2,161,862 research outputs found

    Topological aspects of quantum spin Hall effect in graphene: Z2_2 topological order and spin Chern number

    Get PDF
    For generic time-reversal invariant systems with spin-orbit couplings, we clarify a close relationship between the Z2_2 topological order and the spin Chern number proposed by Kane and Mele and by Sheng {\it et al.}, respectively, in the quantum spin Hall effect. It turns out that a global gauge transformation connects different spin Chern numbers (even integers) modulo 4, which implies that the spin Chern number and the Z2_2 topological order yield the same classification. We present a method of computing spin Chern numbers and demonstrate it in single and double plane of graphene.Comment: 5 pages, 3 figure

    Invited review: KPZ. Recent developments via a variational formulation

    Get PDF
    Recently, a variational approach has been introduced for the paradigmatic Kardar--Parisi--Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation alpha+z=2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.Comment: 16 pages, 2 figure

    Tests of non-standard electroweak couplings of right-handed quarks

    Get PDF
    The standard model can be interpreted as the leading order of a Low-Energy Effective Theory (LEET) invariant under a higher non linearly realized symmetry Snat⊃SU(2)W×U(1)YS_{nat}\supset SU(2)_W \times U(1)_Y equipped with a systematic power counting. Within the minimal version of this ``not quite decoupling'' LEET, the dominant non-standard effect appears at next-to-leading order (NLO) and is a modification of the couplings of fermions to W and Z. In particular, the coupling of right-handed quarks to Z is modified and a direct coupling of right-handed quarks to W emerges. Charged right-handed lepton currents are forbidden by an additional discrete symmetry in the lepton sector originally designed to suppress Dirac neutrino masses. A complete NLO analysis of experimental constraints on these modified couplings is presented. Concerning couplings of light quarks, the interface of the electroweak tests with QCD aspects is discussed in detail.Comment: 56 pages, 14 figures, v2: references added, minor modifications in the text, accepted for publication in JHE

    Assessing the accuracy of Hartree-Fock-Bogoliubov calculations by use of mass relations

    Full text link
    The accuracy of three different sets of Hartree-Fock-Bogoliubov calculations of nuclear binding energies is systematically evaluated. To emphasize minor fluctuations, a second order, four-point mass relation, which almost completely eliminates smooth aspects of the binding energy, is introduced. Applying this mass relation yields more scattered results for the calculated binding energies. By examining the Gaussian distributions of the non-smooth aspects which remain, structural differences can be detected between measured and calculated binding energies. Substructures in regions of rapidly changing deformation, specifically around (N,Z)=(60,40)(N,Z)=(60,40) and (90,60)(90,60), are clearly seen for the measured values, but are missing from the calculations. A similar three-point mass relation is used to emphasize odd-even effects. A clear decrease with neutron excess is seen continuing outside the experimentally known region for the calculations.Comment: 13 pages, 9 figures, published versio
    • …
    corecore