2,361 research outputs found

    Beyond Surveys: Analyzing Software Development Artifacts to Assess Teaching Efforts

    Full text link
    This Innovative Practice Full Paper presents an approach of using software development artifacts to gauge student behavior and the effectiveness of changes to curriculum design. There is an ongoing need to adapt university courses to changing requirements and shifts in industry. As an educator it is therefore vital to have access to methods, with which to ascertain the effects of curriculum design changes. In this paper, we present our approach of analyzing software repositories in order to gauge student behavior during project work. We evaluate this approach in a case study of a university undergraduate software development course teaching agile development methodologies. Surveys revealed positive attitudes towards the course and the change of employed development methodology from Scrum to Kanban. However, surveys were not usable to ascertain the degree to which students had adapted their workflows and whether they had done so in accordance with course goals. Therefore, we analyzed students' software repository data, which represents information that can be collected by educators to reveal insights into learning successes and detailed student behavior. We analyze the software repositories created during the last five courses, and evaluate differences in workflows between Kanban and Scrum usage

    Understanding gaps between established Software Engineering Process knowledge and its actual implementation

    Get PDF
    A part of Software Engineering (SE) Process Improvement is to identify and bridge the gaps between what we learn about established SE Processes and what we actually execute. Students majoring in SE degrees learn about various established SE processes in class and also try to execute them in their academic projects. In our research, we analyze student SE projects and interview these project teams to identify the gaps between what students learn in class about SE processes, what they think they execute, along with understanding the cause behind these gaps

    A Systematic Mapping Study of Code Quality in Education -- with Complete Bibliography

    Full text link
    While functionality and correctness of code has traditionally been the main focus of computing educators, quality aspects of code are getting increasingly more attention. High-quality code contributes to the maintainability of software systems, and should therefore be a central aspect of computing education. We have conducted a systematic mapping study to give a broad overview of the research conducted in the field of code quality in an educational context. The study investigates paper characteristics, topics, research methods, and the targeted programming languages. We found 195 publications (1976-2022) on the topic in multiple databases, which we systematically coded to answer the research questions. This paper reports on the results and identifies developments, trends, and new opportunities for research in the field of code quality in computing education

    Open source software GitHub ecosystem: a SEM approach

    Get PDF
    Open source software (OSS) is a collaborative effort. Getting affordable high-quality software with less probability of errors or fails is not far away. Thousands of open-source projects (termed repos) are alternatives to proprietary software development. More than two-thirds of companies are contributing to open source. Open source technologies like OpenStack, Docker and KVM are being used to build the next generation of digital infrastructure. An iconic example of OSS is 'GitHub' - a successful social site. GitHub is a hosting platform that host repositories (repos) based on the Git version control system. GitHub is a knowledge-based workspace. It has several features that facilitate user communication and work integration. Through this thesis I employ data extracted from GitHub, and seek to better understand the OSS ecosystem, and to what extent each of its deployed elements affects the successful development of the OSS ecosystem. In addition, I investigate a repo's growth over different time periods to test the changing behavior of the repo. From our observations developers do not follow one development methodology when developing, and growing their project, and such developers tend to cherry-pick from differing available software methodologies. GitHub API remains the main OSS location engaged to extract the metadata for this thesis's research. This extraction process is time-consuming - due to restrictive access limitations (even with authentication). I apply Structure Equation Modelling (termed SEM) to investigate the relative path relationships between the GitHub- deployed OSS elements, and I determine the path strength contributions of each element to determine the OSS repo's activity level. SEM is a multivariate statistical analysis technique used to analyze structural relationships. This technique is the combination of factor analysis and multiple regression analysis. It is used to analyze the structural relationship between measured variables and/or latent constructs. This thesis bridges the research gap around longitude OSS studies. It engages large sample-size OSS repo metadata sets, data-quality control, and multiple programming language comparisons. Querying GitHub is not direct (nor simple) yet querying for all valid repos remains important - as sometimes illegal, or unrepresentative outlier repos (which may even be quite popular) do arise, and these then need to be removed from each initial OSS's language-specific metadata set. Eight top GitHub programming languages, (selected as the most forked repos) are separately engaged in this thesis's research. This thesis observes these eight metadata sets of GitHub repos. Over time, it measures the different repo contributions of the deployed elements of each metadata set. The number of stars-provided to the repo delivers a weaker contribution to its software development processes. Sometimes forks work against the repo's progress by generating very minor negative total effects into its commit (activity) level, and by sometimes diluting the focus of the repo's software development strategies. Here, a fork may generate new ideas, create a new repo, and then draw some original repo developers off into this new software development direction, thus retarding the original repo's commit (activity) level progression. Multiple intermittent and minor version releases exert lesser GitHub JavaScript repo commit (or activity) changes because they often involve only slight OSS improvements, and because they only require minimal commit/commits contributions. More commit(s) also bring more changes to documentation, and again the GitHub OSS repo's commit (activity) level rises. There are both direct and indirect drivers of the repo's OSS activity. Pulls and commits are the strongest drivers. This suggests creating higher levels of pull requests is likely a preferred prime target consideration for the repo creator's core team of developers. This study offers a big data direction for future work. It allows for the deployment of more sophisticated statistical comparison techniques. It offers further indications around the internal and broad relationships that likely exist between GitHub's OSS big data. Its data extraction ideas suggest a link through to business/consumer consumption, and possibly how these may be connected using improved repo search algorithms that release individual business value components

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances
    corecore