61,805 research outputs found

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    On-site forest fire smoke detection by low-power autonomous vision sensor

    Get PDF
    Early detection plays a crucial role to prevent forest fires from spreading. Wireless vision sensor networks deployed throughout high-risk areas can perform fine-grained surveillance and thereby very early detection and precise location of forest fires. One of the fundamental requirements that need to be met at the network nodes is reliable low-power on-site image processing. It greatly simplifies the communication infrastructure of the network as only alarm signals instead of complete images are transmitted, anticipating thus a very competitive cost. As a first approximation to fulfill such a requirement, this paper reports the results achieved from field tests carried out in collaboration with the Andalusian Fire-Fighting Service (INFOCA). Two controlled burns of forest debris were realized (www.youtube.com/user/vmoteProject). Smoke was successfully detected on-site by the EyeRISTM v1.2, a general-purpose autonomous vision system, built by AnaFocus Ltd., in which a vision algorithm was programmed. No false alarm was triggered despite the significant motion other than smoke present in the scene. Finally, as a further step, we describe the preliminary laboratory results obtained from a prototype vision chip which implements, at very low energy cost, some image processing primitives oriented to environmental monitoring.Ministerio de Ciencia e Innovación 2006-TIC-2352, TEC2009-1181

    Self-synchronized duty-cycling for sensor networks with energy harvesting capabilities: Implementation in Wiselib

    Get PDF
    In this work we present a protocol for a self- synchronized duty-cycling mechanism in wireless sensor net- works with energy harvesting capabilities. The protocol is im- plemented in Wiselib, a library of generic algorithms for sensor networks. Simulations are conducted with the sensor network simulator Shawn. They are based on the specifications of real hardware known as iSense sensor nodes. The experimental results show that the proposed mechanism is able to adapt to changing energy availabilities. Moreover, it is shown that the system is very robust against packet loss.Postprint (published version

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    corecore