3,402 research outputs found

    Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum

    Full text link
    This manuscript explores the apparent discrepancy between experimental data and theoretical calculations of the lattice resistance of bcc tantalum. We present the first results for the temperature dependence of the Peierls stress in this system and the first ab initio calculation of the zero-temperature Peierls stress to employ periodic boundary conditions, which are those best suited to the study of metallic systems at the electron-structure level. Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero-temperature. Although we do find that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, the amount of the underestimation which we observe is only 10-20%, leaving open the possibility that mechanisms other than the simple Peierls stress are important in controlling the process of low temperature slip.Comment: 12 pages and 9 figure

    Plasticity in current-driven vortex lattices

    Full text link
    We present a theoretical analysis of recent experiments on current-driven vortex dynamics in the Corbino disk geometry. This geometry introduces controlled spatial gradients in the driving force and allows the study of the onset of plasticity and tearing in clean vortex lattices. We describe plastic slip in terms of the stress-driven unbinding of dislocation pairs, which in turn contribute to the relaxation of the shear, yielding a nonlinear response. The steady state density of free dislocations induced by the applied stress is calculated as a function of the applied current and temperature. A criterion for the onset of plasticity at a radial location rr in the disk yields a temperature-dependent critical current that is in qualitative agreement with experiments.Comment: 11 pages, 4 figure

    On the mass transport by a Burgers velocity field

    Full text link
    The mass transport by a Burgers velocity field is investigated in the framework of the theory of stochastic processes. Much attention is devoted to the limit of vanishing viscosity (inviscid limit) describing the "adhesion model" for the early stage of the evolution of the Universe. In particular the mathematical foundations for the ansatz currently used in the literature to compute the mass distribution in the inviscid limit are provided.Comment: 14 pages, Latex, revised version submitted to Physica
    • …
    corecore