96,264 research outputs found

    Designinig Coordination among Human and Software Agents

    Get PDF
    The goal of this paper is to propose a new methodology for designing coordination between human angents and software agents and, ultimately, among software agents. The methodology is based on two key ideas. The first is that coordination should be designed in steps, according to a precise software engineering methodology, and starting from the specification of early requirements. The second is that coordination should be modeled as dependency between actors. Two actors may depend on one another because they want to achieve goals, acquire resources or execute a plan. The methodology used is based on Tropos, an agent oriented software engineering methodology presented in earlier papers. The methodology is presented with the help of a case study

    Financial contagion: Evolutionary optimisation of a multinational agent-based model

    Get PDF
    Over the past two decades, financial market crises with similar features have occurred in different regions of the world. Unstable cross-market linkages during a crisis are referred to as financial contagion. We simulate crisis transmission in the context of a model of market participants adopting various strategies; this allows testing for financial contagion under alternative scenarios. Using a minority game approach, we develop an agent-based multinational model and investigate the reasons for contagion. Although the phenomenon has been extensively investigated in the financial literature, it has not been studied through computational intelligence techniques. Our simulations shed light on parameter values and characteristics which can be exploited to detect contagion at an earlier stage, hence recognising financial crises with the potential to destabilise cross-market linkages. In the real world, such information would be extremely valuable in developing appropriate risk management strategies

    Impact of information cost and switching of trading strategies in an artificial stock market

    Full text link
    This paper studies the switching of trading strategies and its effect on the market volatility in a continuous double auction market. We describe the behavior when some uninformed agents, who we call switchers, decide whether or not to pay for information before they trade. By paying for the information they behave as informed traders. First we verify that our model is able to reproduce some of the stylized facts in real financial markets. Next we consider the relationship between switching and the market volatility under different structures of investors. We find that there exists a positive relationship between the market volatility and the percentage of switchers. We therefore conclude that the switchers are a destabilizing factor in the market. However, for a given fixed percentage of switchers, the proportion of switchers that decide to buy information at a given moment of time is negatively related to the current market volatility. In other words, if more agents pay for information to know the fundamental value at some time, the market volatility will be lower. This is because the market price is closer to the fundamental value due to information diffusion between switchers.Comment: 15 pages, 9 figures, Physica A, 201

    Protocol Requirements for Self-organizing Artifacts: Towards an Ambient Intelligence

    Full text link
    We discuss which properties common-use artifacts should have to collaborate without human intervention. We conceive how devices, such as mobile phones, PDAs, and home appliances, could be seamlessly integrated to provide an "ambient intelligence" that responds to the user's desires without requiring explicit programming or commands. While the hardware and software technology to build such systems already exists, as yet there is no standard protocol that can learn new meanings. We propose the first steps in the development of such a protocol, which would need to be adaptive, extensible, and open to the community, while promoting self-organization. We argue that devices, interacting through "game-like" moves, can learn to agree about how to communicate, with whom to cooperate, and how to delegate and coordinate specialized tasks. Thus, they may evolve a distributed cognition or collective intelligence capable of tackling complex tasks.Comment: To be presented at 5th International Conference on Complex System
    • 

    corecore