
Open Universiteit
www.ou.nl

Decision Modules in Models and Implementations

Citation for published version (APA):

Roubtsova, E. E., & Roubtsov, S. (2014). Decision Modules in Models and Implementations. 36-37. Paper
presented at Benevol 2014, Amsterdam, Netherlands.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12 Dec. 2021

https://research.ou.nl/en/publications/a33a0e33-6271-47a3-b228-9912fdde8dfe

(Co-)Evolution in MDSE ecosystems
J.G.M. Mengerink

Eindhoven University of Technology, The Netherlands
Email: j.g.m.mengerink@tue.nl

INTRODUCTION

In model driven software engineering (MDSE) [10], model-
transformations are central artifacts [14]. They depend on
meta-models for their structure and relate the different models
in the ecosystem. However, meta-models evolve, for instance
because of new insights in the systems they model. A pressing
issue in industry, is that maintaining model-transformations
with respect to meta-model evolution is very costly [3] in
both a time-related and skill-related sense. To this end, it
is desirable to automate this co-evolution of transformations,
with respect to meta-model evolution, to the furthest extent
possible. Although for meta-model/model co-evolution, a va-
riety of tools exist [15], for meta-model/model-transformation
co-evolution, most tools remain in prototype [2], [4], [12]. The
methods and techniques of these prototypes are promising.
However, the prototypes are all aimed towards specific use-
cases and only offer support that is sufficient for their specific
use-cases. When one requires to evolve artifacts that are not
in-line with the artifacts in those case-studies, these prototype
are not yet mature enough.

In this extended abstract we sketch the envisioned direction
of the PhD research addressing the (co-)evolution challenge in
MDSE ecosystems. The research is to be conducted in 2014–
2018.

MM A MM B

A2B.qvto

MM A’ MM B’

A’2B’.qvto

based on
conforms to

input/output

evolution

↵0.MMA0↵0.MMA0 �0.MMB0�0.MMB0

↵.MMA↵.MMA �.MMA�.MMA

�qvto�qvto���� �����MMA�MMA
�MMB�MMB Evolved

Original

Fig. 1: Abstract representation of evolution in an MDSE
ecosystem, extended form the non-evolutionary variant in [8]

INDUSTRIAL CONTEXT

Our research takes place at ASML, the leading provider
of complex lithography systems. Here we have access to an
industrial repository containing a large MDSE ecosystem with
version history going back up to three years. Our ecosystem
can be represented similarly to that of Jouault and Kurtev
[8]. However, we are more interested in the evolutionary axis
through such a system, as is illustrated in Figure 1. As in the
non-evolution version [8], our representation shows two mod-
els (↵.MMA and �.MMB) relating to meta-model MMA and MMB
respectively. To incorporate evolution, we include the evolved
versions of MMA and MMB (MMA’ and MMB’ respectively),
to which evolved models ↵’.MMA’ and �’.MMB’ con-
form. Lastly, our model-transformation A2B.qvto should co-
evolve to support the new models, leading to A’2B’.qvto.

RESEARCH QUESTION

The main question that we aim to solve is how to specify the
differences between difference versions of our modeling arti-
facts (meta-models, models, and model-transformations). That
is: in what way can we specify, for example, �MMA, such that we
have enough information to co-evolve the related models and
model-transformations. This specification can take place either
before, or after evolution of the primary artifacts (i.e. the meta-
models). If one was to provide such a specification a-priori,
it could be used to perform evolution on both the primary,
and the secondary artifacts (i.e. the model-transformations).
Alternatively, this specification could be created after evolution
of he primary artifacts (potentially in an automated way), and
used solely for the evolution of secondary artifacts.

RELATED WORK

In literature, a number of different approaches into speci-
fying evolution have been addressed. State-based approaches
attempt to calculate the difference between two versions of a
meta-model (�MMA), then adapt the related artifacts (A2B.qvto
and ↵.MMA). Often, these approaches attempt to aggregate
smaller changes into higher order transformations (HOTs). [1],
[5], [17]

Generation approaches aim to fully generate model-
transformation, rather than evolving them from previous ver-
sions. By-example techniques can be employed, letting the
user specify relations between model instances (i.e. between
↵0.MMA0 and �0.MMB0) [9]. Using this information, A0

2B

0.qvto
is generated, rather than evolved from A2B.qvto. Other ap-
proaches include regenerating from a shared ontology of
concepts [16].

Operator-based approaches define a set of operators which
the developer can use. These operators affect both the meta-
model and artifacts, while preserving conformance during the
evolution. Rather than compute �MMA, the user creates it by the
successive applications of these operators. While an extensive
set of these operators exists for model co-evolution [6], only a
very restricted set is available for transformation co-evolution
[11].

An example of an operator-based language is one by Luo
[13]. However, it focuses on refinement, only allows for
additive changes, and does not consider subtractive changes [7]
(i.e. removal of elements). Furthermore, this approach specifies
change at a fine-grained level of detail. To effectively co-
evolve artifacts, it is desirable that changes are specified at
a higher, more coarse, level. For example, specifying change
in terms of adding and deleting model elements, provides little
information about the intent of the user. However, if one were
to specify change in terms of higher-order operations such as
Extract Superclass or Flatten Hierarchy, addi-
tional information with respect to the evolution process can
be obtained (i.e. to what end is the user adding/removing a
certain element?). Using this additional information, artifacts
can be co-evolved more precisely, such that the result is closer
to the end-result desired by the user.

In order to extend such a language with subtractive and
updative (e.g. renaming an element) operations [7], the dif-
ferent operations (either low-level or high-level) need to be
categorized with respect to the context in which they operate.
For instance, extending a meta-model with an optional ele-
ment, does not require conforming models to be update, so
↵.MMA = ↵0.MMA0. We wonder whether we can discover, and
use these properties to facilitate co-evolution.

ENVISIONED APPROACH

Given the large amount of available work for operator-
based (co-)evolution of models [6], we feel research in to
operator-based (co-)evoltion of model-transformations will be
the most fruitful. The first aim of our study will be to
increase the available operators for model-transformations, by
looking at the available operators of models. In this way,
we aim to specify the difference between two meta-model
versions in terms of these operators. An added benefit to
this approach is that such a sequence of operators should
immediately give us a specification for co-evolution of model-
transformations. However, rather than creating these operators
in just a, traditional, bottom-up fashion, additionally we will
attempt use extract operators from the ASML repositories.
Secondly, our research will focus on semi-automatic recon-
struction of operator-sequences from a difference specification
between meta-model versions. The latter should close the gap
between state-based and operator-based approaches.

REFERENCES

[1] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Automating Co-evolution in Model-Driven Engineering.
2008 12th International IEEE Enterprise Distributed Object Computing
Conference, pages 222–231, September 2008.

[2] Juri Di Rocco, Ludovico Iovino, and Alfonso Pierantonio. Bridging
state-based differencing and co-evolution. In Proceedings of the 6th
International Workshop on Models and Evolution, ME ’12, pages 15–
20, New York, NY, USA, 2012. ACM.

[3] Marcos Didonet Del Fabro and Patrick Valduriez. Towards the effi-
cient development of model transformations using model weaving and
matching transformations. Software & Systems Modeling, 8(3):305–324,
2009.

[4] Jokin Garcia, Oscar Diaz, and Maider Azanza. Model transformation
co-evolution: A semi-automatic approach. In Krzysztof Czarnecki and
Gorel Hedin, editors, SLE, volume 7745 of LNCS, pages 144–163.
Springer, 2013.

[5] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards
synchronizing models with evolving metamodels. In Proceedings of
the International Workshop on Model-Driven Software Evolution, 2007.

[6] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth.
An extensive catalog of operators for the coupled evolution of metamod-
els and models. In SLE, pages 163–182. Springer, 2011.

[7] Ludovico Iovino. Coupled Evolution in metamodeling ecosystems. PhD
thesis, Unversita di Laquila, Via Vetoio, I-67100 LAquila, Italy, April
2013.

[8] Frédéric Jouault and Ivan Kurtev. On the architectural alignment of
atl and qvt. In Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC ’06, pages 1188–1195, New York, NY, USA, 2006.
ACM.

[9] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger,
and Manuel Wimmer. Model Transformation By-Example: A Survey of
the First Wave, volume 7260 of LNCS, pages 197–215. Springer, 2012.

[10] Stuart Kent. Model driven engineering. In Michael Butler, Luigia Petre,
and Kaisa Sere, editors, Integrated Formal Methods, volume 2335 of
LNCS, pages 286–298. Springer, 2002.

[11] Steffen Kruse. On the use of operators for the co-evolution of
metamodels and transformations. In International Workshop on Models
and Evolution, 2011.

[12] Tihamer Levendovszky, Daniel Balasubramanian, Anantha Narayanan,
and Gabor Karsai. A novel approach to semi-automated evolution of
dsml model transformation. In Mark van den Brand, Dragan Gasevic,
and Jeff Gray, editors, SLE, volume 5969 of LNCS, pages 23–41.
Springer, 2010.

[13] Yaping Luo, Mark van den Brand, Luc Engelen, and Martijn Klabbers.
From conceptual models to safety assurance. In Conceptual Modeling,
pages 195–208. Springer, 2014.

[14] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152(1-2):125–142,
March 2006.

[15] Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dim-
itrios S. Kolovos, Kelly Garces, Richard F. Paige, and Fiona A.C. Polack.
A comparison of model migration tools. In Model Driven Engineering
Languages and Systems, pages 61–75. Springer, 2010.

[16] Stephan Roser and Bernhard Bauer. Automatic generation and evolution
of model transformations using ontology engineering space. In Stefano
Spaccapietra, JeffZ. Pan, Philippe Thiran, Terry Halpin, Steffen Staab,
Vojtech Svatek, Pavel Shvaiko, and John Roddick, editors, Journal on
Data Semantics XI, volume 5383 of LNCS, pages 32–64. Springer, 2008.

[17] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation,
volume 4609 of LNCS, pages 600–624. Springer, 2007.

Evolving Languages with Object Algebras
Pablo Inostroza

Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

Email: pvaldera@cwi.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
Email: storm@cwi.nl

Abstract—Object Algebras are a programming technique for
the extensible implementation of recursive data types. This
extended abstract introduces Object Algebras and shows how
they could be used to develop highly evolvable software languages.
The paper is concluded with a discussin of directions for further
research.

I. INTRODUCTION

Object Algebras [4] are a solution to the expression prob-
lem [7]. This means they support the extension of a data type
along two dimensions: data type variants and the operations
over the data type. Since the abstract syntax of a language is
naturally described using recursive data types, this suggests
that Object Algebras are a viable technique for implementing
extensible language implementations.

Using Object Algebras, the abstract syntax of a language
is described using generic factory interfaces. The following
interface describes a simple language for expressions:

interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

Operations over the abstract syntax are represented by imple-
mentations of such generic interfaces, where the type parameter
(e.g., E) is bound to the type of the operation. For instance,
evaluation of expressions can be realized as follows (using
Java 8 closures):

interface IEval { int eval(); }

class Eval implements ExpAlg<IEval> {
IEval lit(int n) { return () -> n; }
IEval add(IEval l, IEval r) {

return () -> l.eval() + r.eval();
}

}

The functional interface IEval captures the type of the operation
we’re defining. The class Eval is a factory for interpreters of
expressions.

To evaluate an expression it should be created using the Eval

factory. As an example, the following generic method creates
the expression “1 + 2” over any algebra alg:

<X> X make(ExpAlg<X> alg) {
return alg.add(alg.lit(1), alg.lit(2));

}

To create evaluable expressions, one would call this method
with an instance of Eval.

II. ADDING SYNTAX

Any language operation is realized by (re)implementing the
generic factory interface. To add another language construct,
however, we need to extend the generic factory interface itself
first. For instance, the following interface could represent the
extension with multiplicative expressions:

interface MulAlg<E> extends ExpAlg<E> {
E mul(E l, E r);

}

Existing operations can then be extended by implementing
the extended interface and subclassing the class representing
the base operation. For instance, to extend the evaluator of
expressions to support multiplication, one would write the
following class:

class EvalMul extends Eval implements MulAlg<IEval> {
IEval mul(IEval l, IEval r) {

return () -> l.eval() * r.eval();
}

}

Expressions should now be created over the extended interface
IMulAlg using the factory EvalMul.

III. CHANGING SEMANTICS

Sometimes we do not want to add a new language construct,
but change the semantics of an existing construct, for instance,
to fix a bug. This can be achieved using plain inheritance.

Consider the contrived example of changing the behavior
of add to perform subtraction instead of addition. This can be
expressed by overriding the constructor method add of EvalMul:

class SubIsTheNewAdd extends EvalMul {
IEval add(IEval l, IEval r) {

return () -> l.eval() - r.eval();
}

}

IV. ADVICE

If it’s not needed to completely replace the semantics of a
construct, we can inherit from an operation and call super to
selectively add “advice” to language constructs, as a simple
form of Aspect-Oriented Programming (AOP) [3]. .

For instance, let’s say we decide that the add construct is
deprecated. In this case we want to keep the original behavior1

but issue warning message to the user:

1“Extend and deprecate” is a common language evolution pattern.

class DeprecateAdd extends SubIsTheNewAdd {
IEval add(IEval l, IEval r) {
System.err.println("WARNING: + is deprecated");
return super.add(l, r);

}
}

Note that it is equally possible to additionally wrap l and r,
and capture the result of calling super.

V. DESUGARING

A common strategy to extend a language with a new
construct is by “desugaring” it to a combination of existing
constructs. Object Algebras in combination with Java 8 default
methods provide a natural way of specifying such extensions.

Consider the addition of unary negative expressions -x.
Semantically, this is equivalent to -1 * x:

interface NegAlg<E> extends MulAlg<E> {
default E neg(E e) {

return mul(lit(-1), e);
}

}

The default method provides a default implementation of the
neg constructor. This works for every operation implemented
over NegAlg (i.e., for every binding of E). If the desugaring is
undesired, for instance when pretty printing, neg can always
be overridden in the concrete implementation of the operation.

VI. CONCRETE SYNTAX

The extension examples shown above all involved the
abstract syntax of a language as modeled by generic factory
interfaces. In a realistic language implementation, however, the
concrete syntax should be accounted for as well. A pragmatic
solution to this problem was presented in [2]. This solution is
based on using Java annotations on factory methods to specify
syntax productions. Using reflection all productions can be
collected and used to generate a parser for a concrete parser
generator (e.g., ANTLR4).

The syntax for the basic expression language is then specified
as follows:

interface ExpAlg<E> {
@Syntax("exp = NUM");
E lit(int n);

@Syntax("exp = exp ’+’ exp") @Level(10)
E add(E l, E r);

}

The @Level annotation specifies the expression’s precedence
level. This information can also be used to guide pretty printing.

VII. DISCUSSION

This extended abstract introduced Object Algebras as a
technique for evolving language implementations. However,
Object Algebras are very young; there’s not much experience
yet on how to apply them in realistic case studies (but see [2]).
In this section we discuss ongoing research and sketch out
directions for future work.

a) Morphing Operations: Object Algebras support the
extension of an operation to accomodate a new language
constructs. However, it seems impossible to change the type
of operations themselves. For instance, we cannot change the
return type or parameter list of eval in IEval. Such changes
would require reimplementing the evaluator for all cases.
Additional parameters can be sometimes simulated using side
effects in fields of in the concrete algebras. However, this might
require maintaining a stack to simulate parameter passing. This
is both tedious and error-prone. This problem is particular
relevant when a language is extended with additional effects
(e.g., state, continuations, backtracking, etc.).

b) Program Analysis: Object Algebras map syntactic
constructs to denotations (objects) that represent the desired
semantics. Often the result is simply an interpreter. Further
research is needed how to specify complex program analyses
(e.g., name resolution, type inference, data flow analysis, etc)
as Object Algebras in an extensible way. Recent work on
the relation between Object Algebras and attribute grammars
also shows promise in this regard [6]. Another approach to
investigate is the framework of abstract interpretation [1]. In
this case a the syntactic constructs are not mapped to a concrete
semantics, but to an abstract semantics (e.g., representing
types).

c) Cross-cutting Concerns: Language implementation is
full of cross-cutting concerns. Examples are: tracing, profiling,
unique identities for name analysis, origin tracking for error
messages, inserting hooks for debuggers. First steps towards
generic advice in the context of object algebras is presented
in [5]. Dynamic proxies are expected to be very valuable here,
since they allow us to implement any operation interface (e.g.,
IEval) dynamically. However, their applicability is hampered
if the signature of the operations needs to change (cf. previous
point).

VIII. CONCLUSION

Object Algebras show a lot of promise for the implemen-
tation of evolvable languages. However, more research is
needed to make their essential ingredients more modular and
composable. Finally, real-life case studies are required to go
beyond the stage of simple expression-oriented languages.

REFERENCES

[1] P. Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328,
1996.

[2] M. Gouseti, C. Peters, and T. van der Storm. Extensible language
implementation with Object Algebras (short paper). In GPCE’14, pages
25–28. ACM, 2014.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. Springer, 1997.

[4] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses: practical
extensibility with Object Algebras. In ECOOP’12, pages 2–27. Springer,
2012.

[5] B. C. d. S. Oliveira, T. van der Storm, A. Loh, and W. R. Cook. Feature-
oriented programming with object algebras. In ECOOP’13, pages 27–51.
Springer, 2013.

[6] T. Rendel, J. I. Brachthäuser, and K. Ostermann. From Object Algebras
to Attribute Grammars. In OOPSLA’14, pages 377–395. ACM, 2014.

[7] P. Wadler. The expression problem. Online, November 1998. http:
//www.daimi.au.dk/~madst/tool/papers/expression.txt.

A"recommendation"system"for""
generalizing"and"refining"source"code"templates"

"
Coen De Roover

Vrije Universiteit Brussel, Belgium
cderoove@vub.ac.be

Code templates are ubiquitous among source code search and transformation
tools. There, the matches for a template are source code fragments of interest
to the tool. Despite their ubiquity, code templates can prove difficult to specify.
A template that is too relaxed will have unwanted code among its matches.
Conversely, a template that is too strict will not match some of the wanted
code. The process of generalizing and refining templates until they match the
correct code has been the source of many headaches for the users of our own
Ekeko/X [1] program transformation tool.

To support our users in specifying Ekeko/X templates, we introduce a suite of
template mutation operators. While some operators change a single
component of the template, others change multiple components of the
template in a systematic manner. Operator introduce-variable is an example
of the former. It changes one component of the template into a placeholder for
a component of the match. Operator generalize-aliases, on the other hand, is
an example of the latter. It introduces placeholders for all references to the
same variable within a code template. In addition, it requires their matches to
alias at run-time.

Using this suite of template mutation operators, we formulate a genetic search
algorithm [2] that recommends modifications of an Ekeko/X template such that
the template matches all of a given set of desired and none of a given set of
undesired code fragments. We evaluate our algorithm on the problem of
assisting users in specifying a code template that matches similar, but non-
identical source code fragments.

[1] C. De Roover and K. Inoue. The Ekeko/X program transformation tool. International
Working Conference on Source Code Analysis and Manipulation (SCAM14), 2014.

[2] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys, 45(1), Dec. 2012.

A Longitudinal Study of an Industrial FLOSS

project using Social Network Analysis⇤

Gregorio Robles*, José Texeira†, Jesus M. Gonzalez-Barahona*‡

* GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain) † School of Economics

(TSE), University of Turku (Finland) ‡ Bitergia S.L. (Madrid, Spain)

1 Introduction

Free/Libre/Open Source projects were originally developed by a community of
volunteers. In the late 1990s, companies began to collaborate with those com-
munities, some of them by contributing to existing projects (Linux is the best
example) or by releasing new ones (such as IBM with Eclipse, or once SUN
with OpenO�ce.org, etc.). Hybrid development communities, where commu-
nity and industry collaborated, became frequent [3]. In recent years, a new type
of FLOSS projects has emerged, driven by several companies who employ most,
if not all of the core developers and with a very small amount of contributions
from volunteers. We call this type of projects industrial FLOSS projects. This
is the case for instance of WebKit (a web browser layout engine developed in
cooperation by Apple, Nokia, Google, Samsung, Intel, RIM among others) or
OpenStack (a cloud infrastructure project joint-developed by over one hundred
companies). In this scenario, traditional Social Network Analysis (SNA) per-
formed on developers [4, 2] can be augmented with information on the a�liation
of the developers in order to address a range of new questions, such as:

• Are developers a�liated with di↵erent firms collaborating with each other
in the project? How does the collaboration evolve over time? How does
the collaboration get a↵ected by exogenous events in the market?

• How do developers cluster into di↵erent groups? Do developer clusters
correspond to firms?

• Do firms that compete in the same revenue model collaborate less in the
ecosystem?

• Is the development process fair? Do contributions get included in the
source code base because of their quality or is the process easier depending

⇤
This research has been funded by the Region of Madrid under the project “Investigación

y desarrollo de tecnoloǵıas educativas en la Comunidad de Madrid” (S2013/ICE-2715).

on the a�liation of the developer? Are supervision and decision processes
(such as reviewing, code owning, etc.) neutral in regard to the a�liation
of the developers?

2 Current state of research

We have performed a longitudinal study covering more than fours years of the
OpenStack project, considering the time, pace and sequence in the study of an
ecosystem [1]. We therefore extract commit activity from the versioning system
repositories and interfere that two developers have collaborated if they have
modified at least a file in common during a certain timespan. Our results point
out that combining qualitative ethnographic material with social network anal-
ysis techniques gained by means of mining software repositories, we obtain rich
longitudinal descriptions that allow to understand the competitive and collabo-
rative aspects that are present simultaneously in such type of large and complex
software ecosystems. By calculating collaborative network properties, we found
out the hyper-collaborative nature of OpenStack with a surprising low degree of
homophily, meaning that developers do not tend to work with developers from
their own companies, in code collaboration. On the other hand, we have found
that subcommunities in the OpenStack project are very heterogeneous, as they
tend to include developers from many di↵erent firms. We plan to extend our
study with data from the reviewing process, which is of significant importance
in the OpenStack project.

References

[1] Rahul C. Basole. Visualization of interfirm relations in a converging mobile
ecosystem. Journal of Information Technology, 24(2):144–159, 2009.

[2] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and
Premkumar Devanbu. Latent social structure in open source projects. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of software engineering, pages 24–35. ACM, 2008.

[3] Brian Fitzgerald. The transformation of open source software. Mis Quar-
terly, pages 587–598, 2006.

[4] Luis López, Jesús M. González-Barahona, and Gregorio Robles. Applying
social network analysis to the information in CVS repositories. In Proceed-
ings of the International Workshop on Mining Software Repositories, pages
101–105, Edinburg, UK, 2004.

[5] Jose Teixeira and Tingting Lin. Collaboration in the open-source arena: the
webkit case. In Proceedings of the 52nd ACM conference on Computers and
people research, pages 121–129. ACM, 2014.

An Empirical Study into Social Success Factors for
Agile Software Development

extended abstract

Evelyn van Kelle⇤†, Aske Plaat‡, Per van der Wijst†, and Joost Visser⇤§
⇤Software Improvement Group, Amsterdam, The Netherlands

e.vankelle@sig.eu, j.visser@sig.eu
†Tilburg University, Tilburg, The Netherlands

Per.vanderWijst@uvt.nl
‡Leiden University, Leiden, The Netherlands

a.plaat@liacs.leidenuniv.nl
§Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract—Though many warn that Agile at large scale is

problematic or at least more challenging than in smaller projects,

Agile software development seems to become the norm, also for

large and complex projects.

Based on literature, we constructed a conceptual model of

social factors that may be of influence on the success of soft-

ware development projects in general, and of Agile projects in

particular. We also included project size as a candidate factor.

We tested the model on a set of 40 projects from 19 organisa-

tions, comprising a total of 141 project members, Scrum Masters,

and product owners.

We found that project size does not determine Agile project

success. Rather, value congruence, degree of adoption of agile

practices, and transformational leadership proved to be the most

important predictors for Agile project success.

I. BACKGROUND

Agile Software Development methods are originally applied
by, and considered successful for, small teams and projects,
and scaling up these methods is challenging [1]–[4]. However,
larger organizations are also facing the challenges that Agile
methodologies address [1]. Since most projects do not fail due
to technology, but due to social and organizational problems,
and a lack of effective communication [5], it is important to
gain understanding about which social factors are of significant
influence on Agile project success. Specifically, we are also
interested in project success at larger scale.

II. GOALS AND METHODS

The aim of our study was (1) to independently verify
earlier identified success factors; and (2) to develop and
validate a new, more comprehensive conceptual model by
examining relationships between various candidate success
factors and Agile project success. Hypotheses regarding these
relationships were tested using data from 141 team members,
Scrum Masters and product owners from 40 projects from
19 Dutch organizations. A conceptual model was developed
based on existing literature and on explorative interviews that
were held with practitioners involved in successful (large)
Agile development projects. The model includes five candidate
success factors: (1) transformational leadership; (2) commu-
nication style; (3) value congruence; (4) degree of agility;

and (5) project size. Subsequently, this conceptual model was
empirically tested and refined. Full details in the study can be
found elsewhere [6].

III. RESULTS

Results from regression- and mediation analyses showed
that value congruence, degree of agility and transformational
leadership were the most important predictors for project suc-
cess in this model. Value congruence was a mediating factor
between candidate success factors and project success. Project
size was not found to influence project success, suggesting
Agile methodologies could be applied successfully on larger
scale as long as there is high value congruence, high degree
of agility and transformational leadership.

IV. DISCUSSION

This study contributes to the empirical identification of
(new) communication-related success factors in Agile Soft-
ware Development, by providing a validated conceptual model.
The model provides insights into which social factors con-
tribute to Agile project success. We also find that project
size does not play a role. This implies that the focus of
managers should be on increasing value congruence, agility
and transformational leadership. The result that Agile methods
can indeed work for large project, is a surprising outcome,
since Agile puts so much emphasis on small teams and short
sprints. More research is needed to verify and analyse our
findings. Future research should be conducted on a larger
scale, over a longer period of time in order to validate the
model (in other domains).

ACKNOWLEDGEMENTS

The authors thank Martijn Goudbeek (Tilburg University)
for assistance with the statistical data analysis.

REFERENCES

[1] L. Cao, K. Mohan, P. Xu, and B. Ramesh, “How extreme does extreme
programming have to be? adapting xp practices to large-scale projects,”
in System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on. IEEE, 2004, pp. 10–pp.

[2] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[3] D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling agile methods,”
Software, IEEE, vol. 20, no. 4, pp. 12–14, 2003.

[4] B. Boehm, “Get ready for agile methods, with care,” Computer, vol. 35,
no. 1, pp. 64–69, 2002.

[5] J. Eckstein, Agile software development in the large: Diving into the deep.
Addison-Wesley, 2013.

[6] E. v. Kelle, “Social factors of agile development success,” Master’s thesis,
Tilburg University, the Netherlands, 2014, to appear.

Pricing via Functional Size – A Case Study of 77 Outsourced Projects
Hennie Huijgens, TU Delft

This story is about a company that experiences two problems in its software engineering outsourcing.
First, a worsening trend is seen in productivity, indicating that the organization does not learn from
historic projects. Second, much time and energy is spent on preparation and review of fixed price project
proposals. Our case study explores whether a new project pricing method helps to solve these problems.

To arrive at a price that is acceptable for both parties involved, most companies rely heavily on expert
judgment; where the advice of knowledgeable staff is solicited. Usually this is performed as a bottom up
approach, where component tasks are identified and sized and then these individual estimates are
aggregated to produce an overall estimate.

Yet, in practice effort and/or schedule overruns are business-as-usual, despite involvement of experts.
Software development is characterized by high cost and schedule overruns. Estimation errors are
reported to be essential causes of poor management, due to lack of a solid baseline of size.

An alternative method for software project estimation is based on algorithmic cost models (COCOMO 2
is a well-known example) which take cost drivers representing certain characteristics of the target
system and the implementation environment and use them to predict estimated effort. In many of these
statistic approaches size is assumed to be a key factor to estimate project cost. Usually size of software
engineering projects is measured with a formal Functional Size Measurement (FSM) standard. FSM is a
method to measure size of software engineering activities by means of the functionality delivered to
users, which lays the foundation for a statistical method of project pricing based on functional size.

Advantages of such a statistical method are that this will help to improve transparency of estimations
and that it can be a good instrument to create continuous improvement of project performance.

However, our observation is that a purely statistic method is almost never used. If statistical analysis is
used, this is usually supplementary to an expert judgment-based approach. And practice shows that in
most cases the expert opinion – in many cases supported by reasoning by analogy – is leading when it
comes to decision making.

The goal for our research is to answer the question whether a purely statistical approach to pricing is
effective in an outsourcing context. We define an approach to be effective when a so-called win-win
situation is achieved: meaning that both involved parties are satisfied. The supplier delivers a service for
a price that is higher than the cost, and the customer gets higher value than the paid price. In addition to
that the outsourcing context asks for a long-term (5 year) relation.

Based on this we focus on transparency as the factor we need to measure to determine success:
transparency when setting the price and transparency when finalized. Transparency is important for
‘next’ projects; when pricing of actual projects is transparent, this can be re-used in future projects.

A long-term relation asks, in an outsourcing context, for in-tent of continuous improvement. When a
supplier becomes more efficient and effective, the price can go down without a negative effect on the
supplier’s margin of profit. More value for the same amount of money represents a win-win situation for
both the customer and the supplier.

For this purpose we define three research questions:

RQ1: To what extent are both parties involved in an out-sourcing contract satisfied with FSM-pricing?
RQ2: To what extent does FSM-pricing help to improve transparency of project proposals?
RQ3: To what extent does FSM-pricing help to create continuous improvement?

We studied the implementation of single FSM-based pricing of supplier proposals in a Belgian telecom
company that outsourced its IT to an Indian supplier. In order to create more transparency in the
supplier proposal process a pilot was started on Functional Size Measurement pricing (FSM-pricing). In
our research we evaluate the implementation of FSM-pricing in the software engineering domain of the
company, as an instrument useful in the context of software management and supplier proposal pricing.

For this purpose we use a mixed methods methodology, as we are examining a phenomenon with
multiple (qualitative and quantitative) tools. We perform a single-case, holistic case study that involves
two instruments; a survey consisting of open and closed questions, and a quantitative analysis of actual
project data. One of the instruments we use for the analysis is a so-called cost/duration matrix, a model
that is intended for analysis and benchmark purposes. The model is based on classification of all
software projects in a repository into four quadrants:

1. Cost over Time; projects that performed better than average with regard to cost, but worse than
average with regard to duration;

2. Good Practice; projects that performed better than average with regard to both cost and duration;
3. Time over Cost; projects that performed better than average with regard to duration and worse than

average with regard to cost;
4. Bad Practice; projects that performed worse than average with regard to both cost and duration.

We found that a statistical, empirical, evidence-based pricing approach for software engineering, as a
single instrument (without a connection with expert judgment), can be used in distributed environments
to create cost transparency and performance management of software project portfolios.

This abstract is based on a paper ‘Pricing via Functional Size – A Case Study of 77 Outsourced Projects’ by
Hennie Huijgens, Georgios Gousios and Arie van Deursen (TU Delft) that is submitted to ICSE 2015 and
partly on a paper ‘How to Build a Good Practice Software Project Portfolio’ by Hennie Huijgens, Rini van
Solingen en Arie van Deursen that was accepted for ICSE (SEIP) 2014.

Hennie Huijgens works as a software economics expert for Dutch and Belgium banks and telecom
companies. Besides his work he is a PhD candidate (subject: evidence-based software portfolio
management) with Arie van Deursen en Rini van Solingen at TU Delft.

Continuous integration in GITHUB: Experiences with TRAVIS-CI

Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik, Mark G. J. van den Brand
Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{b.n.vasilescu, a.serebrenik, m.g.j.v.d.brand}@tue.nl, {s.b.v.schuylenburg, j.j.h.m.wulms}@student.tue.nl

I. INTRODUCTION

Continuous integration (CI) is a software engineering
practice of frequently merging all developer working copies
with a shared main branch [1], e.g., several times a day, or
with every commit. This continuous application of quality
control checks aims to speed up the development process
and to ultimately improve software quality, by reducing the
integration problems occurring between team members that
develop software collaboratively [1].

With the advent of social media in (OSS) software de-
velopment, recent years have witnessed many changes to
how software is developed, and how developers collaborate,
communicate, and learn [2]. One such prominent change
is the emergence of the pull-based development model [3],
made popular by the “social coding” platform GITHUB. In
this model one can distinguish between direct contributions
to a project, coming from a typically small group of de-
velopers with write access to the main project repository,
and indirect ones, coming from developers who fork the
main repository, update their copies locally, and submit pull
requests for review and merger.

GITHUB’s implementation of the pull-based development
model enables anyone with an account to submit changes
to any repository with only a few clicks. This represents an
unprecedented low barrier to entry for potential contributors,
but it also impacts testing behavior [4]: GITHUB project
owners reported scalability challenges when integrating out-
side contributions, driving them towards automated tests.
Automated CI services, such as TRAVIS-CI1—integrated
with GITHUB itself—or JENKINS2, facilitate this process:
whenever a commit is recorded or a pull request is received,
the contribution is merged automatically into a testing
branch, the existing test suite is run, and the contribution
author and project owner are notified of the results.

This extended abstract summarizes the finding of our
study of TRAVIS-CI, arguably the most popular CI service
on GITHUB [5].3 We quantitatively explore to what extent
GITHUB developers use the TRAVIS-CI, and whether the
contribution type (direct or indirect) or project characteristics
are associated with the success of the automatic builds.

1https://travis-ci.com
2http://jenkins-ci.org
3As supported, e.g., by the blog entries https://blog.codecentric.de/en/

2012/05/travis-ci-or-how-continuous-integration-will-become-fun-again/
and https://blog.futurice.com/tech-pick-of-the-week-travis-ci, acc. 6/2014

II. METHODOLOGY

To understand usage of the TRAVIS-CI service in
GITHUB projects, we extracted and integrated data from two
repositories: (i) GHTORRENT [6], a service collecting and
making available metadata for all public projects available
on GITHUB; and (ii) the TRAVIS-CI API4.

Due to limitations of querying the TRAVIS-CI API, we
focus on a sample of large and active GITHUB projects.
Using the GHTORRENT web interface5, we selected all
GITHUB repositories that: (i) are not forks of other reposi-
tories; (ii) have not been deleted; (iii) are at least one year
old; (iv) receive both commits and pull requests; (v) have
been developed in Java, Python or Ruby; (vi) had at least 10
changes (commits or pull requests) during the last month;
and (vii) have at least 10 contributors. We choose projects
that receive both commits and pull requests, since we want to
understand whether the way modification has been submitted
(commit or pull request) can be associated with the build
success. Our choice of the programming languages has been
motivated by the history of TRAVIS-CI: TRAVIS-CI started
as a service to the Ruby community in early 2011, while
support for Java and Python has been announced one year
later. We expect therefore the use of TRAVIS-CI to be more
widespread for Ruby than for Java and Python.

The data were extracted on March 30, 2014. After filtering
our sample contained 223 GITHUB projects, relatively bal-
anced across the three programming languages: 70 (31.4%)
in Java, 83 (37.2%) in Python, and 70 (31.4%) in Ruby.

To extract data about the automatic builds, we started
by querying the repos endpoint of the TRAVIS-CI JSON
API to determine whether TRAVIS-CI is configured for a
particular project. Then, if the response was not empty, we
iteratively queried the builds associated with this project (25
at a time as per the TRAVIS-CI API) from the builds

endpoint, collecting the event_type fields (that distin-
guish pull requests from pushes) and the result fields
(that specify whether the build succeeded—0, or failed—1).

III. RESULTS

We start by investigating the preference for direct and
indirect contributions among the projects in our sample. The

4http://docs.travis-ci.com/api/
5Accessible from http://ghtorrent.org/dblite/

Prog. lang. Age (years) Contributors
Java Python Ruby <2 2–4 >4 17 17–33 >33

projects 10 34 40 24 42 18 29 27 28
. . . s.t. p < 0.05 3 19 23 9 25 11 18 15 12
H0 7 3 3 7 3 3 3 3 7
%odds ratio>1 n/a 89 87 n/a 92 82 89 80 n/a

Table I
COMPARISON OF SUBGROUPS OF 84 GITHUB PROJECTS BASED ON THE
PROGRAMMING LANGUAGE, AGE AND THE NUMBER OF CONTRIBUTORS.

shared repository model (with contributors having write ac-
cess to the repository) is more popular among Java projects,
while Python and Ruby projects have more contributors sub-
mitting pull requests. Overall, similarly to Gousios, Pinzger,
and van Deursen [3], we see that direct code modifications
are more popular than indirect ones, with only a small
number of projects having more pull requests than commits.

Next we observe that an overwhelming majority of the
projects are configured to use TRAVIS-CI (206 out of 223
projects, or 92.3%).However, slightly less than half of the
206 projects (93, or 45%) have no associated builds recorded
in the TRAVIS-CI database. This shows that while most
projects are ready to use continuous integration, significantly
fewer actually do. Moreover, among the projects configured
to use TRAVIS-CI but not actually using it, Java projects are
overrepresented, while Ruby projects are underrepresented.

We have observed that the median success rate of 79.5%
for commits and of 75.9% for pull requests. To obtain
a more refined insight in whether the success of a build
is independent from the way the modification has been
proposed, we focused on projects that had at least 5 failed
and at least 5 successful builds for each contribution type,
as required by the �2 test of independence. Out of 113
GITHUB projects configured to use TRAVIS-CI and actually
using it (206 � 93 = 113), 84 projects had sufficient data
for the �2 test. Among the remaining 29 projects, in most
cases it was the failed pull requests cell that had insufficient
data, i.e., builds fail less frequently when contributions are
submitted via pull requests. We believe this is because when
a developer does not have commit rights, she will try harder
to make sure the change is valid change and it will not break
the build. However, when instead a developer has commit
rights, she can try out new things more freely, since she also
has the power to reverse the change.

The 84 projects subjected to the �2 test have been
developed in different languages, have different ages and in-
volve different numbers of contributors. Table I summarizes
differences between those languages, ages, and numbers of
contributors in terms of rejecting the null-hypotheses of the
�2 test, i.e., independence of the build success from the
way the modification has been proposed. We have used the
common threshold of 0.05. The thresholds of 17 and 33
contributors correspond to the 33% and 67% percentiles.
Performing Stouffer tests for each group led to very small

p-values, indicating that results obtained for the majority
of individual experiments can be lifted to the group level.
Table I indicates that null hypotheses, e.g., can be rejected
(3) for Python and Ruby projects, but cannot be rejected
(7) for Java projects. Finally, all odds ratio tests for projects
where the null hypothesis has been rejected (7) for the group
level turned out to be statistically significant (p < 0.05) and
in almost all cases the odds ratios exceeded 1, i.e., whenever
build success depends on the way the modification has been
performed, pull requests are much more likely to result in
successful builds than direct commits.

IV. CONCLUSIONS

In this paper we have studied a sample of large and active
GITHUB projects. We observed that direct code modifica-
tions (commits) are more popular than indirect code mod-
ifications (pull requests). Next, we have seen that although
most GITHUB projects in our sample are configured to use
the TRAVIS-CI continuous integration service, less than half
actually do. In terms of languages, Ruby projects are among
the early adopters of TRAVIS-CI, while Java projects are
late to use continuous integration. For those projects that
actually use TRAVIS-CI, we conclude that pull requests are
much more likely to result in successful builds than direct
commits. However, we observe differences for projects de-
veloped in different programming languages, of different
ages, and involving different numbers of contributors.

ACKNOWLEDGEMENTS

Special thanks to Mathias Meyer and the Travis CI team
for helping us query their API. Bogdan Vasilescu gratefully
acknowledges support from the Dutch Science Foundation
(NWO) through the NWO 600.065.120.10N235 project.

REFERENCES

[1] P. M. Duvall, S. Matyas, and A. Glover, Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

[2] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov,
“How social Q&A sites are changing knowledge sharing in
open source software communities,” in CSCW. ACM, 2014,
pp. 342–354.

[3] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory
study of the pull-based software development model.” in ICSE,
2014, pp. 345–355.

[4] R. Pham, L. Singer, O. Liskin, K. Schneider et al., “Creating
a shared understanding of testing culture on a social coding
site,” in ICSE. IEEE, 2013, pp. 112–121.

[5] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik,
and M. G. J. van den Brand, “Continuous integration in a
social-coding world: Empirical evidence from GitHub,” in
ICSM. IEEE, 2014, pp. 401–405.

[6] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman,
“Lean GHTorrent: GitHub data on demand,” in MSR, 2014,
pp. 384–387.

Inferring Bad Smell Removal Recipes from

Repository Mining: an initial exploration

Luis Mayorga

⇤
, Javier Pérez

†

November 3, 2014

As a software system evolves, it may grow in size and become more complex,
which can have consequences over the quality of its design. Maintenance tasks —
bug-fixing or adapting to new or changing requirements— will gradually degrade
the original design, unless extra development e↵ort is invested in refactoring the
system [3].

In object-oriented programming, the degradation of the design can manifest
in the form of bad smells [1]. Bad smells are a surface indication that usually
corresponds to deeper problems in the system. A great number of these an-
tipatterns are characterized and described in some catalogues. This means that
they can be detected attending to certain rules and metrics [2].

Refactoring, restructuring an existing body of code, altering its internal
structure without changing its external behaviour, can be applied as a solution
to bad smells. removing the problems caused by a bad software design. As
well as there are several identified ande documented bad smells, there exist
refactoring books and guidelines that collect the solutions proposed by certain
experienced developers on how to remove each one of them [5].

The purpose of this work is to analyse the refactoring strategies followed in
actual software projects by checking the solutions that were applied in the past.
This is a first exploratory study for mining refactoring recommendations. We
have explored the feasibility of gathering empirical evidence on how bad smells
are removed in practice, obtaining, if possible, rules that could help us to decide
which refactoring strategies could be applied applied to solve this problems when
they appear in other software systems. The approach is similar to the one draft
idea presented in [4].

The procedure to conduct this study involved mining some mature open
source repositories. A revision interval belonging to each one of these reposi-
tories was analysed and the bad smells present in each one of those revisions
collected. This made it possible to know in which point in time they disappeared
or were intentionally removed. Then we extrtacted the refactorings that were
applied to each one of those cases and studied them.

A greater study would be needed in order to improve the results obtained and
to understand the reasons behind some of our findings. Tracking the evolution
of bad smells over time presents some di�culties. for example, some bad smells
may disappear without being involved in an perfective maintenance processes.
Some other bad smells might not show up after a certain point in time due to

⇤
Universidad Politécnica de Madrid; Erasmus student at the Ansymo group

†
Ansymo group, Universiteit Antwerpen

1

renamings applied over the a↵ected entities. Nevertheless, we have observed that
it is possible to mine repositories in order to get refactoring recommendations.
The tool developed to perform the reported analysis, as well as the data, can
be used in a future with this purpose 1.

Acknowledgments

We would like to thank Radu Marinescu and the rest of the Intooitus tem
for providing us with an inFusion licence to run the experiments. This work
has been sponsored by the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen) under project number
120028 entitled “Change-centric Quality Assurance (CHAQ)”. Luis Mayorga
was funded by the EU Erasmus program.

References

[1] Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. Refactoring:
Improving the Design of Existing Code. 1999.

[2] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice -
Using Software Metrics to Characterize, Evaluate, and Improve the Design
of Object-Oriented Systems. Springer, 2006.

[3] Meir M. Lehman. Laws of software evolution revisited. In EWSPT ’96:
Proceedings of the 5th European Workshop on Software Process Technology,
pages 108–124, London, UK, 1996. Springer-Verlag.

[4] Javier Pérez, Alessandro Murgia, and Serge Demeyer. A proposal for fixing
design smells using software refactoring history. RefTest 2013: International
Workshop on Refactoring & Testing, June 2013.

[5] William C. Wake. Refactoring Workbook. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

1
https://github.com/rapsioux/nose

2

Explaining why methods change together

Angela Lozano, Carlos Noguera, Viviane Jonckers
Software Languages Lab.
Vrije Universiteit Brussel

Email: {alozano,cnoguera,vejoncke}@vub.ac.be

I. INTRODUCTION

Co-change has been identified as an appropriate method
to detect hidden dependencies, and as a good predictor of
the impact of a change. However, co-change analysis only
considers the frequency with which source code entities (co-
)change, but so far, no insight has been gained on why they co-

change. Being able to derive the rationale behind co-changes
could allow to document design knowledge, enforce design
restrictions, and to make predictions for new methods.

This abstract shows an automatic approach to derive the
reason behind a co-change, which aim at indicating the cause
of logical couplings. We define the reason of a (set of) co-
change(s) as a set of properties common to the elements
that belong to the co-change, at that point in time. The
granularity level for our approach is methods because they are
functionality units with unique purposes, and therefore their
relations may convey some underlying rationale.

The approach considers two kinds of properties that might
provide reasonable explanations for a co-change. First, struc-

tural properties explain co-changes by evidencing explicit
dependencies common to the elements that change. Structural
properties represent relations along which changes may prop-
agate. Examples of structural reasons include type references,
exceptions thrown or cached, and the type that defines the
method. Second, semantic properties explain co-changes by
evidencing implicit dependencies common to the co-changing
methods. Semantic properties identify the concepts that a
method handles. Semantic properties include names of meth-
ods, parameters or local variables defined within the method,
as well as recurring terms in the documentation (JavaDoc)
attached to the co-changing methods.

Consider the commit transaction with message ‘priority

of task is save and open on xml files’ and time-stamp ‘2003-

05-22 22:56’ of GanttProject which modified two methods⇤.
Using the properties defined above, we describe the methods
on this commit transaction using 93 properties (50 for the first
one, and 43 for the second one). Since the methods shared 9
characteristics, the reason for the commit transaction becomes:
CALLS_METHOD_NAME: add, equals, get, getLength, size,
toString; LOCAL_VARIABLE_DECLARATION_NAME:
i, task; and LOCAL_VARIABLE_DECLARATION_TYPE:
GanttTask.

We perform our analysis over the history of two Java open-
source systems (Freecol and Ganttproject), analyzing nearly
19.000 methods and over 3700 (trunk) commits.

⇤GanttXMLSaver.writeTask(OutputStreamWriter,int,String) and
GanttXMLOpen.DefaultTagHandler.startElement(String,String,String,Attributes

II. EVALUATION OF THE REASONS

We analyze to what extent our reasons: (1) cover a good
percentage of co-changes, (2) are plausible explanations of
the co-changes among those methods, (3) describe only the
methods that should co-change, and (4) are different from
each other –so that different co-change relations have different
rationales. We propose a metric to evaluate each one of the
previous characteristics, and we use them to evaluate the
quality of different reasons.

Also, we compare the reasons found for two types of co-
change relations. First, for sets of methods that co-changed
in the same commit transaction and for sets of methods that
recurrently co-changed. Given that that commits tend to be
either too fine grained or too coarse grained we expect to
find that the reasons for methods co-changed in a commit
transaction perform worse than the reasons for recurrently co-
changing methods. This is because the latter ones are more
likely to reveal logical dependencies like the ones behind
methods implementing the same feature or concept.

Do these reasons describe most of the co-changes? We
analyze this question by comparing the percentage of commits
(or methods) in the system that have a reason†.

In general, our approach finds reasons for a third of the
single co-changes (i.e., commits) but for less than 1% of the
clusters of co-changes. Considering both type of properties
lead to more reasons than when only a single type of property
was analyzed. However the improvement was higher against
structural properties than against semantic properties.

Do these reasons describe only co-changing methods? We
analyze this question by comparing the percentage of methods
that a reason described correctly (i.e., not by chance). A
method “described by chance" by a reason is a method that
has all property-values of the reason but was not modified in
the co-change relation that the reason describes. Having many
of these methods would indicate that the reason is not good
because it does not describe only co-changing entities. For the
example commit this is: 1-((5‡ - 2§)/(14895¶)) = 1- 0.0002
= 0.9.

†Note that there could be co-change relations for which our approach
cannot find a reason. That is, when there is no property-value shared by all
co-changing entities

‡Methods whose description includes all the properties of the example
commit: GanttXMLSaver.writeTask(OutputStreamWriter,int,String)
GanttXMLOpen.DefaultTagHandler.startElement(String,String,String,Attributes)
GanttXMLOpen.GanttXMLParser.startElement(String,String,String,Attributes)
GanttXMLSaver.writeTask(OutputStreamWriter,DefaultMutableTreeNode,String)
GanttXMLSaver.writeTask(Writer,DefaultMutableTreeNode,String)

§Number of methods modified in the example commit.
¶Methods belonging to GanttProject during the period analyzed

In general, all reasons extracted pointing out only at
the methods that are likely to change, which indicate their
usefulness of a reason for predicting co-changes . Results tend
to be better for the single co-changes (i.e., commits) than for
clusters of co-changes. Regarding the type of properties results
are similar to those found for the first question. This is, both
type of properties lead to higher discrimination values than
when only a single type of property was analyzed, and also
combining results was more beneficial to improve the results
of structural properties than those of semantic properties.

Are these reasons unique? Given that reasons should serve
as explanations only for the changes they describe, they should
be sufficiently different between each other. We analyze this
question by comparing the similarity of a reason to all other
reasons extracted using their Jaccard index (i.e., the intersec-
tion over the union of their properties.).

For the example commit this isk 0.985333.

In general, all reasons extracted tend to be unique. The
uniqueness of reasons for the single co-changes (i.e., commits)
is higher for Ganttproject, while the uniqueness of reasons for
clusters of co-changes is higher for Freecol. When analyzing
single co-changes (i.e., commits) using both type of properties
lead to higher uniqueness values than when only a single type
of property was analyzed. However, the improvement was not
much different for structural or semantic properties. When
analyzing clusters of co-changes the highest uniqueness values
were achieved when using only semantic properties, followed
by a combination of properties, and the worst uniqueness
values were obtained when only structural properties were
used.

Do these reasons make sense? We analyze this question
by manually comparing the reasons for a (set) of commits
produced by our analysis with the message that corresponds to
the (set of) commits. We assert each reason as either plausible
or not. We consider a reason a plausible explanation for a
commit, if the words or terms mentioned in the properties of
the reason appear in the commit message that accompanies the
co-change. For groups of co-changes, for those that span more
than 6 co-changes, we extract a word-cloud from the commit
messages to provide an overview of the general terms therein.
We apply a small degree of liberty when aligning the terms
of the reason with those present in the commit message(s);
for example if the commit message mentions UI, or mouse
events, we will consider plausible reasons those that include
dependencies to JPanel or ActionListener types (both types
present in Java’s SWING UI framework). Finally, note that the
plausibility depends on the quality of the commit message, if
the commit message provides no information (i.e., “bugfix” or
“no message”) we will consider the reason as an implausible

explanation for the commit regardless of the properties found
in the reason itself.

The example commit is considered plausible because the
commit message and the reason refer to an I/O task⇤⇤.

kThe example commit had a non-empty intersection with 128 commits
(from the 626 commits in GanttProject with a non-empty reason). Moreover,
most of the intersections had only one property. Therefore, its similarity with
other commits is very low (Min: 0, 1st Qu.:0, Median:0, Mean:0.018, 3rd
Qu.:0, Max:0.3).

⇤⇤See the description of the example in section ??.

Results indicate that reasons extracted from clusters are
much more likely to describe logical dependencies among the
co-changing methods than those extracted from commit trans-
actions. This result was expected as clusters represent sets of
methods that recurrently co-change, and thus are more likely to
have structural and semantic similarities. Regarding the type of
properties used, it is not clear which properties are more likely
to convey plausible reasons. For Freecol, merging semantic and
structural properties increases the chance of finding plausible
reasons regardless of the sets of methods analyzed, while for
GanttProject semantic properties better describe commits and
structural properties better describe clusters.

III. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automatically
extract the rationale for a set of co-changing methods. We
believe that the rationale for co-changes is orthogonal to the
prediction of (co-)changes but is more likely to be remembered
by developers because it helps to uncover design knowledge.
The proposed approach is based on common properties shared
by co-changing methods. We have shown that the reasons
extracted are discriminating, unique and the plausible. The
analysis of single co-changes provides a higher coverage, while
the analysis of repeated co-change relations results in higher
plausibility. Our study also shows that reasons that take into
account structural and semantic properties tend to outperform
reasons that use only one type of property. This approach
could be used not only to document the reasons behind co-
change relations, but also, to predict the impact of adding a
new code entity to the system (i.e., by comparing its properties
against known co-change reasons). We plan to perform a
more extensive experimentation on the thresholds used for
identifying the clusters of recurrently co-changing methods,
improving the quality of the semantic properties extracted,
and assessing the usefulness of other types of properties (like
transitive-calls, or belonging to the same slice).

Acknowledgment

Angela Lozano is financed by the CHaQ project of the Agentschap voor Innovatie
door Wetenschap en Technologie. Carlos Noguera is funded by the AIRCO project of
the Fonds Wetenschappeljik Onderzoek.

Evolution in a Clone-and-Own Setting – The Marlin Case

Stefan Stanciulescu
ITU Copenhagen

Email: scas@itu.dk

Sandro Schulze
TU Braunschweig

Email: sanschul@tu-braunschweig.de

Abstract

Multi-variant systems are often realized by clone-and-
own. Usually, they do not diverge entirely and thus, share
common source code over their whole lifecycle (while di-
verging in other parts). Hence, changes to such common
parts should be recognized and propagated to related vari-
ants. While current SCMs basically support managing and
propagating changes, only few is known how this can be
used in a clone-and-own setting. In this paper, we discuss
our experiences with the multi-variant open source system
Marlin, a 3D printer firmware.

1. Introduction

Clone-and-own constitutes a development paradigm that
aims at reusing source code in a structured and predefined
way. Basically, an existing system (or parts thereof) is
copied to a separate location and subsequently changed or
extended to meet new requirements. As such, it is a preferred
technique for developing multi-variant systems (MVS) (a.k.a.
software product lines), that is, a set of similar, yet well-
distinguished program variants that share a common code
base [1]. Especially with the increasing importance of source
code management systems (SCM) such as Git, this method
receives even more acceptance. Particularly, the concept of
forking has been shown to improve coordination between
variants [2]. Note that we distinguish in the remainder
between forking and cloning as follows: Forking is a copy
using the respective built-in mechanism of SCM systems
such as Github and thus, establishes a traceability link.
In contrast, cloning is just copy&paste a whole repository
without any traceability.

While the creation of new variants is easy and straight-
forward with clone-and-own, the evolution of an resulting
MVS is not. Particularly, information about changes to
the common code base (i.e., code that remains identical
after cloning) has to be available in order to propagate
changes. However, only few is known about whether and
how developers keep track of this information in order to
efficiently propagate changes between these systems.

In order to understand how current SCMs are used to
support the evolution of a multi-variant system, we study
the Marlin OSS, a firmware for 3D printers that constitutes

Table 1. Statistics of Marlin MVS for the most active
forks (all systems available at www.github.com)

system start date #commits⇤ formal/informal
clone

#forks

Marlin Aug 2011 1 498 informal clone of
Sprinter/GRBL

1 478

Ultimaker/
Marlin

Dec 2012 1 428 formal clone of
Marlin

9

Ultimaker2
Marlin

Mar 2013 1 172 clone of Marlin,
but not via forking

40

Sailfish-
MightyBoard

Oct 2012 1 488 informal clone of
Marlin

16

Sprinter Apr 2011 581 informal cone of
Tonokip

279

Grbl Jan 2009 537 N/A 426
⇤ we only considered commits from the default branch

the above mentioned characteristics. Particularly, we are
interested in whether and how forking is used for both,
creating variants as well as managing and propagating
changes between variants. We report on preliminary results
in this paper. Even more important, we would like to
discuss these results as well as participants’ experiences on
evolving clone-and-own systems during the corresponding
presentation.

2. The Marlin Multi-Variant System

The development of Marlin, our subject system, started in
2011 by reusing parts of two other firmware systems, namely
Sprinter and Grbl. Although both systems are projects on
Github, reusing took place offline, followed by considerable
modifications/extensions, leading to the Marlin firmware.
Moreover, Sprinter has been evolved from other, meanwhile
deprecated, firmware systems, all of which are settled around
the RepRap 3D printer1.

Given this starting point, numerous people have con-
tributed to Marlin as well as created specialized variants.
In Table 1, we give an overview of the resulting multi-
variant system that is subject of our study. We distinguish
between formal clones (as result of forking) and informal
clone (as result of copy&paste). For instance, the Ultimaker
firmware is a formal clone that has been forked by the

1. http://reprap.org/wiki/Main Page

correspondent company for using Marlin with a certain kind
of 3D printer in a commercial setting. Hence, we assume
they feel more secure when developing the firmware in
a separate fork. Moreover, the Sailfish firmware actually
comes in two different versions, both of which originate
from Marlin, but are used for different platforms. Amongst
others, these firmwares improve the speed of the acceleration
planner.

We even discovered more informal clones of Marlin,
but omit them here for sake of brevity. To summarize, we
observed a variety of variants for different reasons (commer-
cial use, feature enhancement, multi-platform), mostly by
creating informal clones of Marlin, that make up a family
of highly related systems. Since all of them are based on
Marlin, we would expect that a subset of changes of these
systems are also related to Marlin’s changes and thus, change
propagation would be beneficial.

3. Evolving a Clone-and-Own Multi-Variant
System

Next, we present first insights of our analysis of the Marlin
MVS. To this end, we formulate two questions we would
like to answer by investigating the systems.
How is forking used to manage variants? Regarding
common assumptions from the literature, forking is the
main mechanism for creating variants. Compared to ad-hoc
cloning by copy-and-paste, forking is a built-in mechanism
of SCMs, such as Github, that establishes traceability links.
In Table 2, we provide statistics about forking in the Marlin
multi-variant system.

Our data reveal that forking is used quite frequently
to clone the Marlin repository, but the majority of forks
(⇠ 73%) are not active, i.e., no commits are authored and
committed by the fork owner and thus, are probably used
for tracking purposes only. Considering the remaining forks,
we observed that most of them have only few commits. By
manually reviewing a sample set of these forks, we observed
that these changes are mainly for configuration issues, that
is, to configure the firmware for a specific 3D printer. Hence,
only the remaining 60 forks with more than 10 commits
represent those systems that are subject to more fundamental
changes such as enhancing or changing functionality.

Beyond these systems, we also discovered systems that
have been cloned manually and thus, can not be detected by
analyzing Github forking data only. Currently, we are not
aware of any specific reason why ad-hoc cloning has been
preferred over the built-in forking mechanism. However,
regarding both, the huge number of meaningless forks as
well as observing ad-hoc cloning, we conclude that forking
is less often used for software variation than expected. This
is not only opposed to common assumptions but may also
have implications on methods for tracking and propagating
changes amongst such related systems.

Table 2. Fork statistics of Marlin (extracted via
GHTorrent by Oct 3rd 2014).

forks 1 478
forks directly from Marlin 1 131

forks NOT directly from Marlin 347
active forks (i.e., ever used) 394

inactive forks (e.g., read-only, tracking) 1 084
commits of fork owners 2 370

forks with > 10 commits by fork owner 60
forks with > 50 commits by fork owner 3
forks with exactly one commit by owner 111

forks with 1 < n < 10 changes 334

How are mechanisms such as forking used for tracking
and propagating (co)-changes between variants? Given
the Marlin MVS with both, formal and informal clones, we
are curious about how changes are propagated amongst the
related systems. Clearly, this would be beneficial, especially
in case of bug or performance fixes.

Generally, the formal clones, i.e., fork-related systems, are
frequently synchronized with the fork parent. Additionally,
Marlin has accepted more than 290 pull-requests, with
patches for features, bug-fixes and support for new hardware.
On the other hand, there are less changes between Marlin
and its informal clones. One reason may be the lower amount
of clones (6-8) compared to the high number of forks of
Marlin (1500). Beyond that, propagation of changes has
to be done manually. By comparing patches and analyzing
commit messages, we identified six patches that have been
propagated from Marlin to Sprinter. For all of them, the
propagation is clearly indicated, e.g., by commit messages
such as ”. . . from Marlin V1- big thanks”.

However, while we are at the beginning and plan to
investigate all of the firmwares that are part of this multi-
variant system, it becomes already clear that the informal
(and ad-hoc) cloning bears some problems for change prop-
agation. First, pull-requests can not be used to communicate
and accept changes. Second, due to missing traceability,
developer are simply not aware of changes that might be of
interest for their specific clone. Hence, we argue lots of reuse
potential is not exploited, because mechanisms are needed to
support this assumably widely used informal way of cloning
repositories. For instance, a recently proposed methodology
is Virtual Platform, which explicitly addresses the aforemen-
tioned shortcomings for clone-and-own systems [3].

References

[1] P. Clements and L. Northrop, Software Product Lines – Prac-
tices and Patterns. Addison-Wesley, 2001.

[2] A. N. Duc, A. Mockus, R. Hackbarth, and J. Palframan,
“Forking and coordination in multi-platform development: a
case study,” in ESEM. ACM, 2014, p. to appear.

[3] M. Antkiewicz et al., “Flexible product line engineering with
a virtual platform.” in ICSE NIER, 2014, pp. 532–535.

Towards An Empirical Analysis of Debian Package Conflicts

— BENEVOL 2014 extended abstract —

Maëlick Claes, Sébastien Drobisz, Tom Mens, Roberto Di Cosmo

November 3, 2014

1 Problem Statement

Package-based software distributions (such as the Debian Linux distribution) and other large
component-based software repositories have been shown to su↵er from maintainability and scal-
ability problems due to the so-called “co-installability problem” [1]. Desired software packages
or components may not be installable together due to conflicting dependencies, and detecting
such conflicts is algorithmically hard.

While e�cient algorithms and tools have been proposed for detecting co-installation conflicts
and supporting their resolution [2, 3, 4, 5], little is known about how this problem evolves
throughout the history of the considered software repository.

Therefore, we empirically analyse the evolution history of package-based software repositories,
in order to assess the extent of the “co-installability problem” and how this problem evolves over
a longer time period, involving many di↵erent versions of the software package repository. This
is di↵erent in scope from the research presented in [6], where the evolution of the co-installability
problem is studied between pairs of successive versions of a package repository, in order to identify
the so-called “broken sets”.

To avoid any confusion, we emphasise that the co-installation conflicts we are interested in
are di↵erent from the declared conflicts that are explicitly specified in the control file of each
package.

2 About the case study

Debian GNU/Linux is a free distribution of the Linux operating system, initially released in 1993.
To facilitate maintenance and collaborative work, Debian is composed of tens of thousands of
di↵erent packages, developed by thousands of developers. In our study we focus on the i386
architecture as it can be considered historically as the first one for which Debian was available.

There are essentially three types of Debian distributions. The stable distribution is the latest
o�cial release, and only contains stable, well-tested packages. The testing distribution contains
package versions that should be considered for inclusion of the next stable Debian release. The
unstable distribution contains packages that are not thoroughly tested and that may still su↵er
from stability and security problems.

Because we are interested in studying the evolution of Debian development activity, we will
analyze these three types of Debian distributions in order to highlight di↵erences between them.
We have extracted all available daily snapshots from http://snapshot.debian.org/archive/

debian for the three versions for the i386 architecture.

1

A major problem when analysing co-installability of packages is the sheer size of the package
dependency graph: there are typically thousands of di↵erent packages with implicit or explicit
dependencies to many other packages. Vouillon [5] addressed this problem by proposing an
algorithm and theoretical framework to compress such a dependency graph to a much smaller
one with a simpler structure, but with equivalent co-installability properties. The idea is that
sets of packages are bundled together into an equivalence class if these packages are co-installable
together, while they are not co-installable with the same other packages.

The coinst tool (http://coinst.irill.orgcoinst.irill.org) was developed specifically for ex-
tracting and visualizing coinstallability kernels for GNU/Linux distributions. We used the output
of this tool as the basis of our analysis. We excluded packages in the other archive areas (contrib
and non-free) as they are not considered to be part of the Debian distribution.

To retrieve the information about the co-installation conflicts of these packages we used the
output generated by the coinst tool with the command
coinst -conflicts conflicts.json -stats -o graph.dot Packages.bz2 >& log

3 Research Questions

In this talk, we present some of the findings that we obtained while studying the evolution of
this distribution. In particular, we focus on the following research questions:

• How long does it take before a co-installation conflict is introduced in (resp. removed from)
a package?

• Is there any correlation between co-installation conflicts and other characteristics of pack-
ages (e.g., their longevity)?

• How do package dependencies influence co-installation conflicts?

References

[1] R. Di Cosmo and J. Vouillon, “On software component co-installability,” in SIGSOFT FSE.
ACM , 2011, pp. 256–266. [Online]. Available: http://dx.doi.org/10.1145/2025113.2025149

[2] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Why do software packages
conflict?” in Int’l Conf. Mining Software Repositories, 2012, pp. 141–150.

[3] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Zacchiroli, “Support-
ing software evolution in component-based FOSS systems,” Sci. Comput. Program., vol. 76,
no. 12, pp. 1144–1160, 2011.

[4] R. Di Cosmo and J. Boender, “Using strong conflicts to detect quality issues in component-
based complex systems,” in Indian Software Engineering Conf., 2010, pp. 163–172.

[5] J. Vouillon and R. Di Cosmo, “On software component co-installability,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 4, p. 34, 2013.

[6] J. Vouillon and R. Di Cosmo, “Broken sets in software repository evolution,” in Int’l Conf.
Software Engineering, 2013, pp. 412–421.

2

Analyzing the Linux Kernel Feature Model

Changes Using FMDiff

Nicolas Dintzner

Software Engineering Research Group

Delft University of Technology

Delft, Netherlands

Arie van Deursen

Software Engineering Research Group

Delft University of Technology

Delft, Netherlands

Martin Pinzger

Software Engineering Research Group

University of Klagenfurt

Klagenfurt, Austria

Keywords: Software Product Line, Feature Model, Evolution.

The Linux kernel feature model has been studied as an example of large scale evolving feature models and yet details of its

evolution are not known. We present here a classification of feature changes occurring on the Linux kernel feature model, as

well as a tool, FMDiff, designed to automatically extract those changes. With FMDiff, we obtained the history of more than

twenty architecture-specific feature models, over sixteen releases, and we compared the recovered information with Kconfig

file changes. We establish that FMDiff provides a comprehensive view of feature changes and show that the collected data

contains valuable information regarding the Linux feature model evolution.

Using this information, we performed an exploratory study of changes occurring in the Linux kernel feature model. We

show that modifications of existing attributes and constraints of features play a major role in the evolution of the Linux kernel

feature model, and yet such changes are often overlooked by current research. Finally, by comparing the evolution of the

different architecture specific feature models, we show that 10 to 50 % of feature changes performed in a given release affect

the capabilities of all of them, thus making generalization of observations on feature evolution from one architecture specific

feature model to others difficult.

On the use and purpose of Java annotations
Carlos Noguera, Angela Lozano, Viviane Jonckers

Software Languages Lab.
Vrije Universiteit Brussel

Email: {cnoguera,alozano,vejoncke}@vub.ac.be

I. INTRODUCTION

Java 1.5 (released by Sun in 2004) introduced, amongst
other programming constructs, an annotation facility. Anno-
tations are a mechanism to attach meta-data to programming
language constructs such as classes, fields or methods. The
meta-data is modelled with annotation-types.

This paper presents an exploratory study into the use and
definition of annotations in 97 active open-source projects. The
study has two goals: to identify which annotations are used
and to assess what they are used for.

II. STUDY SET-UP

We constructed a corpus made out of 971 open source Java
repositories hosted in GitHub. The repositories were randomly
selected through the use of GitHub’s search. We selected
projects implemented in Java, which were modified in the
last 7 days (counted from December 4, 2013) and that had
a repository size greater than 3 MB. The last snapshot of
each repository was downloaded, and each Java file for each
repository was processed using a JavaCC-based Java parser2.
In total we gathered 101.611 Java files (the mean repository
having 1024 files). The repositories in total contained 373.795
annotations, with all repositories containing at least one anno-
tation.

III. ANALYSIS

Before considering our research questions, we first consider
whether annotations are actually used in the repositories in the
sample. Figure 1 plots the relation between number of files (on
the x axis) and number of annotations (on the y axis) for each
of the repositories in the sample. The figure shows that the
number of annotations in a repository is roughly proportional
to the size of the repository. When considering the ratio of
files that contain annotations, we find that repositories have a
mean of 62% of annotated files with 54% as the first quartile,
65% as the median, and 74% as 3rd quartile. This suggests
that repositories are homogeneously annotated.

A. Assessing which annotations are used and where

RQ1.1 Which source code elements are most frequently

annotated?: Table I shows two metrics gathered in order to
identify the location of annotations. First, we consider the
possible targets of annotations. The likelihood indicates the

1Originally we selected 100 projects, but we had to discard the 3 largest
ones because of their size (combined 14.5GB)

2https://code.google.com/p/javaparser/

Fig. 1. Number of annotations in repository vs number of files in repository

percentage of annotations placed on a type of source code
entity. We find that 85% of the annotations are placed on
methods, followed by classes or interfaces (6%) and fields
(3%). Second, we consider chance of a source code entity
being annotated, which follows a different pattern: only 7%
of the methods, 5% of the types and 0.5% of the fields
are annotated. The most annotated source code elements are
annotation type declarations, of which almost 90% carry an
annotation.

Code Entity Likelihood Chance
Method 85.3 7.5

Type 5.8 4.7
Field 3.71 0.5

Parameter 3.7 0
AnnType 0.72 89.1

Constructor 0.64 0.2
Enum 0.05 0

EnumConst 0.02 0
AnnMember 0.01 0

TABLE I
LIKELIHOOD AND CHANCE OF ANNOTATED ELEMENTS. LIKELIHOOD

REPRESENTS THE PROBABILITY OF AN ANNOTATION BEING ON AN
ELEMENT AND CHANCE THE PROBABILITY OF AN ELEMENT BEING

ANNOTATED.

Purposes

Aspect Bug Prevention Compiler Framework
Generation Persistence Security Testing
Android Annotation Concurrency Configuration
Debugging Documentation Evolution Test-Input
Logging Mapping Mock Monitoring
Performance Resources Runtime Simbiosis
Special UI VM Web

TABLE II
PURPOSES OF THE ANNOTATIONS IN THE REPOSITORY.

RQ1.2 Which annotations are the most frequently used

across projects?: To address this question, we count first
in absolute numbers the annotations present in the sample,
and then we count the number of repositories in which each
annotation is present. These two metrics allow us to assess
both which annotations are most frequently used, and which
annotations are most popular across projects.

We find that java.lang.Overrides is both the most
used annotation (with 56% of the annotations found being
@Overrides) and the most popular across repositories (with
all of the repositories having at least an @Overrides anno-
tation). The popularity of @Overrides can be attributed to
IDEs (such as Eclipse) automatically adding the annotation
to overridden methods, and sometimes signalling a warning
whenever the annotation is missing.

B. Assessing the purpose of annotations

RQ2.1 Which annotation-frameworks are most commonly

used?: We analysed the qualified names of the annotations
used by the repositories of the sample, assigning each one to
a framework. Doing this, we identified 116 distinct annotation
frameworks. We find that the Java SDK is the most used
annotation framework, both in number of annotations and
number of repositories that use it. This is without a doubt
due to the prevalent use of the @Overrides annotation, as
well as @SupressWarnings and @Deprecated. We find
that there are no frameworks widely used by the majority
of repositories other than the Java SDK and JUnit. This
implies that, as with annotations (Section III-A), annotation-
frameworks used tend respond to repository or domain specific
concerns.

RQ2.2 What are the most common purposes for

annotation-frameworks?: Finally we consider the purpose
of the annotations used in the sample. To assess this, we
assign each package within a framework to one (or more)
purposes. This was done to reflect the fact that annotations
defined by a framework can fulfil different purposes. For
example, the Spring framework defines annotations for per-
sistence (@Query), testing (@ExpectedException), or
runtime bug prevention (@Validated) In total we identified
28 possible purposes for annotations. Each package within
a framework could be assigned one or more purposes (for
example, Hibernate’s @WithMappingFiles annotation in
the org.hibernate.jpamodelgen.test.util pack-
age serves the purpose of both persistence and testing).

Fig. 2. Number of purposes versus number of annotations on a repository

Counting the number of annotations devoted to each pur-
pose, we find that the most annotations are used for Bug
prevention (63%), configuring the Compiler (62%), Test-
ing (18%), Framework-specific purposes (8%), Configuration
(4%), Persistance (3%), and Mapping (3%). The rest of
purposes representing less than 1% (each) of the total amount
of annotations in the sample. Note that @Overrides, is
classified as both a Bug prevention annotation and a Compiler
configuration annotation since it’s purpose is to have the com-
piler flag a warning if a method is annotated as @Overrides
but in effect does not overrides a method in a super class. This
classification explains why Bug prevention and Compiler are
the two most common purposes for annotations.

When considering whether annotations are used for different
purposes on each repository, we find that repositories contain
annotations for a median of 6 different purposes, with a first
quartile, of 3 purposes, and a third quartile of 8. With this, we
observe that annotations are used for multiples purposes across
repositories. Furthermore, as Figure 2 shows, we observe two
profiles for annotation use: either the number of purposes
annotations are used for is proportional to the size and number
of annotations (diagonal), or the repository is small and then it
can use annotations for few or many purposes (lower area of
the figure). No repository in the sample uses a large number of
annotations for a single (or few) purposes. This seems to imply
that when projects make the decision of using annotations, they
use them for several purposes. This, in turn, seems to indicate
that annotation use is a conscious decision, and not just added
automatically by the IDE (as is the case with @Overrides).

Adventures in Analyzing Full Javascript

Programs

Quentin Stievenart, Jens Nicolay, Coen De Roover, Wolfgang De Meuter

October 20, 2014

Nowadays, Javascript is used everywhere on the web, both client-side and
server-side. However, Javascript’s quirky semantics introduce many problems.
Debugging Javascript applications can be really cumbersome, and Javascript
applications are easily subject to security issues. It is therefore necessary to
be able to precisely analyze Javascript programs in order to reason about their
behaviour and their potential defects.

Having a tool able to reason precisely about the behaviour of Javascript pro-
grams would prove useful in many situations. In the case of software evolution,
being able to compute the data flow of a program could for example be used to
analyze whether changes between two different versions of a program consist of
refactoring, feature addition, or modification of the behaviour of the program.

However, Javascript’s suprising semantics complicate the job of designing
static analysis tools. In order to detect complex defects or to compute the data
flow in a program, one should go beyond the syntactic aspect of the language,
and would need to simulate Javascript semantics, which is not an easy task.
Existing tools either don’t support the full language, or tools such as TAJS[5]
and JSAI[3] rely on older versions of Javascript, and are therefore not adapted
to analyzing programs that make use of features introduced in ECMAScript 5.

There has been a recent effort in formalizing Javascript semantics[1, 4], and
in reducing the complexity of those semantics by introducing simpler languages
that encode those semantics. Javascript programs can be automatically trans-
lated into those simpler language via a desugaring process. This is the approach
taken by �JS[2] and its successor �S5, which can desugar ECMAScript 5 code
to a simpler scheme-like language called S5.

We investigate the combination of this desugaring process with abstract
interpretation, a static analysis method that consists of approximately repro-
ducing the semantics of the language in order to have a decidable approximation
of every path a program can take. The formalism we use is based on Might and
Van Horn’s CESK machine[6] and has the advantage of having tunable and ar-
bitrarily high precision (at the cost of speed), depending on the precision needed
for the analysis.

We developped a CESK machine for the S5 language and tried it out on
desugared Javascript programs. Many challenges arose from this situation. To

1

keep the S5 language simple, there exists a big environment definition in S5
itself, that encodes the behaviour of Javascript standard library. This allows
us to keep the CESK machine simple, but introduces an interesting trade-off:
when analyzing a function inside this environment, we would like to keep a high
precision; however, outside this environment, precision can be lower. Another
problem coming from this environment is its size. CESK machines are typically
tested on small or medium programs, whereas the S5 environment file comprises
around 8000 LOC, and the desugaring process introduces a large increase be-
tween the size of the program, due to the semantic gap between Javascript and
S5.

In this presentation, we will explain the advantages of using S5 as an in-
termediate step to analyze Javascript programs, therefore allowing analysis of
the full ECMAScript 5 language. We will illustrate the problems this approach
introduces, explain how we solved some of those problems and what are the
remaining challenges.

References
[1] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner,

Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A
trusted mechanised javasript specification. In Proceedings of the 41st an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 87–100. ACM, 2014.

[2] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of
javascript. In ECOOP 2010–Object-Oriented Programming, pages 126–150.
Springer, 2010.

[3] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. Jsai: A static
analysis platform for javascript. 2014.

[4] Sergio Maffeis, John C Mitchell, and Ankur Taly. An operational seman-
tics for javascript. In Programming languages and systems, pages 307–325.
Springer, 2008.

[5] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis
of the dynamic behavior of javascript programs. In ACM Sigplan Notices,
volume 45, pages 1–12. ACM, 2010.

[6] David Van Horn and Matthew Might. Abstracting abstract machines. In
ACM Sigplan Notices, volume 45, pages 51–62. ACM, 2010.

2

Mining Refactoring Guidelines
from Stack Overflow

Alessandro Murgia⇤, Daan Janssens⇤,
Javier Pérez⇤, Serge Demeyer⇤

The first reference to refactoring belongs to Opdyke and is dated to 1992
[3]. From that time, software development has continuously evolved: modern
object oriented and scripting languages such as Java and Python became
more and more popular and Agile methods become the norm [1].

On one hand, refactoring guidelines —by means of books and tutorials—
must catch up with recent trends in software development to satisfy the
emerging needs of the broad and heterogeneous community of developers.
On the other hand, the existing guidelines are written by a limited number
of people based on their previous experience. In this research we explore
the potential of crowdsourcing for obtaining up-to-date refactoring guide-
lines. We demonstrate that it is possible to mine Stack Overflow posts to
obtain detailed refactoring guidelines including relevant code-snippets for ar-
eas which have received little attention in the current refactoring literature
so far (web scripting, database queries).

We focus on Stack Overflow1 one of the most popular websites among
software developers and researchers who study the developer community [2].
Stack Overflow, with more than 3 million of users and more than 5 million of
posts, keeps track of problems belonging to developers having di↵erent cul-
tural and educational backgrounds, di↵erent skill sets and with experience
matured in di↵erent environments. Exploiting the information reported in
this knowledge-base repository is crucial if we want to understand how soft-
ware evolution is reflected in thoughts and needs of developers approaching
refactoring.

⇤
Ansymo group, Universiteit Antwerpen

1
http://stackoverflow.com/

1

We have analysed Stack Overflow to identify which are the main refac-
toring topics of developer discussions. Then, we have pursued the following
research questions:

• RQ1: What is the relevance of code on refactoring discussions?

• RQ2: Which are the most popular refactoring names developers use?

Among other results, we have found that only a few of the refactoring
related questions and answers on Stack Overflow mention a conventional
refactoring name. We have also found that refactoring posts are more code-
driven that other Stack Overflow posts.

The findings of our research have a direct impact on how refactoring
guidelines should be written. We show how they should blend text descrip-
tions and code snippets according to the typical layout of accepted answers
(RQ1). Finally to maximize the audience of readers, we show which are the
most well known refactoring names (RQ1) and the most popular program-
ming languages (RQ2) suitable for talking about refactoring and writing code
snippets as refactoring examples.

Acknowledgments

This work has been sponsored by the Institute for the Promotion of In-
novation through Science and Technology in Flanders (IWT-Vlaanderen)
under project number 120028 entitled “Change-centric Quality Assurance
(CHAQ)”.

References

[1] Scott Ambler. Survey says: Agile works in practice. Dr. Dobss, August
2006.

[2] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. What are de-
velopers talking about? an analysis of topics and trends in stack overflow.
Empirical Software Engineering, pages 1–36, 2012.

[3] William F. Opdyke. Refactoring Object-oriented Frameworks. PhD the-
sis, Champaign, IL, USA, 1992. UMI Order No. GAX93-05645.

2

The relationship between CC and SLOC:
a preliminary analysis on its evolution

Davy Landman⇤, Alexander Serebrenik⇤†, Jurgen Vinju⇤†‡
⇤ Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

{Davy.Landman, Jurgen.Vinju}@cwi.nl
† Eindhoven University of Technology, Eindhoven, The Netherlands

a.serebrenik@tue.nl
‡ INRIA Lille Nord Europe, Lille, France

I. INTRODUCTION

Is it useful to measure both Cyclomatic Complexity (CC)
and Source Lines of Code (SLOC)? In previous work [1] we
have analyzed the reported linear relationship between CC and
SLOC. In our large corpus of Java projects, we could not find
such a linear relationship. Raising questions for future work.

Object Oriented Programming (OOP) could cause the lack of
a linear relationship between CC and SLOC. In an OO language,
dynamic dispatch and polymorphism are used as an alternative
to control flow statements. However, related work [2], [3]
reported linear relationships for both C++ and Java.

As identified in our earlier work, there is an open question
of the evolution of this relationship. Therefore we explorer a
possible evolutionary argument: are the Java programs of today
using more OOP? And does this cause the decreased power of
SLOC to predict CC?

II. RESEARCH METHOD

As a preliminary study of the evolution of this relationship,
we select one software systems and calculate CC and SLOC for
each method over the last 10 years. To summarize over this
period, we sample only the methods in the system at the end
of every full year (e.g. 2003–2013 range).

A. Hypothesis

Related work measured the linear relationship with Pearson’s
correlation (R2). Similarly to our previous work [1], we will
calculate both the Pearson and Spearman correlation. The
Pearson correlation will be calculated before and after a power
transform. Moreover, we will also perform the Breusch-Pagan
test [4] to confirm non constant variance (heteroscedasticity).

We have formulated the following two hypothesis.
Hypothesis 1. Older revisions of a software system have a
stronger linear (Pearson) correlation between the CC and SLOC
metrics for Java methods then newer revisions.
Hypothesis 2. Older revisions of a software system do have
constant variance between the CC and SLOC metrics for Java
methods.

B. System
We have selected a single system out of the Qualitas Corpus,

DrJava. It was selected due to its domain and age. It is a Java
Integrated Development Environment (IDE) with over 3000
revisions since 2000. The system grew from 30 K SLOC in
2003 to 200 K SLOC in 2013. We chose an IDE since they
contain elements of multiple domains.

C. Measuring SLOC and CC
We use the same tools as in our previous study [1]. Eclipse

JDT is used to parse Java methods into Abstract Syntax Tree
(AST) form. This AST is visited and for each node that would
generate a fork in the Java control flow graph, 1 is added to
the CC of that method. For SLOC we use RASCAL to tokenize
Jave into newlines, whitespace, comments and other words.
These tokens are then used to calculate the SLOC of a method.

III. RESULTS

A. Correlation
Table I contains the Pearson correlations before and after

power transform, Spearman’s correlation, and if the linear
model was heteroskedastic.

TABLE I
CORRELATIONS BETWEEN CC AND SLOC FOR A PERIOD OF 10 YEARS AND
THE TOTAL NUMBER OF METHODS IN THAT REVISION. ALL CORRELATIONS
HAVE A HIGH SIGNIFICANCE LEVEL (p 1 ⇥ 10�16). HETROSKEDASTICY IS
CHECKED BY THE BREUSCH-PAGAN TEST (IN ALL CASES p 1 ⇥ 10�16).

Year Methods R2 log R2 ⇢ Heteroscedastic

2003 3090 0.45 0.45 0.65 Yes
2004 4812 0.45 0.47 0.66 Yes
2005 9859 0.59 0.52 0.70 Yes
2006 10 262 0.56 0.47 0.67 Yes
2007 13 784 0.34 0.38 0.62 Yes
2008 14 998 0.35 0.39 0.62 Yes
2009 17 466 0.43 0.39 0.61 Yes
2010 19 765 0.44 0.40 0.61 Yes
2011 20 421 0.43 0.41 0.62 Yes
2012 20 470 0.42 0.42 0.63 Yes
2013 20 476 0.42 0.42 0.63 Yes

B. Scatter plots
Figure 2 shows a zoomed-in (CC 20 and SLOC 50)

scatter-plot of the methods of DrJava in 2003 and 2013. Due to

(a) 2003 (b) 2013

Fig. 1. Residual plot of the linear regression after the power transform, both axis are on a log scale. The non-constant variance complicates the interpretation
of the linear regressions.

(a) 2003 (b) 2013

Fig. 2. Scatter plots of SLOC vs CC. The solid and dashed lines are the linear regression before and after the power transform.

the skewed-data, this figure still shows 98% of all data points.
The two gray lines in the figure shows the linear regressions
before and after the power transform. The gray scale gradient
of the points in the scatter-plot visualizes how many methods
have that combination of CC and SLOC: the darker, the more
data points.

IV. ANALYSIS

A. Hypothesis 1: correlation in older revisions
In Table I we see that although R2 fluctuates over the years

of DrJava’s development, it remains near the 0.40, with the
exception of 2005 and 2006. The increase in correlation could
perhaps be explained by the big growth in 2005. However, we
cannot confirm Hyptothesis 1, older versions of the software
do not have a higher correlation.

B. Hypothesis 2: constant variance in older revisions
Table I shows that for all years the relation between CC

and SLOC has non constant variance. The scatter plots in
Figure 2 also visualize this growing variance, further shown in
the residual plots in Figure 1. Therefore, we cannot confirm
Hypothesis 2.

V. DISCUSSION

We have presented a preliminary study on the evolution of
the relationship between CC and SLOC. In the software system

we analyzed, we did not observe a obvious change the linearity
of the relationship. We also found that the heteroscedasticity
reported in our previous work was present all versions of
DrJava. Hetroscedasticity further complicates the inpretation
of linear models.

In this abstract we have presented the evolution of one system.
For future work, we would like to analyse the evolution of a
whole corpus over the span of at least 10 years. Moreover, we
are interested what other variables we might be measuring by
comparing older version of the system with newer versions.

REFERENCES

[1] D. Landman, A. Serebrenik, and J. Vinju, “Empirical analysis of the
relationship between CC and SLOC in a large corpus of Java methods,”
in 30th IEEE International Conference on Software Maintenance and
Evolution, ICSME 2014, 2014.

[2] K. E. Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect
of class size on the validity of object-oriented metrics,” IEEE Transactions
on Software Engineering, vol. 27, no. 7, pp. 630–650, 2001.

[3] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N. A. Kraft, and C. Ward,
“Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable
Linear Relationship,” Journal of Software Engineering and Applications,
vol. 2, no. 3, pp. 137–143, 2009.

[4] T. Breusch and A. Pagan, “A simple test for heteroscedasticity and random
coefficient variation,” Econometrica, vol. 47, no. 5, pp. 1287–1294, Sep.
1979.

An Exploratory Analysis of

Identical Function Clones in CRAN

— BENEVOL 2014 extended abstract —

Narjisse Tabout, Maëlick Claes, Tom Mens, Philippe Grosjean
COMPLEXYS Research Institute, University of Mons, Belgium

October 17, 2014

1 Research Goal

Analysing the impact (whether it be harmful or beneficial) of code duplication has been an
active subject of research for many years. Developers are often confronted with the di�cult
choice between depending on existing functions developed in other packages or libraries, or copy-
pasting or reimplementing similar functions in their own code. In the former case of function
dependencies across packages, errors may be introduced inadvertently during package updates,
and finding and fixing these errors can be cumbersome. In the latter case, duplicating functions
across di↵erent packages may be detrimental to the maintainability of the software ecosystem
(i.e., the collection of software packages) in the long run.

In our research, we aim to study these issues for a specific software ecosystem, called CRAN,
which is the o�cial source of packages for the statistical R project and its associated language.
By gaining a better understanding in package dependencies and function duplication across R
packages, and how this evolves over time, we hope to be able to provide more adequate support
for R package maintainers.

We are currently carrying out an exploratory qualitative analysis of the presence of identical
function clones across R packages. Surprisingly, this appears to be a common practice in the R
community. We aim to shed insight in this phenomenon to understand why this is the case. To
do so, we propose a series of metrics to compute the frequency, size and abundance of function
clones in CRAN snapshots, and to relate this to package dependency information. We use
these metrics to provide statistical visualisations that help us in assessing how and why cloning
behaviour occurs, and how this behaviour evolves over time.

2 About CRAN

CRAN is an archive network of software packages maintained by the community surrounding the
statistical project R. The size of the CRAN archive is very large, containing over 5000 R packages
being actively maintained by over 2500 maintainers. The number of packages is growing very
rapidly, which constitutes a problem in the management of package dependencies.

From the user point of view, installing a package from CRAN will always download the
latest version of the package (and its dependent packages, insofar as they have not yet been
installed on previous occasions). From the maintainer point of view, A daily automated CRAN

1

check verifies the compilability and other quality characteristics of its packages. Maintainers of
problematic packages will be informed, and these packages will be archived from CRAN if the
problem persists. This puts a heavy burden on package maintainers, especially if the problem is
due to an update of a dependent package over which the maintainer has no control. A “solution”
to avoid this problem would be to reduce the number of package dependencies, by duplicating
the code of the functions of the dependent packages into ones own package. Copying existing
code and pasting it in somewhere else followed by minor or major edits is a common practice
that developers adopt to increase productivity [1].

Our previous work on CRAN includes an empirical study [2] of the maintainability of CRAN
packages by focusing on the package update problem in presence of package dependencies. We
have also implemented a web-based dashboard, called maintaineR, that is intended to be used
by CRAN package maintainers [3]. This tool enables, among others, to see which functions in
which package versions are cloned in other package versions. Other researchers have studied the
evolution of CRAN [4], but we are not aware of any study that focuses on the presence of code
clones in R packages and the consequences thereof. Obviously, there is a plethora of research
results and tools for software cloning in general, but the context of CRAN is particular, and
makes it worthwhile to study this aspect.

3 Research Questions

In our current research, we are performing an in-depth study of the phenomenon of identical func-
tion clones, that we have found to be present in many packages. By analysing this phenomenon
across all CRAN packages over time, we aim to answer the following research questions:

• What is the number and proportion of packages in a given CRAN snapshot (i.e. the set of
all CRAN packages available at a particular point in time) containing function clones?

• What is the proportion of functions in a package or in a CRAN snapshot that are actually
identical clones?

• Can we identify specific patterns in the clone graph (composed of function clones, the
packages in which they are contained, and the dependencies between these packages)?

• Is there a relation between the presence of identical function clones and other characteristics
(such as function size, package size, number of package dependencies, package maintainer)?

• How does the presence of function clones evolve over time from di↵erent points of view
(the cloned function, the package containing it, and the CRAN snapshot as a whole)?

• Is it possible to remove identical function clones in an automated way?

The ultimate goal is to provide tools, based on the answers to the above questions, that will
help R package maintainers to manage their packages more e↵ectively, and to improve the quality
of these packages.

2

References

[1] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone management: Past,
present, and future,” in IEEE Conference on Software Maintenance, Reengineering, and

Reverse Engineering (CSMR-WCRE), 2014, pp. 18–33.

[2] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN packages,” in IEEE

Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-

WCRE), 2014, pp. 308–312.

[3] ——, “maintaineR: A web-based dashboard for maintainers of CRAN packages,” in Interna-

tional Conference on Software Maintenance and Evolution (ICSME), 2014.

[4] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution of the R software ecosystem,”
in European Conf. Software Maintenance and Reengineering, 2013, pp. 243–252.

3

1

Mining GitHub for Fun and Profit: The
GHTorrent project

Georgios Gousios,
Delft University of Technology

The Netherlands
g.gousios@tudelft.nl

Abstract
We present an overview of our activities in mining and analyzing the GHTorrent dataset, a large (5.6TB) off-line

mirror of the data offered through the GithHub API.

I. INTRODUCTION

GitHub is a collaborative code hosting site built on top of the git version control system. It includes a variety
of features that encourage teamwork and continued discussion over the life of a project. GitHub uses a “fork &
pull” model where developers create their own copies of a repository and submit requests when they want the
project maintainer to incorporate their changes into the project’s main branch, thus providing an environment in
which people can easily conduct code reviews. Every repository can optionally use GitHub’s issue tracking system
to report and discuss bugs and other concerns. GitHub also contains integrated social features: users are able to
subscribe to information by “watching” projects and “following” other users, resulting in a constant stream of
updates about people and projects of interest. The system supports user profiles that provide a summary of a
person’s recent activity within the site, such as their commits, the projects they forked or the issues they reported.

With over 10.6 million repositories, GitHub is currently the largest code hosting site in the world. Software
engineering researchers have been drawn to GitHub due to this popularity, as well as its integrated social features
and the metadata that can be accessed through its API.

II. LARGE SCALE DISTRIBUTED MINING

To make research with GitHub data approachable, we created the GHTorrent project [1], a scalable, off-line mirror
of all data offered through the GitHub API. GHTorrent follows the GitHub event stream and systematically retrieves
all data, their metadata and their dependencies from it. It then processes and stores all retrieved items in a relational
database, while also storing the original data in a MongoDB database. Interestingly, the data collection process
is distributed; any interested researcher can participate either by contributing API keys or data collection workers.
GHTorrent offers downloads of the corresponding database dumps (currently, 5.8 TB of data) and online querying
facilities to interested researchers.

A novel feature of GHTorrent is the so-called “lean” version, an online service that offers customisable data
dumps on demand [2]. The GHTorrent data-on-demand service offers users the possibility to request via a web form
up-to-date GHTorrent data dumps for any collection of GitHub repositories. We hope that by offering customisable
GHTorrent data dumps we will not only lower the ”barrier for entry” even further for researchers interested in
mining GitHub data (thus encourage researchers to intensify their mining efforts), but also enhance the replicability
of GitHub studies (since a snapshot of the data on which the results were obtained can now easily accompany each
study).

III. PROMISES AND PERILS

Doing research with data as vast and diverse as those offered by GHTorrent includes inherent risks. To help
developers avoid them, we documented [3] the results of an empirical study aimed at understanding the characteristics
of the repositories and users in GitHub; we see how users take advantage of GitHub’s main features and how their
activity is tracked on GHTorrent and related datasets to point out misalignment between the real and mined data. Our
results indicate that while GitHub is a rich source of data on software development, mining GitHub for research
purposes should take various potential perils into consideration. For example, we show that the majority of the

2

projects are personal and inactive, and that almost 40% of all pull requests do not appear as merged even though
they were. Also, approximately half of GitHub’s registered users do not have public activity, while the activity of
GitHub users in repositories is not always easy to pinpoint. We also used the identified perils to see if they can pose
validity threats; we reviewed selected papers from the MSR 2014 Mining Challenge and saw several of those perils
manifest, thereby rendering the results vulnerable to falsification. Finally, we provided a set of recommendations
for software engineering researchers on how to approach the data in GitHub.

IV. PULL REQUESTS

The advent of distributed version control systems has led to the development of a new paradigm for distributed
software development; instead of pushing changes to a central repository, developers pull them from other reposito-
ries and merge them locally. Various code hosting sites, notably Github, have tapped on the opportunity to facilitate
pull-based development by offering workflow support tools, such as code reviewing systems and integrated issue
trackers.

In [4], we studied how the pull-based software development works, first on the GHTorrent corpus and then
on a carefully selected sub-sample of 291 projects. We found that the pull request model offers fast turnaround,
increased opportunities for community engagement and decreased time to incorporate contributions. We showed
that a relatively small number of factors affect both the decision to merge a pull request and the time to process it.
We also examined the reasons for pull request rejection and find that technical ones are only a small minority.

In the pull-based development model, the integrator has the crucial role of managing and integrating contributions.
In a work submitted to ICSE 2015, we focused on the role of the integrator and investigated working habits and
challenges alike. We set up an exploratory qualitative study involving a large-scale survey involving 749 integrators,
to which we add quantitative data from the integrators project using the GHTorrent platform. Our results provide
insights into the factors they consider in their decision making process to accept or reject a contribution. Our key
findings are that integrators struggle to maintain the quality of their projects and have difficulties with prioritizing
contributions that are to be merged.

V. CONCLUSIONS

Due to its openess and size, GHTorrent is becoming the de facto dataset for large scale quantitative analysis
for GitHub data. So far more, than 50 researchers have subscribed and used the online access points. GHTorrent
has enabled research ranging from distributed collaboration to sentiment analysis and pull request prioritization.
GHTorrent was also the target of the 2014 mining challenge at the Mining Software Repositories conference and
the visualization challenge of the 2014 VISSOFT conference. GitHub itself suggested GHTorrent as a potential
datasource in their latest data analysis challenge.

The future of the GHTorrent project lies in the hands of the community.

REFERENCES

[1] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings of the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.

[2] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean ghtorrent: Github data on demand,” in Proceedings of the 11th Working

Conference on Mining Software Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014, pp. 384–387.
[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “The promises and perils of mining github,” in

Proceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014, pp.
92–101.

[4] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based software development model,” in Proceedings of the

36th International Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 345–355.

Decision Modules in Models and

Implementations

Extended Abstract

Ella Roubtsova1 and Serguei Roubtsov2

1 Open University of the Netherlands
2 Technical University Eindhoven, the Netherlands

Modularization plays an important role in system evolution. The chosen granu-
larity and the content of the modules are able either improve or complicate sys-
tem modification, requirements traceability and code analysis. Commonly used
Object Life Cycle Modules (OLCM) hide the process control points, i.e. the de-
cisions on which path to follow, inside objects. To modify a program or generate
a test, the control points inside OLCM have to be analysed. In this paper we
propose decision modules (DM), show their advantages for system evolution and
investigate the possibility of their implementation in Java programs.

The necessity to modularise the control points had been recognised by the
Business Rules community. Modules called enablers were suggested [1] there.
An enabler has varying interpretations depending upon the nature of the cor-
respondent object: it may permit (i.e., enable) the creation of a new instance;
permit another action assertion; permit an action execution [1]. An enabler is
often called an integrity constraint, a condition or a test.

We extend the idea of enablers and define a decision module as an abstract

description of the system actions and the states before and after these actions

allowing or forbidding these actions. A decision module contains a description

allowing to make a choice of an action from a predefined set or to make no choice.

Our decision module may be seen as a module because it can be associated with
di↵erent objects as a separate entity. We name this module a decision module
because it forms the condition for the acceptance or refusion of an action. The
condition is derived from the pre- and post-states of the action in the life cycle
modules of objects.

In a rather advanced form, such an approach to modularization can be seen
in protocol models [3]. Protocol modeling [4] uses the CSP parallel composi-
tion [2] defined at the level of event accepting and refusing and extended for
modules with internal data. The decision modules, localised in protocol models,
possess unidirectional dependency. Unidirectional dependency (also known as
obliviousness) means that the decision modules can read the information about
the state of OLCMs but the OLCMs ”do not know” about existence of decision
modules. The composition of decision modules with OLCMs does not change
the execution sequences specified by OLCMs. This property is called observa-
tional consistency. Unidirectional dependency and observational consistency of

2 Ella Roubtsova, Serguei Roubtsov

decision modules make the system evolution less laborious: adding, modifying
and deleting decision modules do not require changes in the related OLCMs.

It is desirable to implement such properties in executable programs. We have
carried experiments with di↵erent implementation techniques (Table 1). Our

Technique Modularity Unidirect dependency Mechanism:)
Event-Dr.(CSPk

Object Composition yes no no
Publ.-Subscr.& Java Reflection yes state reading:yes; yes

obliviousness:no
EJB 3 with Interceptors yes yes yes
EJB 3 with Delegation yes yes,for a given interface yes

Table 1. Properties of decision modules in di↵erent Java implementations

experiments have shown that within the common Java paradigm with object
composition, the desired unidirectional dependency cannot be implemented as
the OLCMs have to explicitly invoke decision modules. The event-driven mech-
anism is also absent.

Using Publisher-Subscriber design pattern, the event-driven mechanism can
be implemented. In this case, OLCM becomes a listener of an event. Java Re-
flection allows the decision module to read the state of OLCMs. However, the
OLCMs still need to invoke decision modules and, thus, ”know about” them.

EJB 3.0 specification completely supports implementation of decision mod-
ules with the interceptor mechanism. In order to be composed with decision
module, the OLCM should contain an @Interceptors annotation of the busi-
ness method corresponding to an event. This annotation informs the application
server that before invocation of this business method the corresponding decision
module has to be invoked. The disadvantage of implementation of the decision
modules using EJB3 is obvious: it’s too heavy as it needs an application server
to implement the interceptor mechanizm. However, if the system is already im-
plemented as an enterprise application, this may be a viable solution. For the
classes that have the same external behaviour (implement a certain interface)
the decision modules can be implemented with the Decorator design pattern.

These results form a promising start for implementation of decision modules
for real Java projects.

References

1. Business Rules Group. Defining Business Rules. What Are They Really?
http://www.businessrulesgroup.org/firstpaper/BRG-whatisBR 3ed.pdf, 2000.

2. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
3. A. McNeile and E. Roubtsova. Aspect-Oriented Development Using Protocol Mod-

eling. LNCS 6210, pages 115–150, 2010.
4. A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-

ports Reusable Behavioural Abstractions. Software and System Modeling, 5(1):91–
107, 2006.

Managing the Evolution of Information Systems
with Intensional Views

David Colpaert, Kim Mens & Bernard Lambeau
ICTEAM Institute, Computer Science Engineering pole

Université catholique de Louvain, Louvain-la-Neuve, Belgium
Email: kim.mens@uclouvain.be, bernard.lambeau@uclouvain.be

Abstract—Like any software system, information systems

suffer from structural inconsistencies that may arise during

system evolution. Appropriate tools are needed to encode the

structural regularities the system should adhere to, and to

check conformance of the system against those regularities upon

evolution. Taking inspiration from the intensional views approach

to document and verify structural regularities in source code,

we developed a similar tool to document and verify structural

regularities in large databases. Regularities are expressed by the

user at a high level in a graphical user interface, and then

translated into relational algebra in order to check the regularities

over the data. Discovered inconsistencies are presented back to

the user in appropriate high-level data views. As a case study,

the developed tool was successfully applied to a safety critical

information system deployed at a large Belgian university. It is

used by the rescue services to accurately locate users based on

the location of their IP phones from which an emergency call

was made.

Keywords—Intensional views, tools, conformance checking,

structural regularities, information systems, relational algebra.

I. INTRODUCTION

In previous work [1], [2], [3] we proposed the Intensional

Views approach to document high-level structural regularities

in the source code of a software system, and to check confor-

mance of the source code against those regularities, in order
to facilitate various software maintenance and evolution tasks.
By documenting explicitly some of the coding conventions and
idioms that are typically adhered to by software developers,
and by providing an automated mechanism for verifying where
and which source code entities do or do not respect these
regularities, structural quality of the code can be improved
and certain bugs can be discovered or avoided.

Essentially, an intensional view is nothing but a set of
source-code entities (e.g., classes or methods in an object-
oriented program) which are structurally similar (e.g., having
a similar name, containing the same entities, or being related
to other entities in a similar way). Instead of enumerating all
entities that make up a view, they are defined by means of an
intension, that is, an executable description which yields the set
of entities belonging to the view. A logic language embedded
in a reflective object-oriented programming language proved
to be an ideal choice in which to define intensional views
over source code entities in the object-oriented language. On
top of this embedded logic language we developed a set of
tools to facilitate the definition, conformance checking and
visualisation of the intensional views.

The original approach described above focused on source
code regularities only. However, it occurred to us that the
underlying idea of the approach was generic enough to be
applicable to any system containing structured information
obeying certain regularities, where system evolution may lead
to a decay in the conformance of the system to these regulari-
ties. In particular, in addition to software systems (and source
code in particular), we believe that information systems (and
databases in particular), suffer from similar problems. This
article relates on a recent experience where we transposed the
idea and tools of intensional views to this new application area.

More specifically, we implemented an information system
intended to localise IP telephones at a large Belgian university.
In this case study, we observed that the data sources used
by the system suffered from problems very similar to those
encountered by our earlier research on intensional views. I.e.,
the data sources contain a lot of structured information that
obeys many regularities, but which are often not documented
explicitly and for which evolution causes inconsistencies to
arise in the data with respect to those regularities.

To address this problem we implemented a new tool,
strongly inspired by the original Intensional View Environ-

ment [3], but now adapted and dedicated to databases. Like
the original tool suite, this new tool consists of an intensional

view editor in which the user can declaratively codify structural
regularities to be respected by the databases of the information
system. These regularities are expressed in terms of high-level
intensionally declared views on the databases, and relations be-
tween those views. To check conformance of these regularities,
the tool translates the high-level views and relations into more
low-level relational algebra expressions that can be verified
directly on the databases. After performing this verification,
the results are reported back to the user in sufficiently high-
level views, allowing him or her to easily discover what entities
did and did not respect the regularities.

Section II describes our case study in detail. Sections III
and IV then describe how we adapted the original idea of
intensional views to apply it to codify and verify structural
regularities on the data sources of our case study. Section V
takes a step back to discuss some of the advantages, limitations
and future improvements of this approach and provides some
comparisons to the original intensional view approach. We
conclude that the similarities between the intensional views
approach applied to databases and to source code are striking,
and that the approach can probably be applied to many
other kinds of systems suffering from a decay of structured
information throughout system evolution.

II. CASE STUDY

The information system of our case study deals with local-
izing IP phones at a Belgian university. In case of emergency
calls, the system needs to be able to inform rescue services
about the precise location of an accident. To do this, it relies on
three sources of data. First, each time an IP phone is deployed,
a technician fills out an Excel document to specify the location
of this phone. However, the problem is not only that these
phones can be moved, but also that users can disconnect
from a phone and then connect to another phone somewhere
else, while keeping the same phone number. Phone number
locations can thus evolve over time.

A more dynamic source of information about phone lo-
cations is thus needed. The system uses two additional data
sources. The first is the network locations. Thanks to a map-
ping of port locations for each switch, we are able to localize
phones connected to the network. Another source of locations
is through the phone central (called MX1) and SAP. While the
phone central specifies which phone number is connected to
what phone MAC address, the SAP system contains the phone
number and office location for each employee.

With these three data sources (deployment, network and
MX1-SAP), we would like to localise phones accurately.
Unfortunately, many inconsistencies remain between these
sources. The main problem is that phone locations are not
always the same according to the different sources. It occurs
frequently that, according to some source, a phone is said to be
in one building, while according to another source it is located
in another building several miles away. And this is not the only
problem; a lot of other constrains between the data sources
are not satisfied either. For example, some phones existing in
one source are simply missing from other sources. We faced
thousand and thousand of errors of different types. All these
errors were carefully stored in logs, but it soon appeared to be
impossible to deal with all these inconsistencies manually.

Yet, it remains crucial to have consistent information about
the locations, given the dire consequences that a location
error could have. Indeed, sending the emergency services to a
wrong place could cause them to lose precious seconds. We
cannot afford inaccurate location information such as “Well,
the victim may be here, or there, or perhaps there”.

We thus need a tool to help us detect inconsistencies in the
data. The tool should allow us to define and verify a variety
of structural constraints on our data sources. For example, we
would like to express the constraint that a location (building +
office) must be the same in all data sources for a same phone.
One solution could be to express such constraints directly in
the SQL query language. However, we wanted our tool to be
high-level enough to be used by users which are not necessarily
SQL experts. Especially since expressing such constraints
often requires rather complex or verbose SQL expressions.
Also, the results returned by such SQL expressions may not be
easily exploitable. Our goal was to develop a tool where a user
can express his constraints in an intuitive and high-level way,
using a simple GUI, and which would return its results (i.e.,
discovered inconsistencies) in a way that can straightforwardly
be exploited by end users.

Actually, some tools that satisfy some of the above require-
ments already exist. Query By Example (QBE) [4] could be

a convenient way to express constraints such as the above.
In fact, it could express most of the constraints we need to
verify. However, it would require users to learn the specific
QBE syntax. We would prefer a tool where the user does not
have to learn a new language or syntax in order to be able to
express, understand or detect violations of constraints.

Alternatively, we might directly use the constraint checking
provided by SQL. Expressing constraints in terms of unique-

ness, primary key, not null or other SQL constraints could
already prevent a lot of inconsistencies. A problem we have,
however, is that we need to be able to keep all original data,
even though some of it is currently inconsistent. With upstream
SQL constraint checking, the DBMS would simply deny such
data, causing a loss of essential information that could have
allowed us to discover the root causes of the detected problem
more easily.

From the above analysis, we concluded that no existing
tool seemed to satisfy all of our requirements, but that a tool
akin to the original intensional views tool was probably what
we needed to solve our problem. Indeed, intensional views for
source code allow end users to define, in a high-level way,
using an intuitive GIU, structural regularities on source code.
These regularities are then translated to logic and verified over
the code seen as a logic repository.

Database constraints could also be expressed and verified
using first-order logic [5]. Theoretically, constraints could
be specified by the user in an appropriate GUI and then
automatically translated into propositional formulae, and then
further into SQL. In practice, however, relational algebra may
provide a more flexible intermediate language than first-order
logic expressions. Indeed, relational algebra is closed over
relations (every operator takes relations as input and produces
a relation as output) which yields a naturally composable way
for building complex constraints from user input.

When porting the intensional views approach to the domain
of databases, we therefore decided to translate the high-level
structural regularities on the databases into relational algebra
instead of logic. We use the Tutorial D language [6] as rela-
tional algebra, and the Alf tool [7] as concrete implementation.
Alf provides support for compiling SQL code from arbitrary
relational expressions.

Using examples from our case study, in the next section
we will now describe our instantiation of intensional views
for information systems, which relies upon Alf for verifying
constraints over the data.

III. PROPOSED SOLUTION

Whereas initially intensional views were intended to check
structural source code regularities [1], [2], here we want to
apply this concept to check constraints on database tables and
their tuples.

Figure 1 shows the intensional view editor, i.e. the GUI
wherein the user would define his constraints on the data. It
illustrates how a user can easily define a desired regularity
to be respected by the data of two different tables, and how
discovered inconsistencies with respect to that regularity would
be reported back to the user. In this (simplified) example, we
want to express the regularity that the locations of phones

Fig. 1. The intensional view editor for defining and checking structural constraints between database tables.

coming from the network data source and from the deployment
data source are consistent.

To encode this particular constraint, the user must first
select the tables concerned by the constraint. Here, we select
the table containing locations from the network and deploy-
ment databases. The relation type must also be selected.
Bidirectional means that all tuples from the source table must
have a corresponding tuple in the target table and vice versa.
Left to right means that only each left tuple must have a
corresponding right tuple, whereas Right to left means the
opposite.

Next, the way in which the different database tuples should
be compared must be defined. The user must select the field
needed to identify a corresponding tuple in the source and
target table. Typically, this is done by indicating what field in
the source and target table represents the identifier or key of
that tuple. Sometimes, however, tuples from both tables cannot
be directly matched. They can only be matched by using an
intermediate table containing a correspondence between iden-
tifiers of the source and target table. In our example, because
phones in the network table are identified using their MAC

addresses, and in the deployment table using their UCL-ID 1,
we need to use an intermediate table containing the mapping
between MAC addresses and UCL-IDs. This custom mapping

is encoded in a user-defined predicate MACTOUCLID. Such
custom mappings can be defined straightforwardly by a user
in a simple XML configuration file. Due to space limitations
we refer to [8] for more details on how this is done.

After having selected the concerned tables, their respective
keys, and optionally a key mapping, the user can now specify
some conditions or constraints on the corresponding tuples
between these tables. These conditions can be combined using
logical conjunction or disjunction. In order to keep the user
interface simple, for now the tool only allows to combine all

individual conditions with either logical conjunction (ALL) or
disjunction (ANY), but does not support a more fine-grained
combination or nesting of logical operators. In our example, we
define two conditions to encode the constraint that the building
AND the room must be equivalent in the two tables. To do this,
we require the corresponding fields in the source and target
table, i.e. the fields ‘building’ and ‘room’, to be equal.

1The UCL-ID is a unique identifier given by UCL university to each phone
in use at the university.

It is also possible to define some additional filters in
order to consider only a subset of the data, for instance, only
considering one particular building. This can be useful, for
example, when analyzing very large databases with lots of
inconsistencies, and the user wants to inspect the inconsisten-
cies for a particular subset of the data only. In our particular
example, we didn’t apply any such filters.

Finally, when the user clicks on the ‘Check constraint’
button, three different Alf queries are generated. The first
one is a query to find the positive results, i.e. all tuples that
satisfy the declared constraint. A second query will calculate
the mismatches in the source table, i.e. all tuples in the source
table that do not satisfy the declared constraint. A third query
calculates the mismatches in the target table.

The generated Alf query for the positive results looks
somewhat like this:

r e s t r i c t (
jo in on (s o u r c e t a b l e , t a r g e t t a b l e ,

common key) ,
eq (: s o u r c e t a b l e b u i l d i n g ,

: t a r g e t t a b l e b u i l d i n g) &
eq (: s o u r c e t a b l e r o o m ,

: t a r g e t t a b l e r o o m))

From this query it can be observed that the two concerned
tables are first joined based on their common key, and then
the results are restricted to the tuples satisfying all conditions,
i.e. that the buildings and rooms must be equal. In reality,
the actual generated query 2 is a bit more complex than this,
to take into account custom mappings (in our example, for
instance, there is no common key but the correspondence
between MAC addresses and UCL ID’s needs to be looked
up in an intermediate table), renaming (for instance, when
two corresponding fields have a different name in the different
tables), and filters (an extra restriction based on the specified
filters should be applied).

Each of these generated queries are then executed through
Alf. As exemplified by Figure 1, positive results are displayed
in the table at the bottom center of the GUI, whereas negative
results are shown on the bottom left and right, respectively.
(For non-bidirectional relations there will no table either on
the left or on the right.)

In our example, we see that only one phone (the one
with MAC address 00:08:5d:00:00:01 and UCL-ID UA00001)
satisfies the constraint of having the same location in both
sources. For all other phones, we find inconsistencies and they
thus end up in the negative results. A negative result means that
either the building or room was different in the other table, or
that no correspondence whatsoever was found for this phone
in the other table.

Whereas the presented positive and negative results al-
ready provide a lot of useful information about detected
(in)consistencies in the data, they are not always easy to inter-
pret by the end-user because they are not shown in the context
of the original tables. For this purpose, our tool provides
an alternative highlighted view which simply highlights the
detected (in)consistencies in the original tables. To open this

2More details on the query generation process can be found in [8].

Fig. 2. Inspecting data (in)consistencies with the highlighted view.

view it suffices to click on the button ‘Highlighted view’ at
the bottom of the intensional view editor.

Figure 2 illustrates what this highlighted view would look
like for our previous example. It displays each of the concerned
tables, that is, the source and target tables but also the
intermediate table used for defining the key mapping. For each
of these tables the tuples are coloured either in red if they
correspond to an inconsistency, in green if they correspond to
a positive result, or just appear in white if the tuple is not
concerned by this particular constraint.

In our example, we see that three tables are concerned. The
locations from the network and from deployments, but also the
intermediate attribution table which maps MAC addresses to
phone IDs. The only positive case appears in green, all others
in red. One element in the attributions table appears in white
because no element in either the network or deployments table
had such MAC address or UCL-ID.

Using the highlighted view we can observe, for in-
stance, that the information for the phone with MAC address
00:08:5d:00:00:02 and UCL-ID UA00002 is inconsistent, since
it appears with location SC052–A003 in the network table,
whereas it has location SC051–A 002 in the deployments table.

IV. VALIDATION

As explained above, intensional views allow the end-
user to declare high-level constraints between data sources
with relative ease, and reported inconsistencies can then be
inspected in two different views to help him identify the causes
of the inconsistencies.

In our actual case study, containing the data for about
6500 phones, many inconsistencies were found, such as miss-
ing phones, missing information for a given phone, missing
mappings between phone IDs and their MAC address, and
unknown buildings. All these inconsistencies can be found
with our tool. The amount of phones dealt with and the amount
of inconsistencies discovered were simply too large to be
handled manually, which was the prime the reason for creating
this intensional view tool for analyzing data inconsistencies.

For the constraint declared in the previous section, for
example, when applied to the 6500 IP phones in use at the
university, comparing locations in network and deployments

returned 68% of inconsistent locations (either building or
room). Only 13% of the 6500 phones had exactly the same
location (building and room) in all sources. Whereas the under-
lying reasons for all this inconsistencies varied, an automated
tool like ours to identify and inspect these errors was a crucial
tool to start solving the inconsistencies.

Before putting our tool to use, the approach used was
to merge all different data sources into one huge table. But
this approach was infeasible due to the many inconsistencies
between the data sources. Producing the merged table (which
had to be done regularly because of the dynamic nature of
some data sources) also took about 5 minutes, whereas keeping
the data in their original sources but checking all regularities
between them only took a few seconds. Another advantage
of defining many different regularities against which to check
conformance, was that it makes it easier to isolate and detect
certain types of inconsistencies, as opposed to when having to
discover inconsistencies in a huge merged database table.

V. CONCLUSION AND FUTURE WORK

Our main contribution is the idea of combining intensional
views with relational algebra, to address the problem of
managing the structural consistency of an evolving information
system. The intuitiveness and simplicity of intensional views
match well with the expressive power of relational algebra.

The idea was implemented in an actual tool and put in
practice on a non-trivial case study at a large Belgian univer-
sity, where it is still in use today. The current implementation
is only a first prototype, however, and many improvements
can still be made. One of its most important limitations is
probably that it can only express constraints between two
tables, optionally connected through an intermediate table for
mapping keys. While this proved to be sufficient for our case
study, the tool could be extended so that constraints on multiple
tables can be expressed, at the risk of making the GUI less
intuitive to use. This is also one of the reasons why the original
Intensional View Environment supports intensional relations
over two intensional views only.

A similar remark holds for the combination of conditions.
The tool currently allows to combine all conditions only with
either a conjunction or a disjunction, but doesn’t support
a finer-grained combination or nesting of logical operators.
This too was a deliberate choice because it sufficed for the
constraints we needed to express on our case, and because it
keeps the user interface simple.

The original Intensional View Environment also offers
a notion of alternative views, which are useful to define
interesting constraints on a single view. We could explore
how to use this idea to define unary constraints on a given
data source, for example to express that all phones in a given
building should have a MAC address with a similar prefix.

We could also improve how custom mappings between
tables are expressed. Currently, they are expressed in XML
files and only allow mapping the field of one table to the field
of another table. Allowing a user to define his own predicates
directly in Alf would provide more expressiveness. However,
this would create a strong dependency of our solution upon
Alf and contradicts our goal of not requiring the user to know

a particular query language. An alternative is to offer this
possibility only to expert users, while providing to the average
user a dedicated interface for creating custom mappings, which
generates the necessary Alf query.

An open question remains upon what underlying language
our tool should rely. We already motivated our choice for using
relational algebra, and Alf in particular, but using logic instead
(like the original intensional views approach), is possible too,
as well as to directly generate SQL queries. Nevertheless, using
Alf was a good choice from the point of view of ease of im-
plementation and efficiency. It could be worthwhile exploring
whether the original intensional view approach couldn’t rely
on relational algebra as well, instead of upon logic.

Our current approach does not allow to express constraints
requiring aggregation, such as “An office cannot contain more
than 10 phones”. For this, we would need to use aggregation
functions such as sum, count or avg. Such functions already
exist in Alf, and could be added to the tool using some kind of
quantifiers. The original intensional view approach did allow
for quantification over views, but only universal and existential
quantification, with its obvious interpretation in logic.

A further improvement requested by our end-users is to
make the GUI more ergonomic. E.g., it could come with a
wizard to help novice users define their constraints step by
step. We should also add support to make it easy to find out,
for a given data element, what constraints it does not satisfy.
The original intensional view approach offered such support by
integrating the tool in an existing development environment.
By analogy we should provide a seamless integration of our
current tool in an database management system.

The current paper is a nice case of cross-fertilisation
research, where proven ideas of one domain (source code
maintenance) are applied to another domain (database main-
tenance). A similar approach could even be used to any
other domain dealing with structured information and suffering
from problems due to implicit structural regularities not being
respected upon evolution.

REFERENCES

[1] K. Mens, B. Poll, and S. González, “Using intentional source-code views
to aid software maintenance,” in International Conference on Software

Maintenance (ICSM 2003). IEEE Computer Society, 2003, pp. 169–178.
[2] K. Mens and A. Kellens, “Towards a framework for testing structural

source-code regularities,” in International Conference on Software Main-

tenance (ICSM 2005). IEEE Computer Society, 2005, pp. 679–682.
[3] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-evolving code

and design with intensional views: A case study,” Computer Languages,

Systems & Structures, vol. 32, no. 2–3, pp. 140–156, 2006.
[4] M. M. Zloof, “Qbe/obe: a language for office and business automation,”

Computer, vol. 14, no. 5, pp. 13–22, 1981.
[5] R. Elmasri, Fundamentals of database systems. Pearson Education India,

2008.
[6] C. J. Date and H. Darwen, Foundation for object/relational databases:

the third manifesto: a detailed study of the impact of objects and

type theory on the relational model of data including a comprehensive

proposal for type inheritance. Addison-wesley, 1998.
[7] B. Lambeau, “Alf, relational algebra at your fingertips,” 2013. [Online].

Available: http://www.try-alf.org/ or http://github.com/alf-tool
[8] D. Colpaert, “Un outil de gestion d’incohérences de données basé sur

les vues intensionnelles et l’algèbre relationnelle appliqué à un cas de
localisation de téléphones IP,” Master’s thesis, Université catholique de
Louvain, 2014.

Model Differencing for Textual DSLs
Riemer van Rozen

Amsterdam University of Applied Sciences (HvA)
Amsterdam, The Netherlands
Email: r.a.van.rozen@hva.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
Email: storm@cwi.nl

Abstract—The syntactic and semantic comparison of models

is important for understanding and supporting their evolution.

In this paper we present TMDIFF, a technique for semanti-

cally comparing models that are represented as text. TMDIFF

incorporates the referential structure of a language, which is

determined by symbolic names and language-specific scoping

rules. Furthermore, it employs a novel technique for matching

entities existing in source and target versions of a model, and

finds entities that are added or removed. As a result, TMDIFF

is fully language parametric, and brings the benefits of model

differencing to textual languages.

I. INTRODUCTION

Model differencing is a well-researched topic in the context
of Model-Driven Engineering (MDE). For instance, the seminal
paper by Alanen and Porres [1] introduced a generic algorithm
to compute the difference and union between two models.
In this paper we introduce Textual Model Diff (TMDIFF):
an adaption of the Alanen and Porres algorithm for models
represented as textual source code. Textual representation is
common in the area of domain-specific languages (DSLs).
We expect that TMDIFF will pose new opportunities to better
understand and support the evolution of DSL programs in a
similar way that the MDE process is supported by numerous
tools for comparing, merging, and migrating models.

Applying model-based differencing techniques to textual
models is non-trivial for two reasons. First, the referential
structure of a textual model is encoded using symbolic
names and language specific scoping rules. Second, textual
languages are dependent on parsing for obtaining a structured
representation. As a result, model elements do not have a stable
identity across versions of a model.

TMDIFF addresses these problems as follows. First, TMDIFF
is parameterized in the name binding semantics of the modeling
language using a generic, relation-based representation of
references. Second, the identities of entities across revisions
of a model are recovered by aligning their defining name
occurrences using stock diff algorithms (e.g.,[4]).

Below we present a motivating example based on textual
state machine models. Then we present an overview of TMDIFF.
We conclude with a discussion on limitations and future work.

II. MOTIVATING EXAMPLE

Figure 1 shows three versions of a textual model in a simple
language for state machines. A state machine has a name and
contains a number of state declarations. Each state declaration
contains zero or more transitions. A transition fires on an

machine doors d1

state closed d2

open => opened u1

state opened d3

close => closed u2

end

(a) Doors1

machine doors d4

state closed d5

open => opened u3

lock => locked u4

state opened d6

close => closed u5

state locked d7

unlock => closed u6

end

(b) Doors2

machine doors d8

state closed d9

open => opened u7

lock =>

locking.locked u8

state opened d10

close => closed u9

locking d11 {

state locked d12

unlock => closed u10

}
end

(c) Doors3

Fig. 1. Three versions of a simple state machine model. Definitions and uses
of states are labeled with d

i

and u

j

respectively.

event, and then transfers control to a new state. Figure 1a
displays a state machine for controlling doors (Doors1). The
state machine is extended with a locked state in Doors2 (Fig. 1b).
The third version, Doors3 (Fig. 1c), shows a grouping feature
of the language: the locked state is part of the locking group.
The grouping construct acts as a scope: it allows different
states with the same name to coexist in the same state machine
model.

In each of the state machine models, the constructs that define

entities are annotated with unique labels dn. For instance, in
Doors1, the machine itself is labeled d1, and both states closed
and opened are labeled d2 and d3 respectively. Similarly, uses

of states in transitions are labeled with labels un. For instance,
the target state opened of the transition in closed is labeled
u1.

To the human reader it is intuitively clear that states closed
and opened are stable across revisions: only the relations
between these states and other states are changed through
the addition or change of transitions and addition of new states
(locked). Textual or structural difference algorithms, however,
are oblivious to the semantic identity of states and will generate
spurious differences as a result.

TMDIFF does take into account constructs that represent
semantic entities. It reports differences as imperative edit scripts
in terms of a metamodel that is implicitly derived from the
grammar of the language and its name binding semantics. For
instance the difference between Doors1 and Doors2 is reported
as:

create State d7 //create State def
d7 = State("locked",[Trans("unlock",d2)]) //init new State
d2.out[1] = Trans("lock", d7) //store 2nd Trans
d1.states[2] = d7 //store new State

A new state d7 (locked) is created and initialized to contain
a single transition to the (existing) state d2. Then the closed
state gets a new transition to the state that was just created
(d7). Finally, state d7 is added to the list of states of the state
machine d1.

To illustrate the fact that TMDIFF can deal with scoping
constructs, consider the difference between Doors2 and Doors3.
Informally, the only thing that is changed is that the locked
state is placed in a scope called locking. As a result, the
reference to the locked state u3 in Doors2 needs to be updated to
use the qualified name locking.locked. However, semantically
the transition structure between states does not change. The edit
script produced by TMDIFF accurately reflects this description:

create Group d11 //create Group def
d11 = Group("locking",[d7]) //initialize new Group
remove d4.states[2] //remove 3rd State
d4.states[2] = d11 //store new Group

The script first creates the Group construct d11 and then
initializes its name to locking and its owned states to contain
a pointer to locked. Next, that state is removed from the list of
states of the machine. Finally, the newly created group becomes
the third element in this list. Everything else stays the same.

III. OVERVIEW OF TMDIFF

TMDIFF is based on two relations: the reference relation
between entities in a single model, and a matching relation
between entities in different versions of the same model. We
briefly describe each in turn.

a) Name Analysis: The user-specified name analysis
should produce reference graphs in terms of definition and
reference labels. A reference graph is triple G = hD,U,Ri,
where D and U are sets of labels identifying definitions and
uses respectively, and R ✓ (U [D)⇥D is a binary relation
representing references.

Figure 2 shows the abstract syntax tree (AST) and reference
graph of Doors1. The dashed arrows represent reference tuples
in R. For instance, the Ref node (“opened”) is labeled u1 and
refers to d3, the label of a Name node (“opened”).

The reference graph provides two important pieces of
information: namely, the AST nodes representing definitions
of entities, and nodes that are references to such entities.

b) Matching Entities: The matching process takes the
textual source of both models, their ASTs and their reference
graphs as input. It first creates entity projections, P1 and
P2 which are sequences of tuples hx,c, l,di, where x is the
symbolic name of the entity, c its semantic category (e.g. State,
Machine, etc.), l the textual line it occurs on and d its definition
label (e.g., d1). For instance, The entity projections for Doors1

and Doors2 are as follows:

P1 =
[hdoors, Machine, 1, d1i,
hclosed, State, 2, d2i,
hopened, State, 5, d3i]

P2 =

[hdoors, Machine, 1, d4i,
hclosed, State, 2, d5i,
hopened, State, 6, d6i,
hlocked, State, 9, d7i]

Machine

StateName

“doors"

d1

Trans

“open” Ref u1

Name

“closed" d2

State

d3

Name Trans

Ref“close”

u2

“opened"

Fig. 2. AST with references of Doors1. Solid arrows indicate containment
in the AST. Dotted lines associate unique labels to AST nodes, and dashed
lines are references.

The line numbers in the entity projections provide the key
to using a traditional textual diff to determine whether an
entity has been added or not. Recall that diff produces a patch
describing which lines we added or removed. In the context
of Doors1 and Doors2, for instance, the first three entries in both
P1 and P2 all have line numbers that are not changed by the
diff. Therefore the labels d1, d2, d3 and d4, d5, d6 are pairwise
matched. Entity d7 however was defined on line 9, and this
is one of the lines marked as added by the textual diff. As
result, d7 is considered to represent a newly created entity.
Recovering deleted entities works the other way round.

The reference graph provides the information on which nodes
are actually semantic entities, and how entities refer to each
other. Entity matching determines which entities exist in both
revisions of a textual model. Together the reference graph and
the entity matching represent the necessary information for
applying existing model differencing algorithms such as [1].

IV. DISCUSSION AND OUTLOOK

We have implemented a prototype of TMDIFF in Rascal, a
meta programming language and environment for source code
analysis and transformation [2]. As an initial experiment, we
were able to reconstruct the complete history of file description
models used in a DSL for digital forensics [5].

Future work is aimed at assessing how our diff-based
matching strategy compares to existing approaches [3]. In
particular, our strategy is not resilient against moving around
of definitions, since traditional diff will not detect them as
such. We are also investigating how our generic textual model
differences can be used for reconciling co-evolving artifacts
and migrating run-time states of textual DSL programs.

REFERENCES

[1] M. Alanen and I. Porres. Difference and Union of Models. In UML,
pages 2–17, 2003.

[2] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A domain specific
language for source code analysis and manipulation. In SCAM, pages
168–177. IEEE, 2009.

[3] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different
Models for Model Matching: An Analysis of Approaches to Support
Model Differencing. CVSM ’09, pages 1–6, Washington, DC, USA, 2009.
IEEE Computer Society.

[4] W. Miller and E. W. Myers. A File Comparison Program. Softw. Pract.

Exper., 15(11):1025–1040, 1985.
[5] J. van den Bos and T. van der Storm. A Case Study in Evidence-based

DSL Evolution. In ECMFA’13, pages 207–219. Springer, 2013.

Source
files

Queries
Extracted

Database
Schema

SQL ASG
Query

Extraction

Query
Matching

Source
locations

SQL
Parsing

Queries
Searched

A Template Method for Improvement of System Response Time

Authors: Rick Hoving, AFAS, Jan Martijn E.M. van der Werf, and Slinger Jansen,
Utrecht University

With the constant improvement of computers and devices, the webclient in a client-
server architecture can perform large portions of logic typically residing at server-side.
When an architect chooses to upload and execute business logic on the webclient, the
webserver requires fewer resources. Fewer resources result in a smaller server land-
scape. Although this sounds promising, the requirements thus placed on the webclient
introduce many new challenges. Because of the wide variety in possible devices, an
architect cannot predict the specific device on which the application runs. When
the application performs more logic on the webclient, the user’s device increasingly
influences the user experience.

To provide the architect with information on the user experience of such a web
application, we further elaborate on these characteristics. These characteristics on the
client include Asynchronous Javascript And XML and the Document Object Model.
Web applications use Asynchronous Javascript And XML for communication between
client and server. A web application uses the Document Object Model to change the
HTML document of the web page to communicate with the user. Because of the wide
variety of possible devices, the architect cannot predict the specific device on which
the user interacts with the application. However, the architect can measure the user
experience when the user interacts with the application. To provide the architect with
these measurements, we utilize the software operation knowledge framework.

As a metric of user experience, user-perceived latency heavily influences the client.
Using the steps of human computer interaction depicted in Figure ??, we provide with
a formal definition of user-perceived latency. In user-perceived latency we define two
types of actors, the user and the system. The architecture of the application cannot
influence the user. However, the architecture can be used to influence the system.
Therefore we divide user-perceived latency into two components, human interaction
time (HIT) and system response time (SRT). During the human interaction time, the
user interacts with the system. During the system response time, the system reacts
to the users input, see Figure ??. Because of our architectural view, we focus on the
system response time. User experience is an element used to describe the quality of
the system. Because the system response time is not a property of the application,
we see the system response time as a metric.

Figure 1: The Four Stages of Human Computer Interaction

When measuring the system response time, architectural erosion and architectural
degradation result in uncertainties for the architect. These uncertainties result in

1

the architect unable to predict the e↵ect of changes in the software’s architecture
on the system response time. To measure the system response time and cope with
these uncertainties, we create a framework based on the software operation knowledge
framework. To cope with architectural erosion and architectural degradation, the
software operation knowledge framework fit for system response time measurements
includes a simulation step. The architect uses the simulation step to reproduce the
system response time. The architect uses the reproduced system response time to
predict the e↵ect of architectural changes on the system response time with more
accuracy.

We use the adjusted framework to provide the Template Method for Improvement
of System Response Time. The method aims at gaining knowledge about the system
response time and the e↵ects of changes in the software’s architecture on the system
response time. The method aids in measuring, improving, and simulating the sys-
tem response time. To improve the system response time, we perform data mining
techniques and process mining techniques onto the obtained data. The architect uses
presentation means to visualize the data and identify improvements in the architec-
ture. After the architect improves the software’s architecture and the software, they
create and utilize a test environment to obtain an accurate prediction of the e↵ect of
these changes on the system response time.

Figure 2: A Visualization of the Human Computer Interaction Process

2

