72,965 research outputs found

    Pruning, Pushdown Exception-Flow Analysis

    Full text link
    Statically reasoning in the presence of exceptions and about the effects of exceptions is challenging: exception-flows are mutually determined by traditional control-flow and points-to analyses. We tackle the challenge of analyzing exception-flows from two angles. First, from the angle of pruning control-flows (both normal and exceptional), we derive a pushdown framework for an object-oriented language with full-featured exceptions. Unlike traditional analyses, it allows precise matching of throwers to catchers. Second, from the angle of pruning points-to information, we generalize abstract garbage collection to object-oriented programs and enhance it with liveness analysis. We then seamlessly weave the techniques into enhanced reachability computation, yielding highly precise exception-flow analysis, without becoming intractable, even for large applications. We evaluate our pruned, pushdown exception-flow analysis, comparing it with an established analysis on large scale standard Java benchmarks. The results show that our analysis significantly improves analysis precision over traditional analysis within a reasonable analysis time.Comment: 14th IEEE International Working Conference on Source Code Analysis and Manipulatio

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Distributed aspect-oriented service composition for business compliance governance with public service processes

    Get PDF
    Service-Oriented Architecture (SOA) offers a technical foundation for Enterprise Application Integration and business collaboration through service-based business components. With increasing process outsourcing and cloud computing, enterprises need process-level integration and collaboration (process-oriented) to quickly launch new business processes for new customers and products. However, business processes that cross organisationsā€™ compliance regulation boundaries are still unaddressed. We introduce a distributed aspect-oriented service composition approach, which enables multiple process clients hot-plugging their business compliance models (business rules, fault handling policy, and execution monitor) to BPEL business processes

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ā€˜first-orderā€™) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ā€˜second-orderā€™) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694
    • ā€¦
    corecore