25,172 research outputs found

    The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification

    Get PDF
    Artificial Intelligence (AI) has been among the most emerging research and industrial application fields, especially in the healthcare domain, but operated as a black-box model with a limited understanding of its inner working over the past decades. AI algorithms are, in large part, built on weights calculated as a result of large matrix multiplications. It is typically hard to interpret and debug the computationally intensive processes. Explainable Artificial Intelligence (XAI) aims to solve black-box and hard-to-debug approaches through the use of various techniques and tools. In this study, XAI techniques are applied to chronic wound classification. The proposed model classifies chronic wounds through the use of transfer learning and fully connected layers. Classified chronic wound images serve as input to the XAI model for an explanation. Interpretable results can help shed new perspectives to clinicians during the diagnostic phase. The proposed method successfully provides chronic wound classification and its associated explanation to extract additional knowledge that can also be interpreted by non-data-science experts, such as medical scientists and physicians. This hybrid approach is shown to aid with the interpretation and understanding of AI decision-making processes

    Artificial Intelligence-Powered Chronic Wound Management System: Towards Human Digital Twins

    Get PDF
    Artificial Intelligence (AI) has witnessed increased application and widespread adoption over the past decade. AI applications to medical images have the potential to assist caregivers in deciding on a proper chronic wound treatment plan by helping them to understand wound and tissue classification and border segmentation, as well as visual image synthesis. This dissertation explores chronic wound management using AI methods, such as Generative Adversarial Networks (GAN) and Explainable AI (XAI) techniques. The wound images are collected, grouped, and processed. One primary objective of this research is to develop a series of AI models, not only to present the potential of AI in wound management but also to develop the building blocks of human digital twins. First of all, motivations, contributions, and the dissertation outline are summarized to introduce the aim and scope of the dissertation. The first contribution of this study is to build a chronic wound classification and its explanation utilizing XAI. This model also benefits from a transfer learning methodology to improve performance. Then a novel model is developed that achieves wound border segmentation and tissue classification tasks simultaneously. A Deep Learning (DL) architecture, i.e., the GAN, is proposed to realize these tasks. Another novel model is developed for creating lifelike wounds. The output of the previously proposed model is used as an input for this model, which generates new chronic wound images. Any tissue distribution could be converted to lifelike wounds, preserving the shape of the original wound. The aforementioned research is extended to build a digital twin for chronic wound management. Chronic wounds, enabling technologies for wound care digital twins, are examined, and a general framework for chronic wound management using the digital twin concept is investigated. The last contribution of this dissertation includes a chronic wound healing prediction model using DL techniques. It utilizes the previously developed AI models to build a chronic wound management framework using the digital twin concept. Lastly, the overall conclusions are drawn. Future challenges and further developments in chronic wound management are discussed by utilizing emerging technologies

    Improving Nurses Wound Care Knowledge Utilizing an App

    Get PDF
    Practice Problem: Nurses needed additional wound care support, but formal training was not in the budget at this time. Nurses needed a quick reference guide to help them assess, document, and treat wounds correctly until the hospital could provide adequate training. PICOT: The PICOT question that guided this project is; “When treating wound care patients within a hospital setting (P), how does the implementation of a wound software app. (I) as compared to pre-existing nursing knowledge (C) increase a nurse’s self-reported ability to accurately assess and treat wounds (O) during a 10-week period? (T)” Evidence: Based on a thorough and rigorous review of the synthesized recommendations currently available, a wound software app has the capability of helping the nurses in the hospital who self-identified as having limited wound knowledge. The strength of the body of evidence is extensive, as evidenced by the quality, quantity, and consistency of the studies. Intervention: The intervention used an educational software phone application (app) to assist nurses in referencing information pertaining to wounds. The nurses self-reported their confidence level via a baseline survey and then this data will be compared to a post survey that analyzed their confidence level after utilizing the wound software app. during a 10-week period pre and post-intervention. Outcome: All participants (100%) indicated that they (a) felt comfortable using a wound app on phones or tablets, (b) would like to learn and participate in a training on a wound phone or tablet app, and (c) were interested in using a wound phone or tablet app for wound assessment, documentation, and treatment options. The two-tailed Wilcoxon signed rank test showed significant results based on an alpha value of .05, V = 0.00, z = -2.23, p = .026. Conclusion: In an organization where staff nurses are having difficulty merely understanding the basics of wounds, being able to have a reference guide can prove to be beneficial. Hospital administrators may save on wound related cost

    Integrated Image and Location Analysis for Wound Classification: A Deep Learning Approach

    Full text link
    The global burden of acute and chronic wounds presents a compelling case for enhancing wound classification methods, a vital step in diagnosing and determining optimal treatments. Recognizing this need, we introduce an innovative multi-modal network based on a deep convolutional neural network for categorizing wounds into four categories: diabetic, pressure, surgical, and venous ulcers. Our multi-modal network uses wound images and their corresponding body locations for more precise classification. A unique aspect of our methodology is incorporating a body map system that facilitates accurate wound location tagging, improving upon traditional wound image classification techniques. A distinctive feature of our approach is the integration of models such as VGG16, ResNet152, and EfficientNet within a novel architecture. This architecture includes elements like spatial and channel-wise Squeeze-and-Excitation modules, Axial Attention, and an Adaptive Gated Multi-Layer Perceptron, providing a robust foundation for classification. Our multi-modal network was trained and evaluated on two distinct datasets comprising relevant images and corresponding location information. Notably, our proposed network outperformed traditional methods, reaching an accuracy range of 74.79% to 100% for Region of Interest (ROI) without location classifications, 73.98% to 100% for ROI with location classifications, and 78.10% to 100% for whole image classifications. This marks a significant enhancement over previously reported performance metrics in the literature. Our results indicate the potential of our multi-modal network as an effective decision-support tool for wound image classification, paving the way for its application in various clinical contexts

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex
    corecore