, May 21, May 27, and June 3 were 8%, 38%, 

72%, and 75%. The average ratio of the vegetation and the total number of pixels on the 

DHP images were 23%, 46%, 54%, and 63%. After reducing the resolution of the DHP 

images into the resolution of 1 cm, the ratio changed to 29%, 43 %, 50%, and 54%. The 

percentage of vegetation pixels has a smaller increase rate at the resolution of 1 cm because 

the shaded vegetation pixel merged with the shadow pixels together. The same observation 

was obtained in the UAV-based photogrammetric PCD. The vegetation points slightly 

increased in the booting stage, and the estimation of LAIe tends to be saturated at this 

growth stage using the SOPC methods. 

In addition, the portion of vegetation and bare ground points will change from emergence 

stage to heading stages of winter wheat. The histogram of the points distribution shows 

only one peak, which was composed of vegetation points only in an individual voxel when 

the crop canopy closed (Song & Wang, 2019). In this case, the determination of bare 

ground points is challenging and produces the incorrect LAIe estimation in the later growth 

stage. Since the LAI of the crop should gradually increase over time during the leaf 

development stages, the percentage of the lower LAIe estimation compared with the 

previous monitoring was evaluated on both LAIe maps and DHP ground measurements on 

May 27 and June 3. The amount of lower LAIe estimations was calculated by subtracting 

the LAIe estimation of a later date. The percentage of the lower LAIe estimation on LAIe 

maps was calculated by the ratio of the amount of lower LAIe and the total pixel number 

of 5,977. The percentage of the lower LAIe for DHP method was calculated by the ratio of 

the number of lower LAIe and the total sampling points. The results of all three SOPC and 

DHP methods are listed in Table 3-5. According to the results, the amount of lower LAIe 

estimations increased substantially on June 3 for SOPC and DHP methods. Among the 

three SOPC methods, the SOPC-M had the lowest percentage of lower LAIe estimation on 

May 27 and June 3, which were 0.50% and 33.68%, respectively. The DHP had a lower 
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percentage of lower LAIe than the SOPC-M method which is 0% and 28.12% on May 27 

and June 3. However, while the evaluation of the DHP method is based on the 32 ground 

sampling points, the percentage may change if apply to the entire study site. 

Table 3-5: The percentage of lower effective LAI estimation on May 27 and June 3. 

 
SOPC-V SOPC-F SOPC-M DHP  

27-May 3.73% 7.50% 0.50% 0% 

3-Jun 51.83% 46.26% 33.68% 28.12% 

Furthermore, the SOPC-F and SOPC-M methods generated higher LAIe estimations 

around the tractor wheel tracks in the study area on the map of June 3. It is because these 

two methods monitored the canopy with a view angle which had a larger observation area 

than the SOPC-V method. The tracker wheels compacted the soil and destroyed the plants 

and left open areas in the field. The open area promoted the growth of crop near it and 

helped to produce a more accurate classification for bare ground points, which lead to a 

higher LAIe estimation than the area with full canopy on June 3 using the SOPC-V and 

SOPC-M methods. 

3.4.2 Advantages and limitations of the SOPC method 

One of the most advantageous aspects of the SOPC method is that it can be used to calculate 

LAIe directly from the PCD without the requirement of ground-based reference LAI 

measurements. This could greatly reduce the time and resources for taking ground LAI 

measurements. Secondly, this method can provide a much larger number of field samples 

in comparison with the field-based method. For instance, more than five thousand LAI 

estimates were generated in this study. Thirdly, this method can provide multi-scale maps 

by modifying the resolution of observation points, which can meet different agricultural 

application requirements. Furthermore, UAV derived photogrammetric PCD collected 

from one flight can also be used to retrieve other crop physical parameters such as canopy 

height and biomass, hence making UAV derived photogrammetric PCD very cost-efficient.   
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The SOPC method does not require image calibration to normalize the dataset for multi-

temporal imagery acquisitions. Another economic benefit of the SOPC method is that it 

uses a regular high-resolution RGB camera for imaging, leading to lower cost than that of 

a multispectral camera in data collection. Unlike multispectral images, the regular images 

do not require alignment correction for multiple bands in the multispectral image dataset.  

Like all other methods, SOPC also has its disadvantages.  One shortcoming is large time 

consumption when generating the point clouds. This step relies heavily on computer power. 

For this study, it took 30 hours to generate the point cloud and calculate the LAIe for one 

of the four acquisition dates using a computer system equipped with a 12-core XEON 

processor and Quadro M4000 graphic card. Benefit from the rapid development of 

technology, including commercial cloud service providers are now offering high-speed 

data processing, which will result in much reduced computing time. Another disadvantage 

of the UAV method is its limitation in area of coverage due to the requirements of the 30-

m flying altitude the ground and a very high image overlapping rate to collect super high-

resolution images. As a result, mapping LAI for large fields will take a long time to fly and 

abundant space for image storage.  However, these barriers will likely be overcome in the 

near future. 

3.4.3 Application 

The proposed SOPC-M method uses the ratio of bare ground and the total number of points 

in a simulated observation area to calculate the gap fraction and LAIe for a winter wheat 

field. Although the structure of wheat canopy is complex, this method was able to retrieve 

the LAIe estimation using photogrammetric PCD containing both vegetation and bare 

ground information. The resultant LAIe maps revealed nicely the intra-field variation of 

the winter wheat.  This method can successfully be applied to LAIe monitoring and 

estimation between leaf development and the stem elongation stages as shown through this 

study (BBCH 20-39). LAI information from these stages is valuable for winter wheat 

growth modeling and final grain yield forecast (Marie Weiss & Baret, 2017). The 

information of LAIe could help end-users identify the growth status of crops and make 

early decisions on agricultural management strategies. The UAV-based photogrammetric 

PCD derived LAIe could be an alternative to LAI monitoring during the canopy 
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development stages.  However, the performance of the proposed method declines when 

estimating LAIe at late growth stages once the crop canopy is fully developed.  As revealed 

by the results from this study, the average estimated LAIe value did not show much 

variation after the booting stage for winter wheat due to the limitation of point classification 

at full canopy cover.  Improved point classification methods need to be developed and 

tested in future studies to extend the LAIe estimation to later growth stages of crops. In 

addition, the UAV derived LAIe method should be evaluated for other crops such as corn 

and soybean having different leaf structure and distribution. 

3.5 Conclusion 

Intra-field variation of leaf area index (LAI) plays an essential role in field crop monitoring 

and yield forecasting. Although unmanned aerial vehicle (UAV)-based optical remote 

sensing method can overcome the spatial and temporal resolution limitations associated 

with satellite imagery for fine-scale intra-field LAI estimation of field crops, image 

correction and calibration of UAV data are very challenging. In this study, a physical-based 

method was proposed to automatically calculate crop effective LAI (LAIe) using UAV-

based 3-D point cloud data. Regular high spatial resolution RGB images were used to 

generate point cloud data for the study area. The proposed method, simulated observation 

of point cloud (SOPC), was designed to obtain the 3-D spatial distribution of vegetation 

and bare ground points and calculate the gap fraction and LAIe from a UAV-based 3-D 

point cloud dataset at vertical, 57.5°, and multi-view angle of a winter wheat field in 

London, Ontario, Canada.  

Results revealed that the SOPC methods using UAV-based photogrammetric PCD could 

be used to estimate crop LAIe based on a gap fraction method instead of the traditional 

optical VI methods in the leaf development stage. The SOPC derived LAIe tends to be 

saturated at a higher LAIe value which is greater than 1.5. The SOPC multi-view angle 

method correlates well with the LAIe derived from ground digital hemispherical 

photography, R2 = 0.76. The root mean square error and mean absolute error for the entire 

experiment period from May 11 to May 27 were 0.19 and 0.14, respectively. The newly 

proposed method performs well for LAIe estimation during the main leaf development 

stages (BBCH 20-39) of the growth cycle. The SOPC method can effectively identify intra-
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field LAIe variation for early monitoring of crop growth conditions, which is useful for 

making timely management decisions. This method has the potential to become an 

alternative approach for crop LAIe estimation without the need for ground-based reference 

measurements, hence save time and money.  
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Chapter 4 

4 Using UAV-based SOPC derived LAI and SAFY model 
for biomass and yield estimation of winter wheat 

4.1 Introduction  

Precision agriculture aims at optimizing input and output in field operations in order to 

achieve maximum economic profit while maintain environmental sustainability 

(Schimmelpfennig, 2016). Sub-field level crop monitoring can provide finer spatial 

resolution (meter level) information and reveal the intra-field crop variability. Information 

on spatial variation of crop biomass and yield at sub-field level is directly relevant to 

increasing farm profit by addressing the low-productivity areas within a field. Remote 

sensing has long been recognized as an effective means to provide multi-temporal 

information on crop growth over large areas in support of precision agriculture (Idso et al., 

1977; Liu et al., 2004; Toscano et al., 2019). For example, Moderate Resolution Imaging 

Spectroradiometer (MODIS), Landsat, and RapidEye optical satellite data have been used 

to monitor crop growth status throughout the growing season using vegetation spectral 

indices and crop models (Rudorff & Batista, 1991; Shang et al., 2015; Dong et al., 2016, 

2019). Although the spatial and temporal resolution of satellite imagery has been improved 

over the years, it is still incapable of providing timely and detailed information of intra-

field variations for operational applications (Ruwaimana et al., 2018). Recent advancement 

of the unmanned aerial vehicle (UAV) system has overcome the spatial and temporal 

limitation of satellite data for precision agriculture (Sanches et al., 2018; Duan et al., 2019; 

Song & Wang, 2019). The high spatial and temporal UAV-based imagery can provide 

important information for monitoring the intra-field variabilities of crop status during the 

growing season (Zhang & Kovacs, 2012; Bansod et al., 2017). High quality and real-time 

UAV data gives a better solution in precision farming management, such as the monitoring 

of crop canopy leaf area index (LAI), nitrogen status, water stress, weed stress, and dry 

aboveground biomass (Hoffmann et al., 2016; Schirrmann et al., 2016; Yao et al., 2017; 

Huang et al., 2018).  
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Commonly, two categories of approaches have been adopted in using remote sensing data 

for crop biomass and yield estimation. Empirical models are the earliest and simplest 

approaches to estimate crop yield from remotely sensed imagery and have still been used 

in many recent applications (Dong et al., 2016; Berni et al., 2009; Dong et al., 2017; 

Casanova et al., 1998; Idso et al., 1980; Hunt et al., 2010; Hoefsloot et al., 2012; Shang et 

al., 2014). The basic idea of the empirical models in crop yield estimation relies on the 

regression between in-situ measurements and remote sensing observations (Kouadio et al., 

2014; Zhou et al., 2017). In recent years, many studies have attempted to obtain crop yield 

estimation using machine learning algorithms (Khaki & Wang, 2019; Kim et al., 2019). 

However, these empirical relationships are location, time, and crop type dependent, which 

limit their operational applications to different crop types and over dynamic geographical 

regions (Cheng et al., 2016; Kuwata & Shibasaki, 2016). For example, Yue et al., (2019) 

estimated the winter wheat dry aboveground biomass (DAM) from the ground based 

hyperspectral vegetation index with a root mean square error (RMSE) of 1.22 t/ha 

(122g/m2). The ground measurements and spectral calibration were required to establish 

the specific relationship at this location between vegetation index and DAM. On the 

contrary, crop growth models have been developed by combining crop and environmental 

parameters to simulate crop growth and estimate crop biomass (Brisson et al., 2003; 

Duchemin et al., 2008).Remote sensing data have been used for model calibration and 

initialization. The main challenge of the modeling approach is that many model parameters 

are difficult to obtain, especially for process-based models (Lobell & Asseng, 2017; Liao 

et al., 2019; Liu et al., 2019). Currently, crop growth models such as AquaCrop (Steduto 

et al., 2009), STICS (Brisson et al., 2003), and WOFOST (van Diepen et al., 1989) have 

been well developed in crop production estimation. However, these models require a 

comprehensive set of parameters to simulate crop growth status. For example, WOFOST 

requires about 40 parameters and the data acquisition is labor and time intensive, which is 

challenging to apply in practice. Furthermore, model calibration can introduce 

uncertainties due to errors contained in remote sensing data products and in-situ 

measurements. 

In general, process-based models that can accurately describe crop growth processes have 

better model performances. However, they require more complex calculations compared 
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to the empirical methods (Silvestro et al., 2017). The Simple Algorithm for Yield (SAFY) 

model is a semi-empirical crop model, which combines the crop light use efficiency (LUE) 

theory (Monteith, 1972) and leaf partitioning function (Maas, 1993) to estimate the daily 

increase in green leaf area index (GLAI) and DAM. GLAI was defined as that the green 

area of plant per unit horizontal ground area; and DAM was the total dry biomass of plants 

above the ground surface. SAFY has the benefit of model simplicity yet maintain the 

required biophysical processes of leaf growth and senescence (Zhang et al., 2019). It has 

been widely adopted in estimating crop biomass and yield using satellite imagery derived 

LAI for model calibration (Duchemin et al., 2008; Dong et al., 2016; Silvestro et al., 2017; 

Liao et al., 2019). The input parameters of the SAFY model include crop phenology, 

cultivar-specific parameters (CSPs) such as effective light-use efficiency (ELUE), fraction 

of green leaves, total DAM, and weather data. Usually, LAI derived from remote sensing 

is used for model calibration. Different estimation approaches can produce different terms 

of LAI, such as GLAI, effective LAI (LAIe), actual LAI, and plant area index (Zheng & 

Moskal, 2009) which will lead to a different CSPs for the SAFY model. Therefore, the 

conversion of LAI to GLAI is a necessary procedure for SAFY model calibration in order 

to achieve accurate crop biomass and yield estimation.  

A light-weight UAV system combined with a light-weight multispectral camera has been 

used to provide spectral information for crop fields during the growing season in LAI and 

DAM monitoring (Mccabe et al., 2015; Yao et al., 2017; Zhou et al., 2017; Fu et al., 2020). 

Zhou et al., (2017) addressed that the UAV-based Normalized Difference Vegetation Index 

(NDVI) has a linear relationship with LAI in rice, with an R2 of 0.71. Although the 

principle of the vegetation indices is simple, it requires accurate radiometric correction. 

The accuracy of the vegetation index will be influenced by some other factors, such as 

shadow and illumination. In addition, a multispectral or hyperspectral camera is more 

expensive than a regular RGB camera and it also requires a larger UAV system, which will 

be difficult in practice for farmers. In contrast, the recently developed Simulated 

Observation of Point Cloud (SOPC) method uses the UAV-based photogrammetric point 

cloud data (PCD) derived from low-cost RGB imagery to calculated gap fraction of crop 

canopy from the ratio of bare ground points and the total number of the points in a 

simulated observation area, and can automatically generate LAIe maps showing  intra-field 
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variation (Song et al., 2020). The LAIe is the result of the indirect approach retrieved LAI 

value using a non-destructive method. If the canopy satisfies the assumption of a random 

spatial distribution, the LAIe could be calculated from the gap fraction of the canopy 

(Weiss et al., 2004). The UAV-based photogrammetry PCD contains crop structural 

information. The SOPC derived LAIe maps from the UAV-based photogrammetric PCD 

can clearly indicate the winter wheat LAIe spatial variability without using ground based 

LAIe measurements. In addition, the SOPC method is not affected by shadow and 

illumination, so does not require a radiometric calibration for UAV-based imagery. 

Currently, Canada has no restriction on use of UAV systems less than 25kg operating over 

agricultural area. This may encourage end users to adopt this innovative technology in crop 

monitoring. The demand for crop monitoring will require a low-cost and accessible 

approach to achieve the estimation of crop DAM and yield for farmers. Due to the low-

cost and easy operation of SOPC method, the SOPC derived LAIe has great potential for 

final DAM and yield estimation. 

The overall objective of this study aims at developing a simple and low-cost UAV-based 

approach for generating a high-resolution final DAM and yield maps without ground-based 

measurements. The SOPC derived UAV-based point cloud LAIe (SOPC-LAIe) were 

applied to the SAFY model, using winter wheat as an example, to generate the final DAM 

and yield map to represent the DAM and yield spatial variabilities. The study is designed 

1) to determine winter wheat CSPs from DAM in the SAFY calibration instead of LAI 

measurements; 2) to generate high spatial resolution multi-temporal LAI maps using the 

newly developed SOPC method on UAV-based photogrammetric PCD; and 3) to generate 

winter wheat final DAM and yield map using SAFY model calibrated with the UAV-based 

LAIe maps. 

4.2 Method 

4.2.1 Study area 

The study site is located 5 km southwest of Melbourne (42.787707°N, 81.594801°W) in 

southwestern Ontario, Canada (Figure 4-1a). This region has productive soil and abundant 

water supply. Due to its long cold winter and shorter growing season (April to September), 
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there is only one harvest per year for field crops. Winter wheat is one of the major crops 

grown in this region; it is typically sowed in the previous fall and regrows the following 

spring after snowmelt. The selected winter wheat field is 41 acres in size. The soft red 

winter wheat cultivar (Brevant Branson, Corteva Agriscience, USA) was planted on 

October 12, 2018, and harvested on July 26, 2019. The plant emergence date was observed 

in the field on December 19, 2018 (64 days after planting). 

 

Figure 4-1: The maps of the winter wheat study site. a) Study site location in 

Southwestern Ontario. b) The aerial map of study site. c) The study stie sub-field 1 

(S1) and sub-field 2 (S2). The blue points are the sampling locations in S1, and the 

red points are the sampling locations in S2.  

Melbourne 

S2 

S1 
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4.2.2 Field sampling design and field data collection. 

Since the UAV imagery was to be collected at very high spatial resolution, the 

corresponding destructive biomass collection will affect the subsequent crop parameter 

measurements. To circumvent this situation, two sub-fields, S1 and S2, were selected 

within this winter wheat field (Figure 4-1c); S1 was used to collect LAI and DAM, and S2 

was used to collect other crop parameters, including LAI, crop height, phenology, and final 

DAM. The size of each subfield is 100 m by 200 m.  The blue points were the sampling 

locations in S1, and the red points were the sampling locations in S2. 

Fieldwork was conducted multiple times from May 11 to July 22 in 2019. In S1, destructive 

aboveground biomass samples were collected at each of the 12 sampling locations on May 

8, May 17, May 21, May 27, June 3, June 11, and July 20. Winter wheat plant samples 

were collected from two 0.5 m by 0.5 sections within a 4 m by 4m area at each sampling 

location. The fresh plant samples were placed in plastic bags and transferred back to the 

lab directly. All samples were oven dried at 80°C for at least 24 hours to obtain the DAM. 

In S2, 32 sampling points were used to collect other data, including LAI, soil moisture, 

crop height and phenology on May 11, May 21, May 27, June 3, and June 11. At each 

sampling location, LAI was obtained using a Nikon D300s camera and a 10.5mm fisheye 

lens following the procedures described in Shang et al. (2014). Crop phenology was 

identified in the field using the Biologische Bundesanstalt, Bundessortenamt und 

CHemische Industrie (BBCH) scale. Details on data collection are listed in Table 4-1. 
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Table 4-1: The data collection in S1 and S2. 

  
Biomass 

(S1) 

Biomass 

(S2) 

Fisheye LAI 

(S1) 

Fisheye LAI 

(S2) 

UAV-flights 

(S2) 
BBCH 

8-May 12 samples  12 samples   20 

11-May    32 samples 1257 images 21 

17-May 12 samples  12 samples 32 samples  25 

21-May 12 samples  12 samples 32 samples 1157 images 31 

27-May 12 samples  12 samples 32 samples 1157images 39 

3-Jun 12 samples  12 samples 32 samples  49 

11-Jun 12 samples  12 samples 32 samples  65 

16-Jun      69 

20-Jul 12 samples 32 samples  
  

85 

4.2.3 Combine harvester yield data collection 

The true spatially variable winter wheat yield data was collected by the producer using a 

10-meter swath John Deere Combine Harvester (John Deere, USA). This harvester 

equipped with a grain yield monitor and real-time kinematic (RTK)-global navigation 

satellite system (GNSS) to record the dry grain weight every second and measured the 

harvested mass flow, moisture content, and geographic position, in addition to generating 

high spatial resolution yield map. The moving area of the combine harvester will be 

calculated by multiplying the harvester moving speed and time interval during crop weight 

recording. The yield map for S2 was composed of many points containing the yield values 

(Figure 4-2). The yield data was then processed in ArcMap 10.7 (Esri, USA) for duplicate-

point removal, spatial resampling, and data extraction. 
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Figure 4-2: The winter wheat yield map generated from combine harvester for S2. 

4.2.4 UAV-based image collection and LAI maps generation 

Multi-temporal UAV-based RGB imagery was collected using a DJI phantom 4 RTK UAV 

system on May 11, May 21, and May 27 when crop phenology was at BBCH scale 21, 31, 

and 39 of early leaf development stage to the end of the stem extension stage for S2. A 5K 

high-resolution digital camera was mounted on this system to collect information on red, 

green, and blue bands. An RTK base station was placed on the ground and combined with 

the RTK system on the UAV to achieve high precision location estimation for all imagery. 

The UAV flights were performed between 10 am and 2 pm and flown at an altitude of 30 

m with the front and side overlapping of 90%. The total time of the operation is 55 mins to 

acquire all images for S2. The Pix4Dmapper Pro v2.4 (Pix4D, Lausanne, Switzerland) 

software was used to process the UAV-based imagery to generate 3D photogrammetric 

PCD. The time of point cloud generation and LAIe calculation depends on the computer 

hardware. It took about 30 hours with a 12 core XEON processor and Quadro M4000 video 
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card for this field in this study. The output of the 3D PCD has a similar format to LiDAR 

data, which contained the crop structure and optical RGB information. This type of PCD 

has a low cost on both sensor and UAV system.  

4.2.5 Simulated Observation of Point Cloud method 

The SOPC method was designed to retrieve the spatial distribution of crop canopy and 

bare ground points in a simulated observation area from the UAV-based PCD and 

generate a high spatial resolution crop LAIe map (Song et al., 2020). First, the SOPC 

method divided the study area into many observation areas based on the final resolution 

of LAI map. In each simulation area, the crop vegetation and bare ground points in the 

UAV-based PCD are classified into two groups. The gap fraction will be calculated from 

the ratio of crop canopy and bare ground points at multi-view angles. Finally, the LAIe 

will be calculated from the gap fraction in the simulation area. The general principle of 

the SOPC method is shown in Figure 4-3. This method achieves the crop canopy LAIe 

estimation from the UAV-based PCD instead of the traditional optical information, which 

has limited effects by the shadow and view angles. In addition, the SOPC method 

retrieves the LAIe estimates without ground-based LAI measurements and has a good 

agreement with downward-looking digital hemispherical photograph method derived 

LAIe. This method can successfully retrieve winter wheat LAIe at early growth stages 

from leaf development to the booting stage. The SOPC-LAIe maps are shown in Figure 

4-4. 
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(a) (b) (c) 

Figure 4-3: The general principle of Simulated Observation of Point Cloud (SOPC) 

method for point observation (Song et al., 2020). a) The simulate observation points 

in the study area; b) the observation area for one simulate observation point; c) the 

3D respective view of the unmanned aerial vehicle (UAV)-based photogrammetric 

PCD within the observation area. 
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(c) 

Figure 4-4: The SOPC derived UAV-based point cloud effective leaf area index 

(LAIe) maps for S2. a) LAIe maps on May 11, 2019; b) LAIe maps on May 21, 2019; 

c) LAIe maps on May 27, 2019. 

4.2.6 Weather data  

Weather data was retrieved from a nearby weather station located on the main campus of 

Western University, London, Ontario. This weather station has been in operation since 

2016 and collects weather data every 30 minutes, including solar radiation (MJ/m2), 

temperature (°C), rainfall (mm), and wind speed (m/s). The weather data was used to 

represent the weather conditions in the region of the study area. The distance between the 

weather station and the study site is 35 km. The daily shortwave solar radiation from 

October 1, 2018, to July 31, 2019, was also extracted as the sum of daily solar radiation for 

the study site (Figure 4-5a). The daily mean temperature was also calculated from the 

average of the daily maximum and minimum air temperature (Figure 4-5b). 
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(a) 

 

(b) 

Figure 4-5: Daily shortwave solar radiation (a) and mean air temperature (b) for the 

study site between October 1, 2018 and October 1, 2019. 
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4.2.7 SAFY model calibration 

The SAFY model has been used to estimate winter wheat DAM (Duchemin et al., 2008). 

This model determines the optimized biomass production in the crop growing season based 

on the crop LUE (Monteith, 1972) and leaf partitioning function (Maas, 1993) theories. 

Firstly, the daily DAM (∆𝐷𝐴𝑀) accumulation was calculated using the simple LUE theory 

with the equations shown below: 

∆𝐷𝐴𝑀 = 𝐸𝐿𝑈𝐸 ×  𝑅𝑔 × 𝜀𝐶  × 𝑓𝐴𝑃𝐴𝑅 × 𝐹𝑇(𝑇𝑎)   (4-1) 

𝑓𝐴𝑃𝐴𝑅 = 1 − 𝑒−𝑘 ×𝐺𝐿𝐴𝐼    (4-2) 

where 𝐸𝐿𝑈𝐸 is the effective LUE, which is the LUE under environmental stress except 

temperature stress (Liao et al., 2019); 𝑅𝑔 is the incoming shortwave solar radiation; 𝜀𝐶 is 

the climate coefficient, which is the ratio of photosynthetically active radiation (PAR) to 

the shortwave solar radiation. In this study, a fixed value was adopted, 𝜀𝐶 =0.48 (Brisson 

et al., 2003; Claverie et al., 2012; Betbeder et al., 2016);  𝐹𝑇(𝑇𝑎) is the temperature stress; 

and the light-interception coefficient 𝑘  is 0.5 under the assumption of the leaf angle 

distribution is uniform and the leaf inclination is a spherical distribution (Zheng & Moskal, 

2009; Liu & Pattey, 2010). 

Secondly, the daily increase of GLAI (∆𝐺𝐿𝐴𝐼 ) can be calculated from ∆𝐷𝐴𝑀  which is 

portioned to leaves (𝑃𝐿) according to a given coefficient of specific leaf area (𝑆𝐿𝐴). The 

equation given below: 

∆𝐺𝐿𝐴𝐼 =  ∆𝐷𝐴𝑀 ×  𝑃𝐿 (∑ 𝑇𝑎)  × 𝑆𝐿𝐴    (4-3) 

where the ∑ 𝑇𝑎 is the sum of optimal air temperature accumulated since plant emergence. 

𝑃𝐿 is the fraction between leaf and dry aboveground biomass, which is determined by air 

temperature and another two parameters (𝑃𝐿𝑎 and 𝑃𝐿𝑏 ) (Maas, 1993). The equation can be 

written as follows: 

𝑃𝐿 (∑ 𝑇𝑎) = 1 − 𝑃𝐿𝑎 × 𝑒𝑃𝐿𝑏 ∑ 𝑇𝑎    (4-4) 
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After the air temperature reached the threshold 𝑆𝑇𝑇, the GLAI can be calculated from the 

following equation,  

If ∑ 𝑇𝑎 > 𝑆𝑇𝑇 

∆𝐺𝐿𝐴𝐼 =  𝐺𝐿𝐴𝐼 × ( ∑ 𝑇𝑎 − 𝑆𝑇𝑇)/𝑅𝑠    (4-5) 

where 𝑅𝑠 is the rate of senescence.  

After simulating the final DAM, the final crop yield can be calculated by multiplying the 

harvest index with the DAM. The harvest index (𝐻𝐼) was calculated from the ground 

biomass and final yield in S1, the average HI for all 12 sample points was 0.45. The yield 

can then be calculated using the equation below: 

𝑌𝐼𝐸𝐿𝐷 =  𝐷𝐴𝑀 ×  𝐻𝐼     (4-6) 

4.2.8 Winter wheat parameters estimation from ground-based 
biomass measurement 

The first step attempted to determine the CSPs (𝑃𝐿𝑎, 𝑃𝐿𝑏, 𝑆𝑇𝑇, 𝑅𝑠) of winter wheat and the 

range of ELUE based on the DAM experimental data collected in S1. The CSPs depend on 

the genetic characteristics of the type and variety of the winter wheat. Five parameters 

affect the biomass partitioning; these include two parameters 𝑃𝐿𝑎 and 𝑃𝐿𝑏 in the partition to 

leaf function 𝑃𝐿  (Equation 4-4), the sum of temperature to start senescence 𝑆𝑇𝑇 (°C), rate 

of senescence 𝑅𝑠  (°C/day), and ELUE the ratio of photochemical energy produced as 

DAM from absorbed PAR (APAR). 

Nine parameters identified in the literature, weather station measurements, and in-situ 

measurements (Table 4-2) were used to calibrate the SAFY model and determine the crop 

CSPs (Duchemin et al., 2008). The nine parameters include 1) climatic efficiency (𝜀𝐶), 

which is the ratio of PAR to the shortwave solar radiation; 2) minimum, optimal and 

maximum temperature (𝑇𝑚𝑖𝑛, 𝑇𝑜𝑝𝑡, and 𝑇𝑚𝑎𝑥) required for winter wheat growth; 3) specific 

leaf area (𝑆𝐿𝐴), which is the unit weight of crop leaves; 4) initial value of 𝐷𝐴𝑀 at the day 

of plant emergence; 5) the light-interception coefficient (𝑘𝑒𝑥𝑡) in Beer’s law, which is 

related to the plant LAI and fAPAR; 6) the day of plant emergence; 7) the day of 
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senescence; 8) the daily shortwave solar radiation (𝑅𝑔); and 9) daily mean air temperature 

(𝑇𝑎). Detailed values used in the SAFY model are given in Table 4-2. The five CSPs are 

calibrated in the first SAFY calibration. 

The winter wheat CSPs and the range of ELUE were calibrated against the DAM 

observation collected in the S1 using the global optimization method, Shuffled Complex 

Evolution-University of Arizona (SCE-UA) algorithm ( Duan et al., 1994), to determine 

the optimal value for 𝑃𝐿𝑎, 𝑃𝐿𝑏, 𝑆𝑇𝑇, 𝑅𝑠, and ELUE (Duchemin et al., 2008; Dong et al., 

2016; Liao et al., 2019).  

Table 4-2: SAFY parameters and associated values used in this study. 

Parameter name Notation Unit Range Value Source 

Climatic efficiency 𝜀𝐶 -  0.48 

(Brisson et al., 

2003; Claverie et 

al., 2012; Battude 

et al., 2016) 

Temperature range for 

winter wheat growth 

𝑇𝑚𝑖𝑛, 

𝑇𝑜𝑝𝑡, 

𝑇𝑚𝑎𝑥 

°C  [0, 25, 30] 

(Battude et al., 

2016; Dong et al., 

2016) 

Specific leaf area 𝑆𝐿𝐴 m2/g  0.022 (Dong et al., 2016) 

Initial dry aboveground 

biomass 
𝐷𝐴𝑀0 g/m2  4.2 

(Duchemin et al., 

2008; Dong et al., 

2016) 

Light-extinction coefficient 𝑘𝑒𝑥𝑡 -  0.5 

(Duchemin et al., 

2008; Dong et al., 

2016) 

Day of plant emergence 𝐷𝑂𝐸 day  64 
In-situ 

measurement 

Day of senescence 𝐷𝑂𝑆 day  284 
In-situ 

measurement 

Daily shortwave solar 

radiation 
𝑅𝑔 MJ/m2/d  

 In-situ 

measurement 

Daily mean temperature 𝑇𝑎𝑖𝑟 °C  
  In-situ 

measurement 
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Partition to leaf function: 

parameter a 
𝑃𝐿𝑎 - 

0.05 - 

0.5 
 

First calibration 

(Duchemin et al., 

2008; Dong et al., 

2016) 

Partition to leaf function: 

parameter b 
𝑃𝐿𝑏 - 

10-5 - 

10-2 
 

First calibration 

(Duchemin et al., 

2008; Dong et al., 

2016) 

Sum of temperature for 

senescence 
𝑆𝑇𝑇 °C 

800-

2000 
 

First calibration 

(Dong et al., 2016) 

Rate of senescence 𝑅𝑠 °C day 0 - 105  

First calibration 

(Claverie et al., 

2012) 

Effective light-use 

efficiency 
𝐸𝐿𝑈𝐸 g/MJ 1.5-3.5  

Variable in this 

study 

Range (Duchemin 

et al., 2008; Dong 

et al., 2016) 

After running the optimization procedure using the SCE-UA algorithm (Duan, Sorooshian, 

& Gupta, 1994), the winter wheat CSPs and ELUE can be determined. The RMSE between 

the simulated DAM (𝐷𝐴𝑀𝑠𝑖𝑚 ) and the in-situ DAM (𝐷𝐴𝑀𝑡𝑟𝑢𝑒 ) was used as the cost 

function of the calibration: 

𝑅𝑀𝑆𝐸𝐷𝐴𝑀 = [
1

𝑁
∑ (𝐷𝐴𝑀𝑠𝑖𝑚 − 𝐷𝐴𝑀𝑡𝑟𝑢𝑒)2𝑁

𝑖=1 ]

1

2
   (4-7) 

Model calibration was performed by minimizing the RMSE between DAMsim and DAMtrue. 

In the SAFY model, the optimization procedure was run 10,000 times for each sampling 

location to achieve the optimal parameters with the lowest RMSE. In addition, RRMSE 

was also used to indicate model accuracy.  

𝑅𝑅𝑀𝑆𝐸𝐷𝐴𝑀 =  
𝑅𝑀𝑆𝐸𝐷𝐴𝑀

∑ 𝐷𝐴𝑀𝑡𝑟𝑢𝑒
𝑁
𝑖=1

× 100%     (4-8) 
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4.2.9 Fisheye-derived GLAI and model-simulated GLAI 

As the first calibration generated the daily GLAI values for 12 sampling locations for the 

entire growing season using the SAFY model, these GLAI values can be used to calibrate 

the fisheye-derived effective LAI. The relationship between the fisheye LAIe and the 

SAFY-GLAI was established using the data from S1. This relationship was then used to 

convert the fisheye derived LAIe in S2 and used as input for the SAFY model to simulate 

the DAM in S2. A second calibration of the SAFY model was performed for S2 using the 

winter wheat CSPs ( 𝑃𝐿𝑎 , 𝑃𝐿𝑏 , 𝑆𝑇𝑇 , 𝑅𝑠 ), and the converted fisheye derived LAIe 

measurements to simulate the final DAM and evaluate the accuracy of the estimated yield. 

The median values of these CSPs were then adopted and the ELUE was kept as a variable 

in the second calibration. The RMSE between the simulated GLAI (𝐺𝐿𝐴𝐼𝑠𝑖𝑚) and the 

converted fisheye LAI measurements (𝐺𝐿𝐴𝐼𝑡𝑟𝑢𝑒)  was used as the cost function in the SCE-

UA algorithm during the calibration.  

𝑅𝑀𝑆𝐸𝐺𝐿𝐴𝐼 = [
1

𝑁
∑ (𝐺𝐿𝐴𝐼𝑠𝑖𝑚 − 𝐺𝐿𝐴𝐼𝑡𝑟𝑢𝑒)2𝑁

𝑖=1 ]

1

2
   (4-9) 

The calibration procedure was also performed 10,000 times to ensure the optimal GLAI 

simulation with the lowest RMSE.  

4.2.10 Final DAM and yield estimation using UAV-based LAIe in S2 

The relationship between the UAV-based LAIe and simulated GLAI derived from the 

second SAFY calibration was then established from the second calibration. After 

converting the UAV-based LAIe to GLAI, the third SAFY calibration was performed for 

the S2 using the winter wheat CSPs derived from the first SAFY calibration and the UAV-

based GLAI to simulate the DMA in S2. There are a total of 5977 UAV-based LAIe 

measurements for S2 on each monitoring date. The final DAM was estimated by 

optimizing the lowest RMSE of GLAI value using Equation (4-9). The final yield was 

calculated using Equation (4-6). After resampling the UAV-based final yield to the same 

resolution as the harvester yield data, the mean, standard deviation, and coefficient of 

variation (CV) were used to evaluate the performance of yield estimation. The flow chart 



118 

 

below illustrates the steps of winter wheat yield estimation using the UAV-based LAI data 

(Figure 4-6). 

 

Figure 4-6: Flowchart shows the steps to perform UAV-based winter wheat yield 

estimation. 
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4.3 Results 

4.3.1 Determination of cultivar-specific parameters 

After the initial SAFY model calibration using the in-situ DAM, the ranges of 𝑃𝐿𝑎, 𝑃𝐿𝑏, 

𝑆𝑇𝑇, 𝑅𝑠 and ELUE were determined. Table 4-3 shows the results of the five parameters, 

including maximum, minimum, median, mean, and standard deviation (STD). The median 

value of 𝑃𝐿𝑎 , 𝑃𝐿𝑏 , 𝑆𝑇𝑇 , and 𝑅𝑠  was adopted from the second and third SAFY model 

calibration (Duchemin et al., 2008). The RMSE between the in-situ DAM measurements 

and simulated DAM in S1 was 81 g/m2, and the RRMSE is 13.89%. 

Table 4-3: The cultivar-specific parameters and ELUE derived from the initial 

SAFY calibration from 12 samples. 𝑷𝑳𝒂 is the parameter 𝒂 of 𝑷𝑳 function; 𝑷𝑳𝒃 is the 

parameter 𝒃 of 𝑷𝑳 function; 𝑺𝑻𝑻 (°C) is the sum of temperature for senescence;  𝑹𝒔 

(°C day) is the rate of senescence; ELUE (g/MJ) is the effective light-use efficiency. 

 𝑃𝐿𝑎 𝑃𝐿𝑏 𝑆𝑇𝑇 (C°) 𝑅𝑠 (°C day) 

ELUE 

(g/MJ) 

Maximum 0.2686 0.00214 1084.10 4949.62 3.18 

Minimum 0.2038 0.00151 848.401 2148.51 2.93 

Mean 0.2377 0.00169 969.656 3543.41 3.08 

Median 0.2424 0.00171 954.127 3449.86 3.08 

STD 0.0229 0.00019 82.110 1023.33 0.085 

4.3.2 Relationship between simulated GLAI and fisheye derived 
LAIe in S1 and S2 

After the first SAFY calibration (Figure 4-6, step 1), the simulated daily SAFY-GLAI were 

generated from DAM calibration for 12 sampling locations in S1, and the relationship 

between the simulated GLAI and fisheye-derived LAIe were established (Figure 4-7). The 

coefficient of determination (R2) was 0.75 for all 60 measurements. 
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Figure 4-7: Relationship between the simulated GLAI and fisheye derived LAIe 12 

sampling location in S1. 

Using this relationship between fisheye-derived LAIe and simulated GLAI in S1, the 

fisheye-derived LAIe measurements in S2 were converted to simulated GLAI. The second 

SAFY model calibration (Figure 4-6, step 2) was conducted using the simulated GLAI 

values of 32 sampling locations in S2; the final DAM and simulated daily SAFY-GLAI of 

these locations was determined in the second SAFY calibration. After estimating the final 

DAM for the 32 sampling locations in S2 from the second calibration, the in-situ measured 

final DAM and simulate DAM derived from SAFY model were compared (Figure 4-8). 

The R2 between the estimated and measured grain yield was 0.48, and the RMSE was 54 

g/m2, RRMSE was 9.37 %. 
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Figure 4-8: Relationship between the measured and estimated dry aboveground 

biomass (DAM) using SAFY model for S2. 

4.3.3 DAM estimation using UAV-based LAIe measurements 

Using the UAV-based LAIe estimations and the SAFY-GLAI derived for S2the 

comparison between the simulated SAFY-GLAI and UAV-based LAIe was performed for 

three monitoring days and shown in Figure 4-8. The R2 was 0.82 for all 96 measurements. 
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Figure 4-9: Relationship between the simulated SAFY-GLAI and UAV-based LAIe 

for 32 sampling locations in S2. 

Figure 4-10 depicts the converted UAV-derived LAIe, the daily simulated DAM, and the 

final DAM value derived from the second SAFY model calibration for point 8 (Figure 4-

10a), 16 (Figure 4-10b), and 26 (Figure 4-10c). The final DAM map was generated with 

the same spatial resolution as the UAV-based LAIe map. Figure 4-11 shows the final DAM 

maps at the resolution at 2 m by 2 m. Figure 4-11 shows the final yield map with the same 

spatial resolution as the harvester yield map. The accuracy of the estimated yield was 

evaluated by comparing their RMSE, mean, standard deviation (STD), and coefficient of 

variation (CV). 
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(c) 

Figure 4-10: Seasonal variation of converted fisheye LAI, simulated DAM, and 

ground measured final DAM in S2. (a) sampling point 8; (b) sampling point 16; (c) 

sampling point 26. The blue line is the daily simulated GLAI; the orange line is the 

daily simulated DAM; The blue circles are the converted UAV LAIe value; and the 

orange square is the in-situ measured DAM. 
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Figure 4-11: Winter wheat final dry aboveground biomass map derived from UAV-

based LAIe maps and the SAFY model. 

4.3.4 Comparison of true grain yield and estimated yield 

Table 4-4 shows statistical information of the harvester and estimated yield maps. Figure 

4-12 shows the maps of harvester measured grain yield (Figure 4-12a) and estimated yield 

(Figure 4-12b) for S2. The accuracy of the estimated yield was evaluated by comparing 

their RMSE, mean, standard deviation (STD), and CV. Figure 4-13 shows the absolute 

difference map between true grain yield and estimated yield for S2. 

Table 4-4: The mean grain yield, coefficient of variation (CV), and standard 

deviation (STD) of grain yield measured by harvester and estimated by SAFY 

model. The root mean square error (RMSE) and relative root mean square error 

between the harvester and estimated yield (RRMSE). 
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 Mean 

(g/m2) 

CV 

(%) 

STD 

(g/m2) 

RMSE 

(g/m2) 

RRMSE 

(%) 

Harvester 

measured grain 

yield 

576.76 12.52 72.24 

88 15.22 

Estimated yield 578.62 8.77 50.77 

 

 

(a) 
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(b) 

Figure 4-12: Comparison between the true grain yield generated from combine 

harvester and the estimated yield derived from SAFY model and UAV-based point 

cloud LAI data in S2 over 1828 points. a) True yield map; b) estimated yield map. 
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Figure 4-13: Absolute difference map between the true grain yield and the estimated 

yield for S2. 

4.4 Discussion 

4.4.1 Cultivar-specific parameters derived from the first SAFY 
model calibration 

The determination of these CSPs (𝑃𝐿𝑎, 𝑃𝐿𝑏, 𝑆𝑇𝑇, 𝑅𝑠, and ELUE) can help the SAFY model 

in crop final biomass estimation. Many literatures have provided the ranges of these 

parameters. For instance, Duchenmin et al. (2008) determined the range of 𝑃𝐿𝑎 and 𝑃𝐿𝑏for 

winter wheat as 0.05-0.5 and 10-5- 10-2 respectively. The median value of 𝑃𝐿𝑎 = 0.1573 

and 𝑃𝐿𝑏 = 0.00196 were adopted during the final DAM estimation. In this study, the 

ranges of 𝑃𝐿𝑎  and 𝑃𝐿𝑏 used were 0.2038-0.2686 and 0.0015 - 0.0021, respectively. The 

ranges of the two parameters used in our study are much smaller in comparison with that 
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of in the literature. This is because the in-situ DAM measurements were used to calibrate 

the SAFY model and the day of plant emergence was observed through an in-situ 

observation. The 𝑃𝐿𝑎 and 𝑃𝐿𝑏 combined with the accumulated temperature will affect the 

value of 𝑃𝐿 (equation 4-4). Figure 4-14 shows the relationship between 𝑃𝐿value and the 

accumulated temperature in this study. The 𝑃𝐿 decreases exponentially from the value of 1 

to the value of 0 with the accumulated temperature, which is the plant emergence to the 

end of the leaf production phase (Maas, 1993). The 𝑃𝐿 is the ratio of the daily increase of 

GLAI and the daily increase of DAM, the value of 0 marks the stopping point of leaf 

development. As illustrated in Figure 4-14, 𝑃𝐿 is zero when the accumulated temperature 

is at 881 °C, and the date was June 14. According to in-situ observation on June 16, winter 

wheat was at the end of flowering stage at that time.  

 

Figure 4-14: Relationship between 𝑷𝑳 and the accumulated temperature. 

The simulated total accumulated temperature (𝑆𝑇𝑇) determined by SAFY calibration was 

954 °C when senescence started. The date for achieving this temperature was June 17, 

which was one day later then winter wheat flowing stage. According to the relationship 
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between phenology and total accumulated temperature, the winter wheat starts seed fill at 

this temperature (Bauer et al., 1984). Equation 4-5 were used to calculate GLAI when the 

accumulated temperature exceeds this threshold temperature. The 𝑅𝑠  is related to the 

threshold temperature and total accumulated temperature for maturity. The total 

accumulated temperature can be used to determine the date of maturity with the aid of the 

weather data. Based on the value of 𝑆𝑇𝑇, and 𝑅𝑠, the total accumulated temperature for 

maturity of all 12 samples were evaluated using the SAFY model in this study for S1. The 

average total mature day is 282, which is five days earlier than the day of harvest (287). 

The values of the sum of temperature for senescence (𝑆𝑇𝑇), and the rate of senescence (𝑅𝑠) 

are consistent with the actual in-situ observations.  

4.4.2 ELUE 

ELUE plays an important role in the SAFY model. ELUE is largely influenced by crop 

species, physiological factors, soil conditions, and weather conditions. Soil conditions such 

as soil nutrient, soil moisture, texture, organic matter, and pH vary across the field and can 

lead to variable ELUE values for the same crop. Conventionally, a constant ELUE value 

is used for the entire field in yield estimation. Dong et al. (2017) introduced the spatially 

variable crop maximum LUE for the first time and achieved significant improvements in 

biomass estimation accuracy for winter wheat and corn. Liao et al. (2019) also used 

variable ELUE values to estimate the yield of corn and soybean. Therefore, in this study 

the ELUE was adopted as a variable parameter in the SAFY model rather than a fixed value 

as the 𝑃𝐿𝑎, 𝑃𝐿𝑏, 𝑆𝑇𝑇, and 𝑅𝑠 in the second and third calibrations. The range of ELUE in the 

first calibration was 2.93-3.18, which fits in the range of ELUE in the literature (Duchemin 

et al., 2008; Dong et al., 2016). 

4.4.3 Uncertainties of the estimated crop biomass and yield 

By comparing the yield maps in Figure 4-12, both the estimated and measured maps have 

similar patterns at the bottom corner, but the upper left area in the field has different yield 

estimations. Figure 4-13 shows the absolute difference between the true grain yield and 

estimated yield for S2. Most of the test points have small differences which are less than 

100 g/m2. Some test points with large yield differences are located at the end of rows which 
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may be caused by the bias of the harvester. because here the harvester needs to lift the head 

during turning. The uncertainties of the yield estimation on the northern most corner of the 

field might have been due to the limited number of UAV-based LAIe maps. The early LAIe 

measurements of the winter wheat were used in the SAFY model to estimate the final DAM 

and yield. The last UAV-based LAIe measurement was 50 days earlier than the actual 

harvest date. The LAIe information used only captured the crop growth condition up to the 

date of the last UAV flight which could not have taken into account the further biomass 

growth during the later season. The multiple data sources can be considered to increase the 

temporal resolution of the GLAI for the SAFY model. 
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(b) 

Figure 4-15: Histograms of true and estimated winter wheat yield for S2. 

The histogram of the UAV-based yield and the true yield map are shown in Figure 4-15. 

Overall, these two yield histograms exhibit a similar distribution, in which the range of 

harvester measured yield data was between 340 to 840 g/m2, and the range of the estimated 

yield data was between 420 to 780 g/m2. The UAV estimated yield has a lower standard 

deviation and CV than that of the harvester measured yield data in S2. This is likely due to 

the fixed 𝑃𝐿𝑎and 𝑃𝐿𝑏  used in the SAFY model. In addition, the ground-based yield map, 

generated by the combine harvester might have suffered yield loss in comparison with 

manual harvest. The destructive biomass is more accurate in estimating GLAI and yield 

during the SAFY model calibrations. This may be one of the reasons for the difference 

between the true and estimated yield map. Due to the use of destructive biomass, the 

estimated yield has a slightly narrower histogram distribution in the yield map. In addition, 

the final yield might have been influenced by the fixed harvest index. The UAV-based 

yield was calculated from the average harvest index derived from 12 sampling points. 

However, the crop growth condition can influence the harvest index and lead to a different 

yield estimation (Li et al., 2011).  
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4.4.4 Application and contribution 

This study, for the first time, applied the SOPC derived UAV-based point cloud LAIe maps 

to the SAFY model to generate the sub-field biomass and yield maps. It is also the first to 

use UAV-based data in the SAFY model. One of the potential applications of this 

framework is for yield estimation. This can help reveal the spatial variability of yield 

potential for winter wheat at the sub-field scale. The LAI maps generated at various growth 

stages can also provide useful information to assist in making crop management decisions. 

The soft red winter wheat CSPs determined in this study can be used in future studies for 

the same region. Since this framework is designed for UAV application at farm level, the 

day of planting and emergence can be obtained from in-situ observation. With specific 

phenological date and the CSPs, yield prediction using the SAFY model and the UAV 

derived simulated GLAI only requires the solar radiation and temperature data. Therefore, 

it is possible to predict the winter wheat final yield using weather data collected at real-

time and simulated for the rest of the growing season using the proposed framework. 

The normalization of LAIe derived from different platforms can help the SAFY model 

application to final DAM estimation using different data sources. The normalization 

approach can be applied to other crops to determine the CSPs. In this study, the normalized 

UAV-based point cloud LAIe were used in the SAFY model calibration for final DAM and 

yield estimation. The UAV-based point cloud LAIe can provide a variable spatial 

resolution map from submeter to meter scale (50cm to 5m) which can clearly display the 

intra-field final DAM and yield variability.  

Fu et al., (2020) estimated the winter wheat biomass using the UAV-based multispectral 

imagery. The RRMSE of the DAM were 23.37%. 30 individual sampling locations were 

used in this study to estimate the final DAM. In contrast, this study achieved a RRMSE of 

15% for more than 1800 points. In addition, this study uses the UAV-based PCD derived 

from RGB imagery instead of multispectral vegetation indices. The SOPC method does 

not require any ground spectral calibration, which is more accessible and low cost. The 

final DAM and yield estimation could be conducted without ground measurements in this 

study. Furthermore, the method of this study could be applied on different geographical 

locations and other crops. The solar radiation and air temperature should be collected for 
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the different locations. The SOPC-LAIe calculates the crop LAI based on the gap fraction 

theory under the assumption the leaf angle distribution is uniform, and the leaf inclination 

follows spherical distribution (Zheng & Moskal, 2009; Liu & Pattey, 2010). If other crops 

can use the gap fraction theory with the same assumption to calculate LAI, the method 

proposed in this study is practical for different locations and crops. For example, the gap 

fraction theory on LAI estimation and the SAFY model on yield estimation have been 

proved on corn and soybean (Liao et al., 2019). This method may be possible to apply on 

corn and soybean and to estimate the final yield. 

4.5 Conclusions 

In this study, destructive biomass was used to calibrate the SAFY model to derive CSPs 

for winter wheat. Through the normalization of the UAV-based point-cloud derived LAIe 

to the simulated SAFY-GLAI, the normalized UAV-based LAIe can be used as input to 

the SAFY model for winter wheat final DAM and yield estimation. The results showed 

that the UAV-based point-cloud derived LAIe and the SAFY model have a great potential 

in generating high-spatial resolution (2 m by 2 m in this study) DAM and yield map. The 

final yield estimation achieved the RMSE of 88 g/m2 and RRMSE of 15.22 %. The UAV-

based LAIe before the booting stages can be used to estimate the final DAM and yield of 

winter wheat. The approach developed in this study can be adopted in deriving crop CSPs 

for other crop types when using SAFY model to estimate and forecast final DAM and grain 

yield. After determining the CSPs of crops, the approach can be achieved without having 

to rely on ground measurements, which is a great advantage for operational near-real-time 

operations.  

Given the success of the reported results, this study still has the limitations. For future 

work, UAV imagery collected at the late growth stages can be incorporated into the 

analysis to achieve improved estimation accuracy. In addition, more detailed soil 

information such as moisture content, nutrient level, and soil organic matter should also be 

used as model input to improved model performance. 
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Chapter 5 

5 Discussion and conclusions 

5.1 Summary 

Remote sensing crop information is one of the essential components in precision 

agriculture, which is an efficient tool for the end-users in monitoring crop spatial and 

temporal variability. Due to the spatial and temporal resolution limitation, it is challenging 

to obtain satellite and manned airborne based optical remote sensing data at a specific 

period needed for crop monitoring. UAV-based remote sensing data overcomes the 

limitation of data on the spatial and temporal resolution, but directly adopting the well-

developed satellite and manned airborne spectral methods is not perfectly applicable to the 

UAV platform due to the difficulties of imagery calibration and processing. As a valuable 

data set derived from the UAV-based SfM method, the 3D photogrammetric point cloud 

data (PCD) contains the spatial structural information of crops, which has great potential 

in monitoring and estimating crop physical parameters. The 3D photogrammetric PCD can 

achieve high absolute and relative accuracy to represent the crop’s physical information. 

The 3D photogrammetric PCD derived from the UAV system could be an alternative in 

crop parameter extraction and estimation. This thesis focuses on the estimation of crop 

parameters such as crop height, LAI, and DAM using the UAV-based photogrammetric 

PCD to show the spatial variability on a field scale. The general structure of this thesis is 

composed of three parts. First, a new outlier removal method was presented to directly 

estimate winter wheat canopy height using the UAV-based photogrammetric PCD. 

Secondly, a new LAI estimation method for UAV-based photogrammetric PCD was 

developed based on the gap fraction method. Finally, a LAI normalization approach was 

designed to convert the UAV-based point cloud derived LAI to green LAI. The final winter 

wheat DAM and yield was estimated from the SAFY model with the calibration of 

converted green LAI.  

The study of winter wheat plant height extraction was conducted in Chapter 2 whereby a 

moving cuboid filter was developed. The PCD was divided into many voxels and the 

distribution of points in the voxel was then analyzed. The points distribution changes with 
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the winter wheat growth. One or two peaks can be observed from the histogram for each 

voxel. A fixed threshold 𝑇0 is used for one peak, and a changing threshold 𝑇𝑎is used for 

two peaks. Based on the ground plant height measurements, the value of the threshold 𝑇0 

and 𝑇𝑎 was determined. After applying the cuboid filter with the determined threshold, the 

filter has a stable performance in canopy height estimation before the winter wheat has a 

full canopy. The canopy height monitoring window for winter wheat using this method 

ranges from the beginning of the stem extension to the end of the heading stage (BBCH 31 

to 65). Since the height of wheat has limited change after the heading stage, this cuboid 

filter could be used to retrieve the crop height of winter wheat from the photogrammetric 

PCD directly.  

The intra-field variation of LAI plays an essential role in field crop monitoring and yield 

forecasting. In Chapter 3, the SOPC method was proposed to automatically calculate crop 

effective LAI using UAV-based photogrammetric PCD. I proposed a SOPC method to 

obtain the 3D spatial distribution of vegetation and bare ground points and calculated the 

gap fraction and LAIe from a UAV-based point cloud dataset at vertical, 57.5°, and multi-

view angles of a winter wheat field. The results show that this method can retrieve the LAIe 

estimation using PCD containing both vegetation and bare ground information. The 

resultant LAIe maps indicate the LAIe spatial variability of the winter wheat well. Among 

the SOPC-M, SOPC-V, and SOPC-F methods, the SOPC-M high correlates with the LAIe 

derived from ground digital hemispherical photography. The SOPC-M successfully 

estimates the LAIe and generates LAIe maps before the booting stage for winter wheat. 

However, the performance of the proposed method declines in the later growth stages when 

the crop canopy is fully developed. Therefore, the LAIe estimates have less variation after 

the booting stage.  

The UAV-based photogrammetric PCD provides very high spatial and temporal resolution 

LAIe maps in Chapter 3, that can be used in the SAFY model to estimate the final crop 

biomass and yield. In Chapter 4, the soft red winter wheat optimal cultivar-specific 

parameters (CSPs) were determined using the ground-based biomass measurements and 

the SAFY model. These CSPs can be used to predict crop biomass and yield from the 

SAFY model in the southwest Ontario region. A normalization approach was applied to 
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the multiple UAV-based LAIe maps to convert to green LAI maps. After calibrating the 

SAFY model using the GLAI maps, the intra-field grain yield map was generated on the 

winter wheat field from UAV based photogrammetric PCD and the SAFY model. The 

results show that this study has great potential in generating high spatial resolution yield 

maps to reveal the yield spatial variability. The accuracy of the final yield estimation 

achieves a lower RMSE (88 g/m2) compared to the estimated and harvester measured yield. 

Furthermore, the results show that the normalization of LAIe derived from the different 

platforms is important in the SAFY model application on final crop biomass and yield 

estimation using different data sources.  

5.2 Conclusion and contributions 

The overall thesis discussed the possibility of using the UAV-based photogrammetric PCD 

to retrieve the crop biophysical parameters and estimate the crop biomass and yield based 

on these UAV derived parameters. The application of UAV-based photogrammetric PCD 

will significantly reduce the difficulty of crop information collection and improve the 

coverage of precision agriculture management. The specific conclusion was drawn from 

the three studies in this thesis.  

1. The UAV-based photogrammetric PCD has great potential in the extraction of crop 

physical parameters and performs well in mapping to display the spatial variability 

on a field scale. This thesis found the point distribution for the PCD of crop canopy 

in the voxel. According to the principle of point distribution, a moving cuboid filter 

was proposed and applied in each voxel and moved downward to eliminate noise 

points. The threshold of point numbers in the filter is calculated based on the 

distribution of points in the voxel. After applying the moving cuboid filter, the crop 

height was determined in each voxel. This filter achieved high accuracy for height 

extraction with low RMSE of 6.37 cm for the growing period from tillering to the 

heading stage (BBCH 31-65). It greatly improved the accuracy in crop height 

estimation using the PCD compared with the study using the fixed threshold, in 

which the RMSE was 17 cm (Khanna et al. 2015). The UAV-based 

photogrammetric PCD provides an alternative approach to crop height estimation. 
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2. Since the UAV-based photogrammetric PCD contains the color information, the 

point cloud can be classified into two groups: vegetation and bare ground points. 

By using the point cloud structural and classification information of crop canopy, 

the developed SOPC-M, SOPC-V, and SOPC-F methods perform well on the LAIe 

estimation at the early growth stages (BBCH 20-39) using the UAV-based 

photogrammetric PCD. The derived LAIe using the SOPC multi-view angle 

method correlates well with the LAIe derived from ground digital hemispherical 

photography, R2 = 0.76. The intra-field variability of LAI can be monitored using 

the UAV-based photogrammetric PCD in the early stage of winter wheat. This 

method has the potential to become an alternative approach for crop LAIe 

estimation without the need for ground-based reference measurements. 

3. The low-cost UAV-based photogrammetric PCD can provide the LAI in the early 

growth stages of winter wheat, which can be used by the SAFY model to estimate 

the final crop dry aboveground biomass and yield of winter wheat. The 

determination of the soft red winter wheat CSPs was conducted by the SAFY model 

calibration with the ground biomass measurements. The normalization approach 

made the UAV-based point cloud derived LAI estimates available to the SAFY 

model to estimate the final biomass and yield of winter wheat. The final DAM and 

yield map exhibit the that the SOPC method derived UAV-based point cloud LAIe 

and the SAFY model have a great potential in generating high-spatial resolution 

DAM and yield map and displaying the intra-field variability of winter wheat. The 

overall RMSE (88g/m2) of more than 1800 sampling points is less than other UAV-

based yield estimation study of winter wheat (122g/m2) on 30 samples (Yue et al., 

2019).   

The contribution of this summarized as follows: 

1. This thesis is the first to apply a variable threshold in a moving cuboid filter to 

remove outliers and determine the crop height from PCD. An optimization method 

determined the threshold based on the relationship between the point distribution 

pattern of crop canopy PCD and the different growth stages. The moving cuboid 

filter with the variable threshold performs well between the stem extension and 

heading stages, which are essential in winter wheat monitoring. By using a variable 
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threshold, this method only requires one UAV flight to extract the canopy height 

rather than two measurements of DSM which reduces the workload of the UAV 

operation. Given that the plant height estimation using the UAV-based 

photogrammetric PCD had a higher number of plant height measurements than the 

ground-based measurements, UAV-based photogrammetric PCD on plant height 

provide an alternative approach to plant height estimates from some crop growth 

models.  

2. This thesis is the first to adopt a ground-based gap fraction method on the UAV 

photogrammetric PCD to develop an innovative SOPC method in the estimation of 

crop LAI. The SOPC method used the ratio of bare ground and the total number of 

points in a simulated observation area to calculate the gap fraction and LAIe for a 

winter wheat field. For the first time, this method was able to retrieve the LAIe 

estimation without ground measurements and reveal the LAIe spatial variability on 

a field scale using only the UAV-based photogrammetric PCD. The method 

performed well between leaf development and stem elongation stages. The UAV-

based photogrammetric PCD derived LAIe could be an alternative to LAI 

monitoring during the canopy development stages. In addition to that, the LAIe 

retrieval is not affected by the shadow and illumination in this method, suggesting 

that this crop LAI and gives the farmer real-time crop monitoring.  

3. This thesis is the first to adopt the UAV-based photogrammetric PCD derived crop 

parameter to the estimation of crop biomass from a crop growth model. By using 

the high spatial UAV-based LAIe estimates, the high spatial resolution final DAM 

and yield map displayed the intra-field biomass and yield variations clearly. The 

transferability of the determined soft red winter wheat CSPs allows it to be used to 

predict winter wheat yield in the Southwestern Ontario region. The SAFY model 

calibrated with the UAV-based LAIe maps provides accurate final biomass and 

yield estimates which is essential for crop field management. This new approach 

will promote the application of the UAV-based photogrammetric PCD and provide 

real-time and accurate crop information for farmers  

Overall, the UAV-based photogrammetric PCD can provide useful information in 

monitoring and estimating crop parameters. The methods developed in this thesis have 
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excellent potential in the application of crop monitoring and management by farmers. All 

methods are focused on practicability on the operation of UAV by end-users. The results 

with high spatial and temporal resolution provide more detailed information to end-users 

which can enable them to better to understand and manage their fields. Since the data 

collection were all performed by a regular RGB camera, it makes the inexpensive UAV 

and RGB camera system available to more users. Farmers can acquire their own data using 

a lightweight and inexpensive UAV platform and camera, which can popularize the UAV-

based remote sensing technology, promote the development of precision farming, and 

create a new product and service in the market. 

5.3 Discussion and future study 

The potential of crop parameter estimation using the UAV-based photogrammetric PCD 

has been evaluated in this thesis. The UAV-based photogrammetric PCD can achieve the 

crop physical parameters estimation, but it still has limitations. UAV-based 

photogrammetric PCD derived from the RGB camera, which is not able to penetrate the 

crop canopy and obtain the entire vertical structure of plant. Although the multiple views 

of the camera could provide the points of the lower canopy, it is incapable to provide all 

points like the LiDAR sensor. This makes the UAV-based photogrammetric PCD only 

applicable before the canopy full closure. Therefore, the moving cuboid filter works well 

before the heading stage in Chapter 2, and the SOPC method achieves the LAI before the 

booting stage in Chapter 3. Although the UAV-based point cloud has limitations in 

estimating crop physical parameters in the later stage, the final DAM and yield estimation 

using the early multiple parameters estimation is achieved and it provides the forecasting 

of winter wheat yield in Chapter 4. One of the disadvantages is that the UAV-based 

photogrammetric PCD collection and process can be time-consuming. Current battery 

technology limits the flight time of UAV that has less coverage of crop field. In addition, 

the faster point cloud generation needs a high-performance computer. These limitations 

can be resolved in the future with a technological advancement in computer hardware.  

This thesis used winter wheat as the experiment target to develop the UAV-based 

photogrammetric PCD processing method to determine the winter wheat height and LAI. 

The framework of these studies could also be applied to other crops. Corn and soybean are 
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two other major crops in Ontario. The crop parameters estimation using UAV-based 

photogrammetric PCD is also important for corn and soybean. Since many farmers plant 

all three crops on their farms, the future studies of the method applied to corn and soybean 

are necessary to popularize precision agriculture in Ontario. For example, the parameters 

used in this thesis, such as the threshold value for the height estimation filter, the CSPs, 

and the allometric relationship for different crops and cultivars, should be determined 

individually for corn and soybean. The determination of these parameters will greatly 

reduce the procedure of model on the application of UAV-based photogrammetric PCD to 

estimate crop physical parameters and final biomass or yield. Therefore, in future studies 

we may design and investigate the possibility of UAV-based photogrammetric PCD in corn 

and soybean height and LAI estimation.  

UAV is a reliable platform that can fly under clouds by following a pre-programmed route 

and capture the centimeter resolution images. Currently, the lightweight optical camera, 

thermal camera, and LiDAR sensor have been applied on a UAV to provide the 

measurements on crop and soil parameters in agriculture (D’Oleire-Oltmanns, et al., 2012; 

Berni et al., 2009; Hoffmann et al., 2016). The UAV-based multispectral images have been 

widely used to monitor crop status during the growing season. Due to the lightweight 

multispectral camera development, many vegetation indices have been achieved using the 

UAV-based multispectral images. Many studies have attempted to estimate crop nitrogen 

and chlorophyll (Berni, Zarco-Tejada, Suárez, Fereres, et al., 2009; B. Duan et al., 2019). 

The multispectral information will aid in improving the accuracy of the classification in 

Chapter 3. In addition, the normalized difference vegetation index (NDVI) has been used 

to determine the variation of the light use efficiency of crop canopy (Liao et al., 2019). The 

light use efficiency is important to analyze the solar energy transferred to biomass in crops. 

Therefore, the data combination of UAV-based multispectral imagery and the UAV-based 

photogrammetric PCD could contain both spectral and position information. The 

evaluation of the combined data application could be considered in future studies to 

estimate more crop parameters.  

The multiple data sources should be considered in future studies, including satellite, 

airborne, UAV, and ground-based data. The complex dataset may be used to regression the 
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final biomass and yield using the machine learning approaches. The machine learning 

method, such as artificial neural networks, support vector regression, and random forest, 

have been widely used to determine the crop biophysical parameters (Jiang et al., 2004; Ok 

et al., 2012; Moeckel et al., 2018). Therefore, future work can investigate the potential of 

machine learning approaches in crop parameters estimation.  
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Appendices 

Appendix A: UAV imagery collection on crop fields 

Hardware 

The UAV-based imagery data were collected by DJI Phantom 3 and Phantom 4 RTK UAV 

system. Both UAV systems are quadrotor structure that is lifted and propelled by four 

rotors. Phantom 3 has a built-in 4K digital camera, and Phantom 4 RTK has a built-in 5K 

digital camera. In addition, the Phantom 4 RKT also has an RKT system that can provide 

centimeter-level accurate GPS measurements. Both Phantom 3 and 4 UAV systems have 

25 minutes’ flight time. The maximum coverage of the UAV system will depend on the 

flight height. Figure A-1 and Figure A-2 show both the Phantom UAV system below. The 

detail information of cameras on Phantom 3 and Phantom 4 listed in Table A-1. 

 

Figure A- 1:DJI Phantom 3 Standard Quadcopter UAV system. Source: DJI 

phantom 3. 
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Figure A- 2: DJI Phantom 4 RKT Quadcopter UAV system and RTK base station. 

Source: DJI phantom 4 RTK 

Table A- 1: The detail information of cameras on Phantom 3 and Phantom 4 system. 

Planform 

Effective 

pixels 

Focal 

length Image size 

Field of 

view 

Resolution @ 

30 m 

Phantom 

3 

12 

megapixels 
20mm 4000 × 3000 94° 1.5cm 

Phantom 

4 

20 

megapixels 
24mm 4864 × 3648 84° 0.9cm 

Software 

DJI Phantom 3 used the DJI go app to control the UAV system and program the flight route 

to collect images above the crop field. DJI Phantom 4 used the DJI UAV system build-in 

app DJI go 4 to control the UAV and achieve highly accurate georeferenced images 

collection. The flight route could be generated after entering the flight height and image 

overlap automatically. Figure A-3 and Figure A-4 show the operation windows of the 

control software.  
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Figure A- 3: The operation window of DJI go for Phantom 3. Source: DJI 

 

Figure A- 4: The operation window of DJI go 4 for Phantom 4. Source: DJI 
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Ground control points 

At the beginning of the growth season, ground control points were set up in the study site. 

The black and white chess boards were set up at the selected sampling points. The boards 

were placed in the field during the growing season to help multiple UAV-based alignments. 

Figure A-5 shows the ground control boards on the ground.  

 

Figure A- 5: Black and white chess board on the sampling location in the winter 

wheat field. 

Image processing software 

After collecting all images for the study area, the images were processed in the Pix4D 

mapper software. This software used the SfM approaches to match all 2D images and 

generate 3D point cloud data (PCD). The final output data includes 3D PCD, orthomosaic 

aerial image, and digital surface model (DSM). Figure A-6 shows the operation of the 

Pix4D in processing the UAV images.  
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Figure A- 6: The camera position and tie point generation using the Pix4D mapper. 
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Appendix B: Principle of Structure from Motion  

Structure from Motion (SfM) is based on the innovative and mathematical models 

developed many decades ago in photogrammetry, such as triangulation and bundle 

adjustment methods (Thompson, 1965; Brown,1971). SfM applied in geosciences is not a 

single technique; it includes a complex workflow and multiple algorithms developed from 

three-dimensional (3D) computer vision, traditional photogrammetry, and conventional 

survey techniques (Carrivick et al., 2016). SfM contains two major parts: Structure from 

Motion and Multi-View Stereo (MVS). Although in many computer vision literatures, SfM 

used to stand for this technique of Structure from Motion, the entire workflow should be 

named as SfM-MVS, which includes the MVS algorithms used in the final stages to 

produce useful finer dataset. In brief, SfM uses algorithms to identify matching key points 

and features in overlapping digital images and calculates camera location and orientation 

form the differential positions of multiple matched features (Westoby et al, 2012). After 

the SfM process, a coarse 3D point cloud model can be reconstructed from 2D images for 

object or surface or scene; the coarse 3D points are always called tie points. Then, this 3D 

model derived from SfM is refined to a much finer resolution of point cloud model using 

MVS methods. 

The basic principle of SfM-MVS 

As mentioned above, SfM-MVS is a complex workflow that uses 2D image sets to produce 

3D model. It contains multiple steps and algorithms including:  

a. Detecting common features or key points in the images. 

b. Estimating 3D scene geometry, camera pose, and internal camera parameters though 

SfM algorithms, such as bundle adjustment. 

c. Scaling and georeferencing the resultant scene geometry though known ground 

control points (GSPs). 

d. Applying MVS algorithms to produce a georeferenced dense point cloud.  

Bundle adjustment 

Bundle adjustment is one of SfM approaches to produce the tie point of 3D structure and 

camera position parameters (Granshaw, 1980; Triggs et al., 2010). The goal of bundle 
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adjustment is to find the projection matrices 𝑃̂𝑘  and the 3D points 𝑋̂𝑖  when the mean 

squared distances is minimized between the points 𝑥𝑘𝑖 in the observed image and the points 

𝑥̂𝑘𝑖 in the projected image. The following criterion should be minimized for 𝑚 views and 

𝑛 points in the dataset. 

min
𝑃̂𝑘𝑋̂𝑖  

∑ ∑ 𝐷(𝑚𝑘𝑖,𝑃̂𝑘𝑋̂𝑖)
2 𝑛

𝑖=1
𝑚
𝑘=1                                          (B-1) 

where (𝐷(𝑚̂, 𝑚) is the Euclidean image distance. Figure B-1 shows the basic camera 

configuration of bundle adjustment in close-range photogrammetry. This is the basic step 

to determine the camera parameters and the location of the points in multiple images.  

 

Figure B- 1: Basic camera configuration of bundle adjustment in close-range 

photogrammetry. 
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Appendix C: Gap fraction method on LAI estimation 

Based on the radiative transfer theory, the LAI was defined as half the total developed area 

of leaves per unit ground horizontal surface area (Lang, 1991; Chen & Black, 1992). As 

defined, the leaf area index could be written as  

𝐿𝐴𝐼 =  ∫ 𝑙(ℎ)𝑑ℎ
ℎ

0
                                                                        (C-1) 

where ℎ is the canopy height; 𝑙 is the leaf area index at the height ℎ.  

The mean of contact numbers between a light beam and a vegetation element at a given 

canopy level h in a certain direction can be written as (Wilson, 1959): 

𝑁(ℎ, 𝜃, 𝜑) =  ∫
𝐺(ℎ,𝜃,𝜑)𝑙(ℎ)

𝑐𝑜𝑠𝜃
 𝑑ℎ

ℎ

0
                                                       (C-2) 

where 𝑁  is the mean of contact numbers, ℎ is the canopy height, (𝜃, 𝜑) is the certain 

direction, (𝐺(ℎ, 𝜃, 𝜑) is the projection function. This question can be simplified when the 

leaf area index (LAI) and the projection function are independent.  

𝑁(ℎ, 𝜃, 𝜑) =  𝐺(ℎ, 𝜃, 𝜑) 𝐿𝐴𝐼 /𝑐𝑜𝑠𝜃                                                 (C-3) 

Then, when the canopy has a random spatial distribution the gap fraction 𝑃(𝜃, 𝜑) is related 

to the contact frequency. The question can be written: 

𝑃(𝜃, 𝜑) = 𝑒−𝐺(ℎ,𝜃,𝜑) 𝐿𝐴𝐼 /𝑐𝑜𝑠𝜃                                                       (C-4) 

Then, researchers demonstrated that the gap fraction can be expressed as an exponential 

function of the leaf area index for a random spatial distribution of leaves (Nilson, 1970). 

By involving the clumped index 𝜆, The gap fraction equation can be written: 

𝑃(𝜃, 𝜑) = 𝑒−𝜆 𝐺(ℎ,𝜃,𝜑) 𝐿𝐴𝐼 /𝑐𝑜𝑠𝜃                                                       (C-5)                                                       
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LAI estimation from Hemispherical images 

In the software CANEYE, the hemispherical images will be classified into vegetation and 

background two categories.  

 

Figure C- 1: Example of classification results 

After the classification, the average gap fraction will be calculated from a polar plot of the 

average bi-directional gap fraction. Finally, the LAI will be calculated based on the average 

gap fraction.  



161 

 

 

Figure C- 2: Example of average gap fraction polar plot. The rings correspond to 

zenithal direction.  
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Appendix D: Field data collection forms and photos 

Table D- 1: Data sheet for soil moisture, LAI images number, height, and 

phenology.

 

Date:                     Weather:                  Time:                   

Recorded by:                 Assisted by:    
 

Regular camera name:               Fisheye camera name:   

Theta Probe ID#:              UAV date:             sensor: 

Site Name (sample ID): 
(Yang: 1-32 Hwang: 41-60) 

Soil moisture (Theta Probe) 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

Reading       

Crop height (cm) 

Reading       

LAI 

Fisheye photo No. Start:                         End: 
 

LAI 2200 file name: 
 

Scattering correction?  Yes            No 

LAI Reading: 

Chlorophyll 

Group #: Chl Flav NBI Anth 

ASD Start: 
End: 

Biomass #  

Regular Photos 

Landscape photo #  Nadir photo #  

Along the row 
photo # 

 Against the row 
photo # 

 

4 close-up photo # Start: 
End: 

Phenology 

Features: 
(eg. No. of leaves, No. of nodes, 
heading, flowering, stigmata… ) 
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Table D- 2: Biomass Field datasheet 
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Table D- 3: Biomass lab experiment datasheet. 
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Field work photos and experimental photos 

 

(a)  

 

(b) 
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(c) 

 

(d)  

Figure D- 1: Field work photos. a) Phenology measurement in the field; b) 

UAV pre-launch preparation; c) Fisheye digital empirical photograph 

collection; d) Height measurements in the wheat field 
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(a) 

 

(b) 

Figure D- 2: Examples of fieldwork and UAV collected images. a) Landscape image; 

b) Nadir image 
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.  

Figure D- 3: Sampling point and ground control points location for study in 2016. 

The black points are the sampling locations and the green points are the ground 

control points. 
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.  

Figure D- 4: Sampling points and ground control points location for study in 2019. 

The black points are the sampling locations and the green points are the ground 

control points locations. 
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Appendix E: Winter wheat phenology 

The winter wheat phenology used the BBCH-scale to identify the development states of 

plants. The development of the BBCH-scale is based on the Zadoks scale (Zadoks, 1974), 

which use numbers to represent the growth stages of the crop. This system has been used 

on many crops such as, corn, barely, soybean, and rice. In this thesis, the BBCH-scale was 

used to represent the development of winter wheat. The detailed scale shows in the Table 

1 (Meier, 2001).  
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Table E- 1: BBCH scale of winter wheat growth stages: cereals (Meier, 2001). 

 

  

   
 0. Sprouting/Germination 

00 Dry seed (caryopsis) 

01 Beginning of seed imbibition 

03 Seed imbibition complete 

05 Radicle emerged from caryopsis 

06 Radicle elongated, root hairs/side roots visible 

07 Coleoptile emerged from caryopsis  
9 Coleoptile penetrates soil  

1. Leaf Development  
10 First leaf through coleoptile  
11 First leaf unfolded 

12 2 leaves unfolded 

13 3 leaves unfolded 

1… Stages continuous till …  
19 9 or more leaves unfolded  

2.Tillering  
20 No tillers 

21 First tiller detectable 

22 2 tillers detectable 

23 3 tillers detectable 

 … Stages continuous till …   
29 Max no. of tillers detectable 3. 

Stem Elongation 
 

Pseudostem & tillers erect, first internode  
30 elongating, top of inflorescence at 

least 1 cm above tillering node 
 

31 First node at least 1 cm above tillering node  
32 Node 2 at least 2 cm above node 1  
33 Node 3 at least 2 cm above node 2  
3… Stages continuous till … 

37 Flag leaf just visible, rolled (last leaf)  
39 Flag leaf unrolled, ligule just visible  

4. Booting  
41 Early boot: flag leaf sheath extending  
43 Mid boot: flag leaf sheath just visibly swollen  

45 Late boot: flag leaf sheath swollen 

47 Flag leaf sheath opening 

49 First awns visible (in awned forms only) 

 
5. Inflorescence emergence, heading  

51 Tip of inflorescence emerged from 
sheath, first spikelet just visible  

52-54 20% to 40% of inflorescence emerged  
55 Half inflorescence emerged  

56-58 60% to 80% inflorescence emerged  
59 Inflorescence fully emerged  

6. Flowering, Anthesis  
61 First anthers visible 

65 Full flowering: 50% of anthers mature 

69 End of flowering: all spikelets flowered  
some dry anthers may remain  

 7: Development of fruit 

71 Watery ripe: first grains half final size 

73 Early milk 

75 Medium milk: grain content milky,  
Grains final size, still green  

77 Late milk 

 8. Ripening 

83 Early dough 

85 Soft dough: grain content soft but dry.  
Fingernail impression not held 

87 Hard dough: grain content solid  
Fingernail impression held 

89 Fully ripe: grain hard  
difficult to divide with thumbnail  

9. Senescence 

92 Over-ripe: grain very hard, cannot be  
dented by thumbnail 

 
93 Grains loosening in day-time  

97 Plant dead & collapsing 

99 Harvested product 
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Table E- 2: The images of winter wheat at different stages of BBCH. The data, 

BBCH, and the field image in sub-field 2. 

May11, 2019 BBCH 20 
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May 16 BBCH 25 
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May 21 BBCH 31 
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May 27 BBCH 39 
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June 3 BBCH 49 
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June 9 BBCH 65 
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June 16 BBCH 69 

 



179 

 

July 10 BBCH 85 

 

 

Figure E- 1: The illustration of winter wheat growth stages in BBCH scale 

(Gardenas et al., 2016). 
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