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{hhernandez,cblum,mjblesa}@lsi.upc.edu

2 Algorithms Group, Braunschweig Institute of Technology, Braunschweig, Germany
{t.baumgartner,a.kroeller,s.fekete}@tubs.de

Abstract— In this work we present a protocol for a self-
synchronized duty-cycling mechanism in wireless sensor net-
works with energy harvesting capabilities. The protocol is im-
plemented in Wiselib, a library of generic algorithms for sensor
networks. Simulations are conducted with the sensor network
simulator Shawn. They are based on the specifications of real
hardware known as iSense sensor nodes. The experimental
results show that the proposed mechanism is able to adapt
to changing energy availabilities. Moreover, it is shown that the
system is very robust against packet loss.

I. I NTRODUCTION

Sensor networks [27], [1], [2] consist of a set of small,
autonomous devices which may be used, for example, for
monitoring large areas and for analyzing complex phe-
nomena for extended periods of time. Currently available
hardware includes sensors for a wide range of physical data
such as light intensity, humidity, temperature and the oxygen
level, as well as for some characteristics of objects such
as direction and speed. Thanks to these sensing capabilities
sensor networks can be used for a variety of different tasks
including environmental monitoring, patient monitoring in
health care, and industrial machinery surveillance. Some of
these applications may require the nodes of a sensor network
to be distributed within wide areas without power supplies.
Moreover, sensor nodes might be actively or passively mo-
bile. Therefore, they are generally equipped with batteries,
which makes energy a scarce resource.

A basic idea for saving energy is to periodically switch
off the sensor nodes. This can, of course, only be done if
permited by the targeted application. For instance, consider
the case of environmental data monitoring where measure-
ments must be taken in (more or less) regular time intervals.
In such a case, sensor nodes can become inactive after
each measurement, and they are activated again when the
next measurement is scheduled. Not switching off sensor
nodes in such a scenario is clearly a waste of energy. The
mechanism that establishes the alternation between the active
and inactive states is generally calledduty-cycling(see, for
example, [25]). If sensor nodes are equipped with energy
harvesting capabilities, the duty-cycling mechanism may be
adaptive based on the available energy. In the context of
the example mentioned above, and considering the case of

sensor nodes equipped with solar panels, this may mean that
measurements may be taken more frequently on sunny days
than on cloudy days. The literature offers some works on
energy-aware duty-cycling in wireless sensor networks (see,
for example, [18], [21], [19]). However, the main disadvan-
tage of these approaches is that they require a quite regular
pattern for the availability of energy from the environment.

In previous work [17], [16], [15] we introduced and
studied a possible technique for energy-aware duty-cycling in
(mobile) sensor networks with energy harvesting capabilities.
This system was inspired by self-synchronized sleeping
patterns of natural ant colonies [24], [14], [11], [10]. In
nature, some species of ants rest quite large fractions of
their time. Interestingly, not only single ants show this
behavior, but whole ant colonies exhibit synchronized activ-
ity phases resulting from self-organization ([12], [20], [9]).
Apart from achieving duty-cycling in a self-synchronized
way, the system that we proposed is able to adatp to changing
energy conditions of the individual nodes. The focus of these
first studies was purely on the swarm intelligence aspects
of the proposed system. The experiments were performed
without considering any network constraints such as packet
loss, collisions and network failures. Before we outline the
contributions of this work, we would like to introduce already
a glimpse of the basic behaviour of the system introduced
in [17], [16], [15]; see Figure 1. The solid line shows the
fraction of active nodes over time, whereas the slashed line
shows the average battery level of the nodes over time.
Finally, the dotted line represents the sun power that is used
to establish the amount of energy which can be harvested
by the sensor nodes at each time step. Note that all three
measures are scaled to[0,1]. At this point we would like the
interested reader to understand the following two aspects.
First, self-synchronized duty-cycling is indicated by the
repetitive appearance of activity peaks over time (see solid
line). Second, the adaptation to changing energy conditions
is indicated by the changing height of the activity peaks. At
times of lower battery levels, activity peaks are lower as well.
This is the mechanism used by the sensor nodes to adapt to
varying energy conditions.
Contribution of this Work. As mentioned above, the focus
of our previous work has been purely on the swarm intelli-
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Fig. 1. A first glimpse of the working of energy-aware, self-synchronized
duty-cycling.

gence properties of the proposed system. Experiments have
been executed with a discrete event simulator without consid-
ering packet loss, collisions, etc. The first contribution of this
work is therefore the design of a protocol for wireless sensor
networks that captures the essential aspects of our swarm in-
telligence system previously proposed in [17], [16], [15].The
second contribution consists in the implementation of this
protocol in Wiselib [4], which is a library of basic algorithms
for wireless sensor networks. Algorithms in the Wiselib cover
several categories such as routing, localization, clustering,
data dissemination, time-synchronization algorithms, target
tracking and topology control. In our opinion, it is important
to contribute to such libraries, because they assist other
researchers in rapidly developing prototype applicationsfor
their own purposes without the need of implementing ev-
erything from scratch. Finally, we experimentally test our
duty-cycling protocol in a real scenario, simulating iSense
sensor nodes from Coalesense GmbH [8] with the network
simulator Shawn [22].

The organization of the paper is as follows. In Section II
the Wiselib is shortly outlined. In Section III the extension
of the Wiselib for duty-cycling algorithms is introduced, fol-
lowed by the description of the protocol for self-synchronized
duty-cycling. Finally, experimental results are presented in
Section IV, and conclusions and an outlook to future work
is given in Section V.

II. W ISELIB

The Wiselib [4], [29] is a generic algorithm library for
heterogeneous wireless sensor networks. The main design
goal is the possibility to run the same implementation of an
algorithm on different hardware and software platforms. Not
only real sensor hardware such as MicaZ or TelosB nodes
are supported by Wiselib, but also simulation environments
such as Shawn and TOSSIM. Wiselib intents to be a library
of algorithms for heterogeneous wireless sensor networks
comparable to some well-known centralized algorithm li-
braries such as LEDA, CGAL or BOOST. This aim has
strong requirements:

• The Wiselib must run on various sensor nodes, from
tiny nodes equipped with a MSP430 to powerful nodes

running an Intel XScale. It should also easily be ported
to additional devices.

• Its algorithms should utilize the capabilities of the
device they are compiled for.

• Its memory overhead should be as low as possible
compared to a native implementation for a specific
device.

• Its algorithms should be highly efficient considering the
capabilities of the devices.

• Its algorithm implementations should not explicitly deal
with platform specific dependencies.

The library can be used by any user application that needs
any of the algorithms implemented in it or, alternatively, that
needs to implement a new algorithm using the components
that the library offers.

The algorithms included in the Wiselib itself are organized
in topics according to their functionality. In order to abstract
the algorithms from the particularities of the physical plat-
form of sensors and the operating system administrating that
platform, a set of connectors exists that defines and fixes
an interface for interacting with them. A connector is also
defined to interact with wireless sensor networks simulators
such as Shawn [22]. Those connectors are defined in a way
that the same algorithm can be run on a physical platform or
on the simulator. Details on how this is achieved are provided
in the following.

A. C++ Templates

Wiselib is implemented in C++ [23]. This decision allows
the use of modern programming techniques via object-
oriented design, and provides mostly type-safe development.
Moreover, the language offers important features such as
const-correctness and templates [26], [3]. Wiselib massively
uses templates, especially to develop very efficient and
flexible applications. The basic functionality of templates
is to allow the use of generic code that is resolved by the
compiler when specific types are given. Thereby, only the
code that is really needed is generated, and methods and
parameters as template parameter can be directly accessed.
Object-oriented concepts are implemented using template
specializations. Using templates and member templates pro-
vides the Wiselib with several advantages, such as early
binding, inline optimizations, code pruning, extensibility, and
a layered structure. It uses the well-established technique of
template-based “concepts” and “models”, where the former
are not specified as actual code, but rather as formal spec-
ifications in documentation. Models are implementations of
concepts. Both concepts and models allow for polymorphism,
including multiple inheritance. These techniques are used
successfully in standard C++ libraries, such as the STL,
BOOST [5], and CGAL [6]. The Wiselib employs these
methods in the same manner, i.e., using standard compiler
features without custom additions.

B. Wiselib Architecture

In programming terms, an algorithm model implementing
a concept is basically a template expecting various parame-



Fig. 2. Wiselib software architecture [4]

ters. These parameters can be both Operation System (OS)
facets and data structures. OS facets represent the connection
to the underlying operating system or firmware (e.g., the
sensor radio or the timers), thus being an abstraction layer
to the OS, and thus also to the hardware platform. The
concepts and models of this abstraction layer form the so-
called external interface(see Fig. 2). OS facets are passed
to an algorithm as template arguments and the compiler
later resolves such calls to the OS. An OS facet can be
implemented by different models, that may have different ad-
vantages or purposes. The user can pass any of those models
to an algorithm at compile time, and no extra overhead is
payed for that. Additionally, the so-namedinternal interface
is formed by data structure models and concepts, which make
the algorithms independent from specific implementations for
their required data structures.

In general, this separation of concepts and their imple-
mentation through a template-based approach leads to a
highly flexible and powerful design, because the necessities,
strength and weaknesses of different hardware platforms or
different data structures can easily be utilized just by chang-
ing the parameters, or even simply by changing makefile
targets.

C. The Duty-Cycling Concept

The design of a new algorithm class in the Wiselib requires
the definition of a concept, that is, a documentation of how
an algorithm looks and behaves. Within the scope of this
paper, we provide a generic concept for the class of energy-
aware duty-cycling algorithms, and provide one model for
this concept: A duty-cycling algorithm based on the behavior
of ants, as described in Section III, for the Wiselib.

In general, Wiselib algorithms are particularly used by
higher-level applications to simplify the development pro-
cess. This means, such a duty-cycling algorithm must assist
sensor nodes in their decision of being active or inactive.
This is handled via a callback to the sensor node when it
is supposed to change its mode. Based on this callback, the
sensor node is then responsible for the corresponding task,
e.g. changing to sleep-mode for a given time interval in case
of inactivity, or performing application-oriented tasks in case
of being active.

Therefore a duty-cycling algorithm has basically two func-
tionalities: It can be enabled and disabled, and a callback can

be (un)registered to indicate changes in activity. The concept
looks as follows:

1 concept DutyCycling{
2 enum DutyCyclingActivity {
3 DC ACTIVE, DC INACTIVE
4 };
5 void enable(void );
6 void disable (void );
7 template<classCallee, void (Callee ::* TMethod)(int )>
8 int reg changedcallback ( Callee* obj pnt )
9 void unregrecv callback (int );

10 };

With the aid of this generic concept, it is possible to cover
a broad range of duty-cycling algorithms. As long as the
algorithm is disabled, it does not consume any energy, hence
the sensor node is not allowed to use the radio or to do
any calculations. After being enabled, it calls each registered
callback method whenever the activity state changes.

The exact behavior of a potential duty-cycling model is
not mandatory. It can be asynchroneous or synchronized,
it may rely on exact time-synchronization or do not have
any requiremnts. The important aspect is that the method
signatures from the concept are implemented, so that it can
be passed to other algorithms as a template parameter.

III. PROPOSEDDUTY-CYCLING MODEL

As mentioned before, in [17], [16], [15] some of the
authors of this paper have introduced a swarm intelligence
technique with a potential application for self-synchronized
duty-cycling in (mobile) wireless sensor networks with en-
ergy harvesting capabilities. In the following we outline
the protocol for the integration of duty-cycling with user
applications that we designed on the basis of this work. This
protocol was implemented as aduty-cyling modelin Wiselib.
The current version of the protocol assumes that there is a
time synchronization algorithm executed by a lower layer
of the network. The protocol works in periods. Each period
has a length of∆ time units (say, seconds). Each period is
divided in two phases: the first phase is dedicated to actions
concerning the management of duty-cycling, whereas the
second phase is dedicated to application-specific tasks that
sensor nodes must perform (see Figure 3). The first phase of
each period is very short. In this phase all nodes may receive
transmissions from neighboring nodes and themselves they
execute one duty-cycling event. The outcome of the first
phase decides if a node will beactiveor inactivefor the rest
of the corresponding period. In case of being active a node
is available for user-defined applications (environmentaldata
monitoring, tracking, etc). However, if th state of a sensor
node is set to inactive the node will turn off the radio and
will sleep until the start of the following period.

In the following we focus on the description of the duty-
cycling algorithm executed in the first phase of each period.
This algorithm consists in a so-calledduty-cyling eventthat
is executed by each sensor nodei exactly once. The time
of executing this event is, at the moment, randomly chosen
by each sensor node within the first phase of each period.
Each sensor nodei maintains a state variableSi . The value of
this state variable is initially set toSact, which is a parameter
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Fig. 3. Division of time between the duty-cycling mechanism and user applications. The protocol works in a sequence of time periods of length∆. In
each period, the first phase is dedicated to duty-cycling (DC), and the second phase to the user application.

of the mechanism. Moreover,ai is a binary variable whose
value determines if the sensor node isactive or inactive in
phase of two of the corresponding period. More specifically,
if ai = 1 sensor nodei is active, and inactive otherwise. The
value of the variableai is determined as follows:

ai := Φ(Si −θact) , (1)

whereθact is the so-called activation threshold, andΦ(x) =
1 if x ≥ 0, and Φ(x) = 0 otherwise. Note that an inactive
sensor node can return to the active state either due to local
interactions (as explained below in Eq. 2) or spontaneously
with a probability pa and an activity levelSa.

In addition, each sensor node maintains a queueQi for
incoming duty-cycling messages from neighboring sensor
nodes. Each messagem∈ Qi contains a single valuemactivity,
which contains the activitySj of the sensor nodej that
has sent the message. When sensor nodei executes its
duty-cycling event, the value of state variableSi is updated
depending on the messages inQi . Subsequently sensor nodei
sends a duty-cycling message, containing the new value ofSi ,
using a certain transmission power level. Note that the choice
of the transmission power level is a crucial compoment for
the working of our duty-cycling technique. More specifically,
the value of state variableSi of a sensor nodei is computed
as follows:

Si := tanh

[

g·

(

Si + ∑
m∈Qi

mactivity

)]

, (2)

where g is a gain parameter whose value determines how
fast the value of variableSi diminishes. After this update, all
messages are deleted fromQi , that isQi := /0. Note that with
this update the valueSi of an inactive sensor may increase
sufficiently enough in order to be greater than the activity
thresholdSact.

The remaining issue is the choice of the power level for the
transmission of the duty-cycling messages. Here we assume a
standard antenna model which allows sensor nodes—for each
transmission—to choose from a finite setP = {P1, . . . ,Pn}
of different transmission power levels.1 More specifically, the
choice of a sensor nodei depends on its battery level, which
is denoted bybi ∈ [0,1]. Hereby,bi = 1 corresponds to a full
battery. In the following we first outline the determinationof
a so-calledideal transmission power level, which then leads
to the choice of the real transmission power level. The ideal
transmission power level (pi) of a sensori depends on the
current battery level in the following way:

pi := pmin · (1−bi(t))+ pmax·bi(t) (3)

1Popular sensor hardware such as iSense nodes or SunSPOTs are
equipped with such antennas.

where pmin, respectivelypmax, are parameters that fix the
minimum, respectively maximum, transmission power levels.
Only when batteries are fully charged the ideal transmission
power level may reachpmax. The ideal transmission power
level is then translated into thereal transmission power level
(Ti) as follows:

Ti := Pk ∈P such thatpi ∈

(

Pk−
Pk−Pk−1

2
,Pk−

Pk+1 +Pk

2

]

(4)
At this point it is important to realize that the transmission
power level Ti is used only for sending the duty-cycling
message. For other messages during the second phase of
each period, the user application is responsible for choosing
transmission power levels. The duty-cycling event described
above is summarized in Algorithm 1.

Algorithm 1 Duty-cycling event of a sensor nodei
1: Calculateai (see Eq. 1)
2: if ai = 0 then
3: Draw a random numberp∈ [0,1]
4: if p≤ pa then Si := Sa andai := 1 endif
5: end if
6: Determine transmission power levelTi (see Eq. 4)
7: Compute new value for state variableSi (see Eq. 2)
8: Send duty cycling messagem with mactivity := Si with

transmission power levelTi

As mentioned above, the battery level of the sensor nodes
is responsible for their choice of a transmission power level
for sending the duty-cycling message. Therefore, the battery
level of course affects the communication topology in the
context of the duty-cycling mechanism. As an example,
consider a network of 120 nodes randomly located with static
positions in a region of one square kilometer. Suppose that
the minimum transmission power levelP1 reaches a distance
of 100 m and the maximum transmission power level reaches
a distance of 200 m. In Figure 4(c) we show the commu-
nication topologies that result from fully charged batteries.
Over time nodes will consume energy and, especially during
night, battery levels will start to decrease. This decrease
in the amount of available energy causes changes in the
communication topology due to the effect of Equation 3.
The topology obtained with the same node locations as in
the previous example but with batteries filled just to half of
their maximum capacity is shown in Figure 4(b). Finally,
Figure 4(a) shows the induced topology when batteries are
nearly empty.
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(a) Edges in gray show the communication
topology when the transmission power levels
are such that distances of up to 100 m are
reached.
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(b) Edges in black are the edges that were
shown in gray in (a). Edges in gray show the
new communication links obtained when the
transmission power level is increased such that
distances of up to 150 m are reached.
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(c) Edges in black are all edges from (b).
Edges in gray show the new communication
links obtained when the transmission power
level is increased such that distances of up to
200 m are reached.

Fig. 4. Different communication topologies in a network with 120 randomly located nodes when different transmission power levels are considered.

IV. EXPERIMENTAL EVALUATION

In the following we first describe the experimental setup
and the experimentation environment before we present
the obtained results. The implementation of the presented
protocol in the Wiselib provides us with options of executing
it on real testbeds but also to perform simulations with
sensor network simulators. In the context of this paper we
decided for the second option. More specifically we used the
sensor network simulator Shawn [22], which is a discrete
event simulator with a very high level of parametrization.
In particular, it is designed to execute algorithms from the
Wiselib. The user can easily run experiments simulating the
behavior of different sensor nodes and also add own sensor
node specifications. A peculiarity of Shawn is the fact that
packet collisions are not explicitly considered. Instead Shawn
simulates these collisions and the consequent packet loss
under different constraints and in different scenarios.

We decided to experiment withiSensesensor node hard-
ware from Coalesenses GmbH [8]. For this purpose we added
the specification ofiSensenodes to Shawn. These sensor
nodes use a Jennic JN5139 chip, a solution that combines
the controller and the wireless communication transceiverin
a single chip. The controller has a 32-bit RISC architecture
and runs at 16Mhz. It is equipped with 96kb of RAM and
128kb of serial flash. The maximum transmission power level
of iSense nodes reaches a distance of about 500m in all
directions in open air conditions. The most important reason
for choosing iSense nodes is the fact that they are being
used by two of the currently largest European projects on
sensor networks: WISEBED [7], [28] and FRONTS [13]. In
our simulations, iSense nodes are equipped with solar panels
from Coalesenses GmbH. According to their documentation,
iSense nodes require 0.025mA to work without using any
additional peripheral such as the radio or the sensing devices.
The state in which the radio is also turned on requires a
power supply of 12.8mA. Additionally, to receive or send
a message with 4 bytes of information, as required by

TABLE I

DESCRIPTION OF THE POWER DEVICES AND PARAMETERS FOR THE

ENERGY MODEL.

Data Device specifications
Tx/Rx (4 bytes) 7.43µC

Radio On 12.8mA
Radio Off 0.025mA

Battery capacity 2600µC
Energy harvesting (f) 1.6W

Max. Tx Power 500m

duty-cycling messages, implies a consumption of 7.43µC.
The batteries have a maximum capacity of 2600µC. Energy
harvesting by solar panels can reach a maximum nominal
value of 1.6W. This information is summarized in Table I.
Finally, let us mention that iSense nodes offer 6 possible
transmission power levels, in addition to the state in which
the radio is turned off. The five transmission power levels
other than the maximum one are obtained by reducing the
maximum transmission power level by16, 2

6, 3
6, 4

6, and 5
6.

One of the aspects that has not been described so far is
the simulation of the light source for energy harvesting. This
was done as follows. The light source at timez > 0 has
an intensity ofs(z) ∈ [0,1]. Hereby, s(z) = 0 corresponds
to absolute darkness. In [17] we described a model for the
evolution of the sun light intensities, that is, for the evolution
of s(z) over time. Here we consider exactly the same model.
Additionally, we assume a variable cloud densityc(z)∈ [0,1].
Depending on the technical characteristics of the solar panels
used, sensor nodes can transform a fractionf of the available
light intensity into energy:

eharv
i ((t −∆, t]) := f ·

Z t

t−∆
s(z) · (1−c(z)) (5)

In the experiments presented in this article we do not
consider any specific user application, that is, the energy
consumption of phase two of the proposed protocol must
be simulated. This is done by removing an amount ofeapp



TABLE II

PARAMETER SETTINGS FOR THE SIMULATION OF DUTY-CYCLING.

pmin pmax g pa eapp f
0.07 0.14 0.1 0.001 0.001 0.0027

of energy from the battery for each execution of phase
two. Finally, Table II presents all parameter values that we
choose for the simulations. It is important to note that the
information which refers to the power profile of the iSense
nodes is obtained by properly rescaling the values from
Table I to the [0,1] range that is used by the description
of duty-cycling given in Section III.

A. Experiments

Assuming that∆—that is, the length of one period—
corresponds to 60 seconds, the simulations that we conducted
span 30 days (each day consists of 1440 periods). The first
phase of each perido, which is reserved for the duty-cycling
events, was given 0.05 seconds. Information about the state
of the sensor nodes (active versus inactive) is collected atthe
start of each period. The most important measure taken is the
mean activityof the sensor network, which is measured—at
any time—as follows:

A :=
1
k

k

∑
i=1

ai ∈ [0,1] (6)

Note that, the greaterA the more sensors are active at the spe-
cific time at whichA was determined. Self-synchronization
behavior is characterized by an oscillating value ofA over
time. This was shown already for a mobile sensor network
with k = 120 sensor nodes in Figure 1 of the introduction
(see solid line). However, the results from this figure were
obtained in aperfect environmentwith no collisions or
transmission failures and no propagation times. Moreover,
the energy model that was used had no relation to real sensor
node hardware.

The experiments that we present in this section aim at
proving the applicability of the proposed mechanism in real
sensor networks. All experiments are done on the basis of a
static network ofk = 120 iSense nodes as simulated by the
Shawn sensor network simulator. For the first experiment
that we conducted we assumed a cero probability for packet
collisions. Moreover, we assume a cloud density of zero,
that is,c(z) = 0 for z≥ 0. Figure 5 shows the obtained duty-
cycling behavior. Again, the solid line shows the fraction
of active sensor nodes over time, whereas the slashed line
shows the average battery level of the sensor nodes over
time. Finally, the dotted line represents the sun power that
is used to establish the amount of energy which can be
harvested by the sensor nodes at each time step. The graphic
shows the behavior for one day of simulation, that is, 1440
periods. Self-synchronized duty-cycling is indicated by the
appearance of activity peaks over time. It is remarkable how
the system adapts to the available energy resources, reducing
the height of the peaks when the battery level of the nodes

TABLE III

DISTRIBUTION OF THE ENERGY CONSUMPTION IN THE DUTY-CYCLING

PROTOCOL

Task Energy (%)

Duty-cycling

Tx 0.757
Rx 18.591
Idle 0.001
Active 0.035

User application 80.616

is reduced. Note that when a lot of energy is available the
system can even prescind from switching off sensor nodes.
This can be seen by the existence of a large activity peak
of about 200 periods of length located around period 14000.
Note that for this experiment the average fraction of nodes
that are active at each period is approximately 0.6. This
measure will henceforth be called themean system activity.
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Fig. 5. Simulation results of the duty-cycling protocol obtained from a
network with 120 sensor nodes during the 11th day of simulation. The
solid line shows the fraction of active nodes in each period,the dashed line
shows the average battery level over time, and the dotted lineshows the
evolution of the sun light intensity.

In the following we present a study of how the energy of
the sensor network is spent. Table III presents the energy con-
sumed by the user application against the energy consumed
by the duty-cycling mechanism over a whole simulation of
43200 periods (that is, 30 days). The energy spent by duty-
cycling is hereby split into the ”Idle” and ”Active” states as
well as the energy spent for transmitting the duty-cycling
messages (Tx) and receiving duty-cycling messages (Rx).
Concerning duty-cycling, note that message reception is the
task which consumes most of the energy. In total, the duty-
cycling mechanism consumes approximately 20% of the total
amount of spent energy. This may seem quite high at first.
However, consider that this percentage is strongly dependent
on the value ofeapp, which we have set to a very moderate
value of 0.001. Increasing this value will obviously cause the
decrease of the percentage of energy spent by duty-cycling.

After these initial studies we will now test the duty-
cycling mechanism in two adversarial scenarios. In first
place, it is shown how the system responds to situations
with communication failures. In second place, the behavior
of the system is studied in scenarios where energy harvesting



is limited, for example, due to cloudy weather. Finally, we
present a mechanism for the automatic parameter adaptation
of the system for what concerns different network sizes. This
is an important aspect for an algorithm included in a generic
algorithm library such as Wiselib.

1) Effect of Packet Loss:With the next experiment we aim
at studying the robustness of the system with respect to com-
munication failures. The experiment consists in simulating
the duty-cycling protocol under different packet loss rates. A
packet loss rate ofploss∈ [0,1] means that the probability of
correctly transmitting any message is 1− ploss. We repeated
the initial experiment as outlined above for all packet loss
rates between 0 and 1, in steps of 0.01. The results are
shown in terms of the obtainedmean system activityfor each
considered packet loss rate in Figure 6(a). It can be observed
that the behavior of the system does not visibly change until
a packet loss rate of about 0.3. This means that the proposed
system is surprisingly robust against packet loss. Only for
packet loss rates greater than about 0.3 the system behavior
degrades.

2) Limited Energy Harvesting:Another interesting ques-
tion concerns the possible change in system behavior when
cloud densities greater than zero are considered; in other
words: when energy harvesting is limited by bad weather.
Therefore, we repeated the initial experiment for a range of
different cloud densities between 0 and 1. Figure 6(b) shows
the evolution of the obtained mean system activity when
moving from low to high cloud densities. As expected, with
increasing cloud density the mean system activity decreases.
Interestingly, the relation between cloud density and the
mean system activity is linear.

3) Adapting to Different Network Sizes:So far we have
only studied sensor networks with 120 sensor nodes. How-
ever, when changing the size of the network it is intuitively
clear that at least some parameter values must be adjusted
in order to maintain a functional system. Note that when
changing the network size, the node density changes. Hence,
it is reasonable to assume that for maintaining the shape
of the activity peaks, the choice of the transmission power
level and the probability of spontaneous activation shouldbe
adapted to the new network size. A way of obtaining the new
system parameters is described in the following. Withknew,
pa

new andtnew we refer to the new number of sensor nodes, the
probability of spontaneous activation and the transmission
power level of the new, differently sized, network. First, in
order to obtain the same wake-up rates as in the case of a
120-node network, the following rule can be applied:

pa
new := pa ·

k
knew

, (7)

wherepa andk are the parameters from the original network.
Note that this rule increases the probability of spontaneous
activation of the nodes when the network population is de-
creased, and vice-versa when the number of nodes increases.
Moreover, the average number of nodes’ spontaneous activa-
tions per time unit are maintained. Next we introduce a rule
for adapting the transmission power level. The basic idea isto

have a constant average number of sensors being reached by
a transmission. Due to the fact that the sensor nodes form
a random topology at any moment in time, the following
reasoning was used. In general, the number of nodes that
can be reached by the ideal transmission of a sensor can be
estimated as follows:

π · t ·2·
k
A

, (8)

wherek is the number of sensor nodes andA is the space
in which the sensor nodes reside. In our case it holds that
A = 12 = 1. Therefore, Eq. (8) reduces toπ · t · 2 · k. As t
is known for the case of 120-node networks, an adjusted
transmission power level can be calculated for networks of
different sizes as follows:

tnew =

√

t ·2·k
knew

, (9)

where knew is the size of the new network, andtnew is the
transmission power level for the new network. However,
remember that the transmission power level is not directly
modifiable as an algorithm parameter. The only parameters
of our algorithm for what concerns to the transmission
power level arepmin and pmax. These values are used as the
boundaries of the region for the ideal transmission power
levels. Therefore, our scaling method consists in using Eq.9
for obtaining pnew

min and pnew
max, which delimit the value of the

ideal transmission power level of the new network.
With this method for scalingpa, pmin and pmax we

have repeated the initial experiment for a range of different
network sizesk∈ [0,300]. The graphic in Figure 6(c) shows
the evolution of the resulting mean system activity. Ideally
we would have expected a more or less straight line of height
about 0.6. This would have meant that the introduced param-
eter scaling method leads to a system that behaves equally
for all network sizes. However, as can be seen, the scaling
method works for networks with more than 100 nodes. For
smaller networks, the system behaviour is changing in the
sense that the mean system activity decreases. However,
this can be explained by the decreasing connectivity and
communication ability when the network size decreases.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a protocol for self-
synchronized duty-cycling in wirless sensor networks with
energy harvesting capabilities. The proposed duty-cycling
technique was inspired by the working of real ant colonies.
The protocol has been implemented in Wiselib, a library
of generic algorithms for sensor networks, and experiments
have been performed with the network simulator Shawn
simulating iSense hardware. The obtained results show that
the proposed duty-cycling mechanism is able to adapt to
chaning energy conditions. Moreover, the technique is very
robuts for what concerns packet loss and changing weather
conditions. In the future we plan to combine this protocol
with user applications such as monitoring or tracking.
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(a) Results for different packet loss rates.
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(c) Results for different network sizes.

Fig. 6. Behavior of the duty-cycling mechanism under varyingconditions
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