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Abstract of Dissertation

Artificial Intelligence-Powered Chronic Wound Management System: Towards

Human Digital Twins

Artificial Intelligence (AI) has witnessed increased application and widespread

adoption over the past decade. AI applications to medical images have the potential

to assist caregivers in deciding on a proper chronic wound treatment plan by helping

them to understand wound and tissue classification and border segmentation, as well

as visual image synthesis.

This dissertation explores chronic wound management using AI methods, such as

Generative Adversarial Networks (GAN) and Explainable AI (XAI) techniques. The

wound images are collected, grouped, and processed. One primary objective of this

research is to develop a series of AI models, not only to present the potential of AI in

wound management but also to develop the building blocks of human digital twins.

First of all, motivations, contributions, and the dissertation outline are summa-

rized to introduce the aim and scope of the dissertation. The first contribution of

this study is to build a chronic wound classification and its explanation utilizing XAI.

This model also benefits from a transfer learning methodology to improve perfor-

mance. Then a novel model is developed that achieves wound border segmentation

and tissue classification tasks simultaneously. A Deep Learning (DL) architecture,

i.e., the GAN, is proposed to realize these tasks. Another novel model is developed

for creating lifelike wounds. The output of the previously proposed model is used

as an input for this model, which generates new chronic wound images. Any tissue

distribution could be converted to lifelike wounds, preserving the shape of the original

wound.

The aforementioned research is extended to build a digital twin for chronic wound

management. Chronic wounds, enabling technologies for wound care digital twins,
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are examined, and a general framework for chronic wound management using the dig-

ital twin concept is investigated. The last contribution of this dissertation includes

a chronic wound healing prediction model using DL techniques. It utilizes the previ-

ously developed AI models to build a chronic wound management framework using

the digital twin concept. Lastly, the overall conclusions are drawn. Future challenges

and further developments in chronic wound management are discussed by utilizing

emerging technologies.
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1 Introduction

After alternating between periods of great passion and setback [1], Artificial In-

telligence (AI) has found its place as a critical component of growth in a variety

of applications [2]. These applications range from diagnostic decision assistants in

healthcare to safety-critical systems in autonomous vehicles and to long-term finan-

cial investment planning. These applications benefit from AI breakthroughs to solve

complex problems [3].

Recent advancements in AI and its applications in computer vision have paved

the way for systems with more human-like performance. AI applications can now

detect malicious cancer cells from medical images and can diagnose diseases exceeding

radiologists’ performance. One of the promising visual applications of AI is wound

management in healthcare.

Wounds or injuries form as a result of disruptions in the normal architecture of any

body tissue, especially on the skin [4]. Wounds could be classified into two groups:

(1) acute wounds, which follow an orderly healing process, and (2) chronic wounds

that do not progress in an orderly manner. Wound management could be defined as

organizing a comprehensive care plan for a wound by reviewing all the factors that

affect its development and healing. One of the recent studies indicates that mortality

rates of chronic wounds are also on par with cancer for some patients [5]. That is

why proper and continuous care is critical for hard-to-heal or non-healing wounds.

The Use of AI will enhance chronic wound management in many ways. AI-powered

wound management could be beneficial for identifying the chronic wound, classifying

both the wound and the tissue type, segmenting the wound and its tissues, creating

chronic wound images using its segmentation, and predicting the healing process of the

wound [6, 7, 8, 9, 10, 11]. From wound classification to the wound healing process, AI

is perceived as an invaluable asset in the improvement of wound management. With

the use of emerging technologies such as AI and cloud computing, wound management
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could be tracked dynamically by extending research to the digital twin concept.

1.1 Motivation

Chronic wound healing is a highly complex and dedicated process that requires

constant and planned care [12]. Whereas an acute wound follows sequential healing

progress with anatomic and functional restoration in a timely manner, chronic wounds

lack routine restoration due to various physiological impairments [13]. Without proper

attention and care, chronic wound treatment becomes a heavy burden that costs

over US$25 billion yearly in the US only [14]. Furthermore, a single diabetic ulcer

treatment case could reach nearly US$50,000 [15]. Even spending on wound care

products outstretches to the US$30 billion per year [16]. Wound care gets the highest

share among any other skin diseases [17].

Chronic wounds are snowballing with an increasing rate among the elderly and

people with diabetes, foot ulcers, and pressure ulcers [13]. Therefore, wound healing

draws enormous attention where actual healing progress is tracked with a simple

visual inspection [18, 19]. Continuous development in healthcare methods opens new

opportunities with the broad acceptance of AI.

The importance of developing a healthcare technique using AI has long been in-

vestigated, both by academia and the industry [20, 21]. However, numerous attempts

are still being plagued by privacy concerns and cost overruns. Specifically, patient

privacy prevents the collection of a large dataset to train AI models. Without an

extensive collection of data in wound care (e.g., thousands of structured wound im-

ages), an AI model cannot be trained well enough to be used in healthcare due to

the high risks associated with the health of the patient. A literature review shows

that past studies have primarily been focused on the classification of a particular type

of chronic wound, such as diabetic or pressure injury wounds [22]. Limited progress

has been made in identifying, classifying, and segmenting various wounds and their

2



tissues in a comprehensive manner. Prediction of chronic wound healing has not been

studied extensively. Overall, the following challenges exist for precise and complete

wound care.

First of all, wound management systems are still lagging technologically, and most

caregivers depend only on imprecise optical assessment [23], which can cause many

complications like infection risks and inaccurate measurements which, in turn, cause

wrong assessment of the wound [24]. In addition to this complexity, nearly 7 million

people in the US have received needed care for chronic wounds [14, 25]. A human-

centered approach and its high cost complicate the healing of the wound in time.

However, this labor-centric financial burden could be reduced with advanced AI-

assisted computer vision models.

Secondly, every chronic wound is unique and has its own characteristics and sets of

properties that affect its healing process. As a result, the healing process of a chronic

wound is subject to numerous constraints that limit the track of the healing progress,

which invariably poses a significant negative impact on chronic wound management.

Moreover, without proper practice and experience, the care for the wound takes a

long time, which further increases both the financial burden and patient discomfort.

Therefore, building an AI-assisted model for chronic wound care is a fundamental

and critical task in AI research in healthcare.

Thirdly, it is challenging to predict the healing progress without the involvement

of an experienced practitioner [26, 27]. The determination of the right chronic wound

treatment plan plays a crucial role in a systematic healing process. A number of

parameters should be considered for an accurate prediction, whereas today’s wound

healing prediction is only done by optical assessments. Forecasting using a multi-

parameter has been a major challenge to the AI research community. However, AI-

based models such as computer vision could enhance continuous and accurate wound

healing monitoring at a lower cost.

3



In addition, the education and training of clinicians are still done by manual opti-

cal assessments. The labor-intensive nature of the training takes a long time, as well.

Since the amount of available data is so scarce due to both privacy concerns and col-

lection difficulty, additional generative models such as GANs [28], and autoencoders

[29] could be used to tackle this problem.

Moreover, a data-driven model could be built using emerging technologies. The

digital twin concept has a promising potential to overcome many of the challenges in

chronic wound management. It will allow continuous track of chronic wound develop-

ment and foresee the healing status of the wound in near real-time. Health concerns

could be detected beforehand so that required medical intervention could be provided

promptly.

1.2 Contributions

The goal of this research is to develop a formalized chronic wound management

system using AI. As defined previously, wound management consists of a series of chal-

lenging processes, including identifying the chronic wound, classifying and segmenting

the wound and tissue type, creating chronic wound images using this segmentation,

and predicting the healing process of the wound as well. The objective of this study

is to provide a comprehensive review of the literature and to develop state-of-the-art

techniques for chronic wound management. This research is also extended to digital

twin use in wound management. In order to address the above-mentioned challenges

in chronic wound management using AI, in this dissertation, we conduct studies on

designing new network architectures utilizing state-of-the-art ML techniques such as

GAN, transfer learning, and Explainable AI (XAI) methods by hyperparameter op-

timization and crafting learning objectives and metrics.

The work presented in this study has been published in three journals and has

been submitted to a journal and a book chapter. The first journal paper includes
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a study on chronic wound classification using XAI techniques [30]. Another journal

paper proposes a hybrid approach for the identification of wound borders and the

classification of wound tissues [31]. The research about the creation of wound images

from tissue combinations appeared in the last published journal paper [32]. Research

about the digital twin in chronic wound management and its enabling technologies

is accepted as a book chapter and will be published in 2022 [33]. Proposed digital

twin framework and wound healing prediction research have also been submitted to

a journal, currently under review [34].

Contributions made in this study are summarized as follows:

(i) A new chronic wound classifier is built using transfer learning methodology and

XAI techniques to support caregivers. Previous works in wound classification

are restricted to a single wound type and do not utilize any explanation. The

proposed model classifies chronic wounds through transfer learning and fully

connected layers. Classified chronic wound images serve as input to the XAI

model for an explanation. Interpretable results can help shed new perspectives

for clinicians during the diagnostic phase. The proposed method successfully

provides chronic wound classification and its associated explanation to extract

additional knowledge that can also be interpreted by non-data-science experts

such as medical scientists and physicians. This hybrid approach is shown to aid

in interpreting and understanding the AI decision-making processes.

(ii) A novel GAN model of medical image synthesis is built to assist caregivers in

deciding on a proper chronic wound treatment plan by helping them visually

understand the border segmentation and the wound tissue classification. This

study proposes a hybrid wound border segmentation and tissue classification

method utilizing conditional GAN, which can mimic actual data without ex-

pert knowledge. We trained the network on chronic wound datasets of different

sizes. The performance of the GAN algorithm is evaluated through the Mean
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Squared Error (MSE), Dice coefficient metrics, and visual inspection of gener-

ated images. This study also analyzes the optimum number of training images

and the number of epochs using GAN for wound border segmentation and tis-

sue classification. The results show that the proposed GAN model performs

efficiently for wound border segmentation and tissue classification tasks with

2000 images at 200 epochs.

(iii) A medical image synthesis model is developed and presented, which shows great

potential in assisting clinician training. This work proposes a synthetic wound

image generation model based on GAN architecture to increase the quality of

clinical training. The proposed model is trained on chronic wound datasets of

various sizes taken from natural hospital environments. Hyperparameters such

as epoch count and dataset size for training tasks are also studied to find the

optimum training conditions. The performance of the developed model is eval-

uated through the MSE metric to determine the similarity between generated

and actual wounds. Visual inspection is performed to examine generated wound

images. The results show that the proposed synthetic wound image generation

(WG2AN) model has great potential to be used in medical training. It performs

well in producing synthetic wound images with a 1000-image training dataset

and 200 epochs of training.

(iv) The digital twin is one of the emerging technologies that promise personalized

and predictive healthcare. We have proposed the use of digital twin in wound

care management by utilizing AI models developed throughout this dissertation.

The potential of the digital twin in chronic wound management is examined.

After reviewing the concepts and approaches in wound care, several enabling

technologies such as cloud computing, AI, and advances in communication are

discussed. The digital twin in chronic wound care will shed light on the ability
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to provide both optimal treatment pathways and better interpretation of the

treatment.

(v) A data-driven wound healing prediction framework has been developed that

could effectively guide chronic wound treatment. This model will lead to im-

proved treatment outcomes by utilizing digital twins in chronic wounds proposed

in the previous chapter. Digital correspondence of the actual wounds will sim-

ulate and imitate the healing progress. The early identification of non-healing

wounds also is possible, which will help arrange and adjust chronic wound treat-

ment effectively. By building a digital twin in healthcare, tailored treatments

will play an essential role in identifying problems beforehand.

1.3 Dissertation Outline

This dissertation first reviews various types of chronic wounds and their tissues.

Based on this understanding, a classification and segmentation method is developed

to categorize the wounds and their tissues. In the second stage of this study, a wound

generation architecture is developed to map tissue segmentation to a lifelike wound

image. The third stage contains the development of a wound healing prediction model.

Finally, an overall chronic wound management system is outlined.

The remainder of this dissertation is organized as follows. First, an AI-based

chronic wound classification and its explanation using XAI are introduced in Chapter

2. Second, a border segmentation and tissue classification model using AI is pro-

posed in Chapter 3. The AI-based synthetic chronic wound generation is presented in

Chapter 4. Chronic wound management and the digital twin concept are examined

in Chapter 5. A chronic wound management framework utilizing the digital twin

concept is proposed in Chapter 6. Chapter 7 summarizes the general conclusions and

points out some future directions.
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2 AI-based Chronic Wound Classification

AI has seen increased applications and widespread adoption over the past decade

despite, at times, offering a limited understanding of its inner working. AI algorithms

are, in large part, built on weights, and these weights are calculated as a result of large

matrix multiplications. Computationally intensive processes are typically harder to

interpret. XAI aims to solve this black-box approach through the use of various

techniques and tools.

In this chapter, we present chronic wound classification. We discuss and propose

a model for wound classification and its explanation. Section 2.1 discusses wound

classification. In Section 2.2, extended discussions on transfer learning, XAI, and the

model pipeline are presented. One of our primary contributions in this area of research

is a novel explanation method. Section 2.3 introduces data collection, pre-processing,

the environment, and validation subsections of the study. Section 2.4 presents the

outputs of the implementation of transfer learning, and XAI approaches to wound

classification. Section 2.5 provides results and related discussions. Section 2.6 con-

cludes the chapter.

2.1 Introduction

AI is capable of analyzing complex data and exploiting non-intuitive approaches to

derive meaningful relationships [35]. Healthcare applications based on AI are utilized

in early detection, diagnosis, treatment, as well as outcome prediction and prognosis

evaluation [36]. The barrier that stands in the way of AI applications is sourced

from the lack of transparency and black-box nature that cannot be explained directly

[37]. The black-box nature of AI systems could be explained as follows. When an AI

model learns and gives an output, it processes the data and deciphers the processed

information immediately instead of storing the learned data as a clear digital memory

[38]. This is why an explainable and understandable glass-box approach should be
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taken to enable transparent, trustable, and re-traceable AI applications [39]. Chronic

wound management, which is one of the critical fields in healthcare, also requires XAI

models. In this chapter, AI techniques are applied to the classification of chronic

wounds, i.e., diabetic ulcers, lymphovascular, surgical, and pressure injury.

The XAI term is coined to provide transparency, and guided inference in un-

derstanding the decision-making processes of the AI system [40]. The study in [41]

provides a comprehensive review of XAI in terms of concepts, taxonomies, opportu-

nities, and challenges, as well as a discussion on adopting XAI techniques to image

processing. The study in [42] summarizes the recent developments in XAI and its con-

nection with artificial general intelligence, as well as identified trust-related problems

of AI applications. The study in [43] examines the state of AI-based FDA-approved

medical devices and algorithms. Although millions of dollars funded medical AI re-

search in 2019, only ten (10) medical devices have been approved by the FDA. The

authors in [44] present a comparative analysis of approved AI and Machine Learning

(ML) medical devices. The approved devices are being used mainly in radiology, and

a few are qualified as high-risk devices. The acceptance of AI is still low amongst

medical practitioners with various matters related to trustworthiness and reliability

[45]. Authors in [46] identified nuances, challenges, and requirements for the design

of interpretable and explainable ML models and systems in healthcare and described

how to choose the right interpretable ML algorithm. Conventional black-box AI sys-

tems are turned into glass-box systems with the help of XAI techniques which provide

data about the intermediate steps of the inference process [47, 48]. An example of this

would be a computer-aided diagnosis system that not only outputs a prediction but

also shows where it looked during the decision-making process by overlaying a heat

map on top of an X-ray image. The study in [48] presents the Grad-CAM technique

by utilizing the gradients that are taken from the convolution layer to generate a high-

lighted localization map. Grad-CAM benefits the convolutions, whereas our proposed
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method calculates the most effective features by tweaking the input and perceiving

its effect on classification. Authors in [49] presented classification tasks using Lo-

cal Interpretable Model-Agnostic Explanations (LIME) to explain predictions of DL

models, to be able to make these complex models partly understandable.

In [50], the authors proposed a classification technique where they combined the

Genetic Algorithm (GA) and Adaptive Neural Fuzzy Inference System (ANFIS) to

predict heart attack through XAI at satisfactory rates. Authors in [51] developed

an assisted and incremental medical diagnosis system using XAI, which allows the

interaction between the physician (i.e., human agent) and the AI agent. Authors in

[52] investigated the problem of explainability in AI in the medical domain where

wrong system decisions can be very harmful and proposed two approaches to explain

predictions of DL models, (i) computes sensitivity of the prediction with respect to

changes in input, and (ii) decomposes decision in terms of the input variables. Authors

in [53] investigated how to increase the trust in computer vision through XAI and

how to implement XAI to better understand AI in a critical area such as disease

detection. This chapter presents a highly transparent XAI tool for the classification

of chronic wounds, i.e., diabetic ulcer, lymphovascular, surgical, and pressure injury.

The objectives of the study are:

(i) Build a wound type classification model using DL and transfer learning methods.

(ii) Showcase an approach to make common AI models more transparent and ex-

plainable to understand the results and gain trust in the AI model.

(iii) Utilize readily available AI neural networks to show that more transparency

or explainability can be introduced to a variety of commonly available models,

such as transfer learning.

(iv) Apply XAI methods to convert complex black-box AI systems to more under-

standable glass box AI systems that aim to provide a look into the internal
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decision-making mechanics to give the user the ability to follow the reasoning

behind the AI models’ prediction.

(v) Provide insights into the complex decision-making processes of an AI system in

the field of healthcare applications, especially chronic wound type classification.

2.2 Methodology

This section discusses the methodology of transfer learning for the wound type clas-

sification and XAI for providing transparency to the classification task as well as the

overall model pipeline.

2.2.1 Transfer Learning

Predictions on new data utilizing data distributions and statistical properties of a

previously trained model are called transfer learning [54]. The same distribution of

the training and the testing dataset is needed for traditional ML models [55]. However,

transfer learning provides flexibility and capability of training on a smaller dataset

by transfer of learned features from an old model to the new model.

The transfer learning application comprises two steps, (i) feature extraction and

(ii) fine-tuning. The pre-trained network will extract meaningful features from new

data samples, with a final classifier added on top of the pre-trained network to do

classification tasks in the target domain. The pre-trained network masters feature

extraction tasks with Convolutional (Conv) layers. The second step is fine-tuning

through freezing and unfreezing some of the top layers from the pre-trained model

to train for higher performance jointly. ResNet [56], EfficientNet [57], and VGG16

(Very Deep Convolutional Neural Networks for Large-Scale Image Recognition) [58]

networks are a few of the successful DL models for classification tasks. In this study,

transfer learning is utilized with VGG16 architecture in order to utilize its object
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detection capabilities. Its architecture is shown in Figure 2.1, which gives the flexi-

bility and best score among other DL models. VGG16 consists of roughly 138 million

parameters and is trained over 14 million images on the ImageNet [59] database. The

network is initialized with random weights before the training [60]. The pre-trained

Conv layers of the VGG16 architecture are kept frozen, and only fully connected

output layers after Conv layers are trained in the first phase of the transfer learning,

where Conv layers’ weights are not updated. In the second phase, the Conv layers

are kept frozen, but the last Conv layer is kept unfrozen. The last Conv layer and

fully connected layers are trained together to fine-tune the model, i.e., Deep Neural

Networks (DNN). The weights of Conv layers from the VGG16 are transferred to

utilize their feature extraction skills. The training of the last Conv layer provides the

fine-tuning necessary to obtain better classification results.

Figure 2.1: VGG16 architecture.

2.2.2 Explainable AI (XAI)

AI provides tremendous benefits in various sectors, but its adoption is limited due

to the non-intuitive, opaque nature of ML models [61]. The internal working of an AI
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model is complicated and requires a solid mathematical background to understand.

This can be a significant barrier to entry [62]. There are two kinds of approaches

to explaining an AI model; (i) the comprehensible and (ii) the interpretable model.

Comprehensible models are explained with posthoc explainability approaches. Classi-

cal ML methods (e.g., regression models and decision trees) are interpretable models

as these reveal greater transparency when compared to Conv networks [63]. The

inner workings of ML models might be complicated and hard to interpret, yet their

efficiency and accuracy are higher than human performance in many cases [64]. This

improved efficiency and accuracy are the main reasons why we need to comprehend

the inner workings of ML models.

Generalized Linear Models (GLM) provide meaningful, clear, and accessible fea-

ture importance that indicates the relative importance of each feature when making a

prediction for the regression models. Outputs of regression models are a linear combi-

nation of features with different weights depending on the significance of features [65].

Tree-based models have individually meaningful features, with tabular-style datasets

used in these models. The connection of tree-based models to the training data results

in greater interpretability with local explanations in comparison to linear regression

models [66].

DL is a relatively new research field compared to classical ML models. The sheer

number of parameters and non-linear structure of DL prevents linking inputs to the

model prediction. Therefore, a post-hoc explainability approach is taken. Gradient

and attention-based methods are developed and used in the context of the image

and text-based models, respectively. The gradient-based method brings attention to

important regions in the input image in the backward pass. The attention-based

method trains attention weights, which determine how much each of the elements is

in the final output [67].

Generalized XAI methods are designed to treat any ML model as a black-box

13



with inputs and some outputs [68]. One of these methods is LIME [69]. It finds the

statistical connection between input and model prediction by training local surrogate

models on perturbed inputs instead of training them globally [70]. It provides both

an explanation of an instance by an interpretable representation as well as visual-

ization. This study provides the explainability and transparency of chronic wound

classification using transfer learning implementation with Keras and XAI methods.

2.2.3 Model Pipeline

The proposed model architecture consists of two main parts, i.e., classification and

explanation. In the first part of the process, the chronic wound images are classified

into four categories, i.e., diabetic, lymphovascular, pressure injury, and surgical. This

part of the model employs a pre-trained VGG16 network, i.e., transfer learning, which

is capable of extracting features using 13 Conv layers. These layers are already loaded

with pre-trained weights using the ImageNet dataset that is publicly available. The

last three Fully Connected (FC) layers and the softmax layer is trained with the

chronic wound dataset from the ground up to provide weights for the classification

of chronic wounds. After training the classification part of the model with these

steps, images are fed to the XAI part of the model, where the LIME XAI tool and

heatmap are utilized for the explanation. The process of classification and explanation

of chronic wound images is illustrated in Figure 2.2. The input wound image is

simply classified by the model consisting of transfer learning and DNN and then

explained with an XAI tool, i.e., LIME and heatmap, to provide transparency to the

classification.

2.3 Data Collection, Pre-processing, Environment, and Val-
idation

This section discusses data collection, data pre-processing, and the test environ-

ment. Details about the dataset are given in the data collection section. Forming
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Figure 2.2: Wound classification model with transfer learning, DNN, and XAI tool.

a ground truth for classification and the environment that the model runs on is ex-

plained in the data pre-processing and environment sections, respectively.

2.3.1 Data Collection

The chronic wound data repository, which includes diabetic, lymphovascular, pres-

sure injury, and surgical wound types, are collected from the eKare Inc. data reposi-

tory and was anonymized for patient privacy. eKare Inc. specializes in wound manage-

ment, with its services used by many hospitals and wound clinics for patient/wound

management. A total of 8690 wound images were chosen by an MD specialized in

wound care to represent the aforementioned wound types. The dataset comprises

1811 diabetic, 2934 lymphovascular, 2299 pressure injuries, and 1646 surgical wound

images. The proposed model uses wound images to predict wound etiology utilizing

transfer learning, data augmentation, and DNNs.

2.3.2 Pre-processing

The dataset was reviewed by a trained MD to ensure the correct classification of

underlying chronic wound etiology. This validated classification serves as the clinical

ground truth. Wound images are then hand-labeled for wound type classification.

The distribution of the dataset is not even, as the dataset is fine-tuned for a correct

representation of chronic wound classes. Data augmentation techniques such as mir-
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roring, rotation, and horizontal flip are used to increase dataset size and maintain

class balance. The dataset, 8690 images in total, was split into training and test sets

comprising 6520 and 2170 images, respectively. The collected data was pre-processed

to increase data quality. This includes formatting, rescaling, and normalization of the

images. Images were scaled to 224 × 224 pixels and normalized for a faster learning

process.

2.3.3 Environment

The proposed model was implemented using the Keras DL framework with Python

version 3.6. We used a workstation to run our model, which has an Intel® Core ™

i7 -8700X CPU @3.20 GHz with 32 GB memory, NVIDIA GeForce GTX 1080 GPU

with 8 GB dedicated and 16 GB shared memory. We trained the model for 1000

epochs where the model has warmed up 250 epochs with only training FC layers,

then an additional 750 epochs with the training of FC layers, and the final set of

the Conv layers. The total training of the model took around 8 hours. We used a

constant learning rate of 0.001 for the “RMSprop” optimizer for the training.

2.3.4 Validation

Validation was done using the confusion matrix shown in Table 2.1. Precision

gives the ratio of correctly classified wound types over total positive wound type

predictions. The recall is a measure of how many of the positive wounds are correctly

classified. This metric checks predictions in the eye of true labels. A high recall value

relates to the identification of more true positive and, therefore, fewer incorrectly

classified samples. Interestingly, both of these metrics could be high, yet the model

could still underperform. This is why a third metric is utilized to characterize the

model performance. F1-score is a hybrid measurement that brings together both

precision and recall for a better evaluation.

Performance measures are given in Equations 2.1 - 2.3 below.
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Table 2.1: Confusion matrix.

Prediction
y’=0 y’=1

True Label y=0 True Negative False Positive
y=1 False Negative True Positive

Precision =
TruePositive

TruePositive + FalsePositive
(2.1)

Recall =
TruePositive

TruePositive + FalseNegative
(2.2)

F1 − Score = 2 · Precision ·Recall

Precision + Recall
(2.3)

The Receiver Operating Characteristic (ROC) curve and Area Under the Curve

(AUC) are also used as performance measures and shown in Figure 2.3. Higher AUC

values indicate the classification capability of the proposed model. The X-axis of the

ROC curve is recall, and Y-axis is the false positive rate (FPR) which is given in

Equation 2.4 below.

FPR =
FalsePositive

TrueNegative + FalsePositive
(2.4)
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2.4 Implementation of Transfer Learning and XAI Approaches
on Wound Classification

The objective of this subsection is to explore and apply XAI methods to chronic

wound classification to expand knowledge about the opaque “black-box” structure of

the ML model. The test dataset comprised 25% of the data, while the remaining 75%

was used as training data. Data augmentation techniques such as mirroring, rotation,

and horizontal flip are used to avoid overfitting and to increase the dataset for better

training performance. Test data is indexed for generalization of the model and proper

comparison. Transfer learning is realized in two steps: first, a warm-up phase, and

second, a fine-tuning phase. This study, using transfer learning, provided satisfying

results according to performance metrics, which are F1-score, recall, and precision

(features extracted from the confusion matrix). Precision, recall, and F1-scores of

each wound type, and their averages, are compared in Table 2.2.

Table 2.2: Classification performance evaluation of the proposed model.

Model Precision Recall F1-Score
Diabetic 0.85 1.00 0.92

Lymphovascular 0.95 0.98 0.96
Pressure Injury 1.00 0.86 0.92

Surgical 1.00 0.91 0.95
Average 0.95 0.94 0.94

Higher precision values of lymphovascular, surgical, and pressure injury wound

types indicate the model performed very well with these wound types. In contrast,

pressure injuries were harder to diagnose (low recall score for pressure injury wounds).

This means that some pressure injury wounds are not learned or are similar to another

wound type and misclassified by the model. Lymphovascular wounds have one of the

highest recall scores among all wound types, which reveals that the proposed method

is capable of diagnosing lymphovascular wounds. The F1-score on the performance

of lymphovascular wounds is high, and pressure injury is low. Surgical wounds have
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fair precision and F1-scores but have low recall scores. Hence our model is likely to

classify a surgical wound as diabetic. The recall of diabetic wound types is pretty

high, and it has one of the lowest F1-scores, which is a result of low precision. The

ROC curve and AUC results are depicted in Figure 2.3. Lymphovascular and surgical

wounds have the highest AUC values, whereas diabetic and pressure injury suffers

from low precision (diabetic) and recall (pressure injury).

Figure 2.3: ROC curve of the wound classification.

As AI-based products provide efficiency and automation, AI has become very

popular in low-risk fields, such as agriculture, customer services, and manufacturing.

However, applications of AI remain limited in high-risk domains, such as health care,

as trust is critical in medical practice [45]. Reliability issues concerning patients and

medical practitioners, as well as regulations, hinder the adoption of AI-based systems

[43]. Understanding the rationale behind model predictions would undoubtedly help

users decide when to trust or not to trust their predictions.

A DNN using the transfer learning technique was trained using chronic wound
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images to predict the wound type. Accurate wound type designation helps a clinician

to classify the wound type, which serves to better steer the treatment approach.

Prediction of the image classification is then explained by an “explainer” that points

to visual features of the image that are the most important to the model. With this

information related to the model rationale, the clinician can decide whether to trust

the model or not. Model outputs include an understandable qualitative link between

inputs and predictions, which is an essential part of the explainability aspect [71].

The rich model feature-set is too numerous and difficult to interpret directly, yet by

facilitating a guided qualitative approach, human reasoning can be augmented with

additional model data [72]. Another significant property that a reliable explainer

should have is local faithfulness. Local faithfulness is achieved by characterizing the

response of a local function with a range of adjacent inputs [73].

In this study, the DNN model with transfer learning and extended XAI tech-

nique is used to provide explainability and transparency for wound image classifiers

by visually indicating what particular class is estimated for various model regions.

The proposed model forms a hybrid XAI framework through the use of LIME and

heatmap proposals. LIME architecture using superpixels is implemented similar to

the study in [71]. LIME provides a set of correlated and connected pixels, which are

used as input to the heatmap method. The proposed model provides a focus on the

classification task through the use of a heatmap. Medical practitioners often concep-

tualize the clinical problem based on their knowledge acquired in medical school, as

well as clinical experience. The heatmap approach is a fairly naive method of raising

focus to different image regions based on the model. The basic intuition with the

use of the heatmap is that by drawing focus to certain image regions, practitioners

will narrow their attention to regions where the heatmap data correlates with their

medical intuition. Warmer colors indicate the more critical areas of the wound in the

importance map.
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(a) Original Wound Image (b) Importance Map

Figure 2.4: Original lymphovascular wound image and its explanation using heatmap.

The proposed model classifies a chronic wound as a lymphovascular wound with

a probability of 99.9%, shown in Figure 2.4a. Figure 2.4b highlights the model’s

focused area for classification tasks in the wound image with an importance map as

an explanation.

Figures 2.5-2.8 show images of diabetic, lymphovascular, pressure injury, and sur-

gical wounds. Each wound type has a respective heatmap highlighting the focused

area that affects the model to choose the proper wound type. Diabetic wound is cor-

rectly predicted at 95.36% (Pressure injury: 4.07%, lymphovascular: 0.01%, surgical:

0.56%) and lymphovascular wound is predicted at 100% (Diabetic: 0%, pressure in-

jury: 0%, surgical: 0%) in Figures 2.5 and 2.6, respectively. The low diabetic wound

classification probability can be increased with additional data to amplify feature

extraction of diabetic wounds during training.

Probabilities of wound classification are very high for Figure 2.7, i.e., pressure

injury wound at 100% (Lymphovascular: 0%, surgical: 0%, diabetic: 0%), and for

Figure 2.8, i.e., surgical wound at 99.91% (Diabetic: 0.05%, pressure injury: 0.03%,

lymphovascular: 0.01%).

Figures 2.5a and 2.5b show explanations of the most important features that con-

tribute to the prediction. Like Figure 2.5a and 2.5b, Figure 2.6a and 2.6b shows
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(a) Original Wound Image (b) Importance Map

Figure 2.5: The probabilities of wound types: Diabetic: 95.36%, pressure injury:
4.07%, lymphovascular: 0.01%, surgical: 0.56% (Diabetic).

(a) Original Wound Image (b) Importance Map

Figure 2.6: The probabilities of wound types: Lymphovascular: 100%, diabetic: 0%,
pressure Injury: 0%, surgical: 0% (Lymphovascular).

explanations and map features with the highest contribution to prediction for lym-

phovascular classification. Both figures provide insights into why the wound type was

predicted to be diabetic or lymphovascular. Focus on the diabetic wound includes

surrounding wound tissues and toes, with the shape of the ulcer and its proximity to

toes as the explanations for the diabetic foot ulcer.

The lymphovascular wound, as seen in Figure 2.6a, is explained with a focus

on deeper damaged tissue. This kind of explanation enhances trust in the wound

classifier and helps caregivers make a decision and support their decision with a visual
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(a) Original Wound Image (b) Importance Map

Figure 2.7: The probabilities of wound types: Pressure Injury: 100%, lymphovascular:
0%, surgical: 0%, diabetic: 0% (Pressure Injury).

(a) Original Wound Image (b) Importance Map

Figure 2.8: The probabilities of wound types: Surgical: 99.91%, diabetic: 0.05%,
pressure injury: 0.03%, lymphovascular: 0.01% (Surgical).

explanation. The pressure injury wound explainer focuses on the wounded area and

indicates the correct placement of the wound, shown in Figure 2.7b. In Figure 2.8, a

surgical wound image is explained with a scar pattern and the shape of the wound.

The explainer identifies the scar of the wound as the highest feature, and the wound

area is highlighted by the proposed model with an importance map.

The proposed method explains diabetic wounds with respect to wound tissue and

ulcer location. Diabetic ulcers mainly occur under the foot and follow a similar pat-

tern. A different diabetic wound occurs just below the ankle in Figure 2.9, which
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is misclassified as a lymphovascular wound. This kind of ulcer is hard to differenti-

ate from lymphovascular wounds because of its location, as lymphovascular wounds

frequently occur at the ankle. Misclassification of a diabetic wound can also be the

result of a large wound area; wherein lymphovascular wounds typically cover larger

areas than diabetic ulcers.

Lymphovascular wounds are detected with a high probability. There is a slightly

lower probability of a lymphovascular wound in Figure 2.10. The spread of the wound

forms a line that looks like a surgical wound’s scar. The darker part of the wound

also looks like a diabetic ulcer. That’s why the proposed model gives about a seven

percent probability to each wound. Nonetheless, the proposed method highlights the

vital areas for the lymphovascular wound correctly.

It is assumed that the pressure injury wound in Figure 2.11 is misclassified due to

the size and the shape of the wound area. Pressure injury typically has a large wound

area with surrounding damaged skin. As shown in Figure 2.11, the wound occurs

under the foot, which is a common diabetic wound area, and also, the wound area

is smaller in comparison to the regular pressure injury wounds. These comprise the

reasons why the proposed model misclassified the image of pressure injury wounds.

Figure 2.12 depicts a surgical wound, which is correctly classified with a probability

of 63.4%. This surgical wound might be the result of a previous pressure injury that

covered a larger area. The vast spread of the wound causes this conclusion for the

model. In addition to this, the model is confused with the edge of the white cloth,

which causes a larger highlighted area. The darker and deeper wound in the middle

might be the reason for the high diabetic wound percentage. On the other hand,

surgical wounds tend to take a longer time to heal and may convert to diabetic

ulcers in diabetic patients. Model classification performance could be increased by

collecting more data as this will strengthen the extraction of wound features in the

training phase.
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(a) Original Wound Image (b) Importance Map

Figure 2.9: The probabilities of wound types. Diabetic: 29%, pressure injury: 14%,
lymphovascular: 56%, surgical: 1% (Diabetic).

(a) Original Wound Image (b) Importance Map

Figure 2.10: The probabilities of wound types: Lymphovascular: 80.8%, diabetic:
7.4%, pressure injury: 4.5%, surgical: 7.3% (Lymphovascular).

2.5 Results and Discussion

The proposed model extracts features with Conv networks from a pre-trained

VGG16 network. The use of transfer learning accelerates training and produces ef-

ficient results, as shown in Figures 2.4 - 2.8. Performance metric evaluation of the

model on diabetic wounds (with a precision of 0.85, recall of 1.00, and F1-score

of 0.92) indicate that the model has limitations with feature identification for this

wound type. This is especially evident with sparse datasets. Surgical wounds have a

fair performance on the evaluation metrics where precision, recall, and F1-scores are
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(a) Original Wound Image (b) Importance Map

Figure 2.11: The probabilities of wound types: Pressure injury: 27.3%, lymphovas-
cular: 12%, surgical: 2.5%, diabetic: 58.2% (Pressure injury).

(a) Original Wound Image (b) Importance Map

Figure 2.12: The probabilities of wound types: Surgical: 63.4%, diabetic: 19.4%,
pressure injury: 15%, lymphovascular: 2.2% (Surgical).

1.00, 0.91, and 0.95, respectively. Precision, recall, and F1-scores of lymphovascular

wounds are 0.95, 0.98, and 0.96, respectively. Pressure injury wound type has one of

the highest precisions, 1.00, a low recall score, 0.86, and an F1-score of 0.92. Surgical

and pressure injury wounds have good precision and low recall scores. The recall

score of pressure injury wounds is low, which is an indicator that the proposed model

has some difficulty in learning the features of pressure injury wounds. The proposed

model has the average precision at 0.95, the recall at 0.94, and the F1-score at 0.94.

The ROC curve and the AUC provide a visualization related to the performance of
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the model on the classification task. The performance of the model could be improved

with a more extensive training dataset [31] and fine-tuning the hyperparameters [32].

The second part of the model is specialized in explaining why the model gives a

specific output with a hybrid structure. This part extends the LIME technique using

a heatmap model. Heatmap is used as a tool to draw focus to image regions based

on work done, with the intuition being that practitioners will take less time under

guidance. The explainer of the proposed model is successful, while the classification

part of the hybrid model could be further improved with additional data (a common

problem in data-hungry DL models). The explainer provides visual cues through the

use of a heatmap overlaid on wound images to indicate image regions identified by

the AI model.

A clinician may eliminate certain wound types for consideration based on the

location of the wound. For example, in the case of a plantar foot ulcer, a doctor

will likely eliminate sacral pressure injury wounds from the possible wound type

list. This is why wound location is essential, and an explanation of a wound type

should also indicate location information for a complete understanding. Diabetic

wound type is explained via the corresponding deeper and darker damaged tissue

size and location on toes. These features are stressed and shown in Figure 2.5.

Lymphovascular wound features are highlighted and shown in Figure 2.6, where the

size and texture of the damaged tissue are essential indicators. Explanation of the

lymphovascular wound type is unexpected; its focus is on the border of the lesion

and the adjacent areas instead of the whole lesion. This is another case whereby

DL utilizes a non-intuitive search space that provides essential information. Pressure

injury wounds are explained via wound tissue and the surrounding wound area, as

seen in Figure 2.7. Pressure injury wounds often have a surrounding region of newly

healed or damaged skin immediately adjacent to the larger wound. A surgical wound

has more specific features to explain, such as postoperative scar and stitches.
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Observations deduced from the results of the proposed model are summarized

below:

Observation 1 : AI applications with XAI have a high potential to improve ex-

plainability and transparency in high-risk industries, such as healthcare, where trust

is critical.

Observation 2 : Limitation in the classification task is carried to the explanation

part of the model.

Observation 3 : The list of possible wound types is decreased significantly based

on wound location.

Observation 4 : Explainer has different approaches for each class, yet it uses a

qualitative method to explain decisions.

Observation 5 : Qualitative methods may explain AI models better to non-subject

experts as model parameters and inputs alone are too numerous to be meaningful to

non-experts.

Observation 6 : Given hardships in understanding quantitative methods, human

reasoning can be augmented through qualitative methods.

Observation 7 : XAI has excellent potential to improve overall model performance

by analyzing the effect and importance of features.

Observation 8 : Non-expert users are often able to intuitively grasp the rationale

behind class decisions made by the model.

Observation 9 : AI decision-making processes might be unanticipated, yet they

can provide insights and improve how we handle specific tasks through a bottom-up

approach.

2.6 Conclusion

This chapter presents a use case of wound type classification in the healthcare do-

main using an XAI model. The proposed model is used to augment decision-making
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through clinician guidance. Moreover, the proposed method reveals the underly-

ing reason for a particular output by analyzing the relationship between input and

output. This study intends to showcase an approach to make common AI models

more transparent and explainable to understand the results and gain trust in the AI

model. By utilizing readily available AI neural networks, it can be shown that more

transparency or explainability can be introduced to a variety of commonly available

models, such as transfer learning.

DNN using the transfer learning technique is utilized to predict the classification of

four wound types: diabetic, lymphovascular, pressure injury, and surgical. The model

accepts an image as input and predicts the etiology of a chronic wound as output.

It is discussed that trust is crucial for effective human interaction with ML systems

and that explaining individual predictions is vital in assessing trust. We used XAI

techniques identified here in a healthcare application to faithfully explain predictions

of wound-type classifications in an interpretable manner through the use of heatmaps.

The proposed model extends the LIME technique with a heatmap method for better

explainability. XAI techniques allow AI systems to cooperate with non-expert end-

users. The AI and end-user give each other feedback to arrive at a decision together

by guiding a human, e.g., researcher or caregiver, during a classification task. It can

also explain how a decision was made, tracing back to the inner workings of the AI

system. Transparency is crucial in developing caregiver confidence and improving

wound treatment.

This study demonstrated that explanations are helpful for wound type classifica-

tion in the healthcare domain, when assessing trust, to develop new approaches to

wound classification and prediction insights. The proposed hybrid model performs

well on both chronic wound classification and explanation tasks. Collecting additional

data will increase classification performance further. Interpretation of the results ob-

tained from the XAI module provides adequate information about the chosen wound
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type. Application of other XAI techniques such as Taylor Decomposition, Grad-CAM,

and sensitivity analysis will enhance the overall trustworthiness of the model as well.

It is expected that this work can benefit researchers and caregivers who work in

the chronic wound management field in healthcare by providing insights into the XAI

potential and availability in healthcare applications.
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3 Wound Border Segmentation and Tissue

Classification using AI

Medical image processing has the potential to assist caregivers in deciding on a

proper chronic wound treatment plan by understanding the border segmentation and

the wound tissue classification visually.

In this chapter, we propose a hybrid wound border segmentation and tissue classi-

fication method utilizing conditional GAN, which can mimic real data without expert

knowledge. Section 3.1 lays down the background for the use of AI in wound and

tissue detection and localization. In Section 3.2, the proposed GAN-based DL model

is examined thoroughly. One of our primary contributions in this area of research

is a novel simultaneous wound and tissue segmentation. Section 3.3 introduces data

collection, pre-processing, environment, and validation of the study. The performance

of the GAN algorithm is evaluated through MSE, Dice Coefficient metrics, and visual

inspection of generated images. Section 3.4 presents the model outputs and also anal-

yses the optimum number of training images, as well as the number of epochs using

GAN for wound border segmentation and tissue classification. Section 3.5 concludes

the chapter.

3.1 Introduction

Wound management technologies are an essential part of the treatment of chronic

wounds, which affect around 6.5 million patients at the cost of $25 billion yearly

in the U.S. [14]. However, they are lagging technologically, and most caregivers

only depend on imprecise optical assessment [23], which brings some complications,

such as infection risks, inaccurate measurements, and discomfort to patients [24].

Advanced computer vision methods assist in the accurate monitoring of wound healing

[74]. Image processing and ML automate the evaluation of medical images [75]. The

computer vision paired with AI would provide caregivers with continuous and accurate
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wound healing monitoring at a lower cost. Familiarity with wound tissue types and

their sizes play an important role in determining the right chronic wound treatment

plan. One of the goals of this dissertation is to contribute to the development of

such a system for wound border segmentation and tissue classification utilizing the

conditional GAN algorithm in a hybrid way.

Yann LeCun, an AI expert in neural networks, called adversarial training “the

most important idea in the last two decades in Machine Learning” [76]. The GAN

algorithm of DL techniques has been used successfully in many applications, such as

style transfer, image synthesizing, and the famous DeepFake synthetic media creator.

The power of the GAN algorithm comes from learning directly from data without

human knowledge [77]. That means that GAN does not require a human to select

features to predict; it extracts from the data itself. On the other hand, the GAN

is challenging to train as the complicated loss functions are hard to interpret [78].

Tweaking hyperparameters such as the number of images and epochs for training

in neural networks is still a subject of research and is being done empirically [79].

Finding the correct hyperparameters is like black art where there is no absolute path

to follow [80].

The data-driven GAN algorithm provides automatic feature generation, which

saves time and labor, but it needs a higher number of images as a trade-off [81]. That

is why the number of images is the critical parameter to achieving good approximation

in GAN-based models. At the same time, data collection and management processes

cost tens of millions of dollars in healthcare, such as clinical trials [82]. There are also

significant concerns over privacy, confidentiality, and control of the data [83], which

makes it difficult to obtain data in healthcare. Collecting data in healthcare is not

an easy task, but the GAN algorithm could generate synthetic images that have no

cost and could be used without hesitation.

The number of epochs for training is another critical parameter that requires many
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trials to find the optimum amount and expertise in the healthcare field [80]. High

performance in minimal epoch is needed to achieve significant time and labor savings

[27]. The question of how many images, and epochs you need to train a GAN has

not been answered. This study also provides a rule of thumb for choosing the correct

number of training images and epochs for GAN algorithms in healthcare applications.

Prior efforts for wound tissue classification and segmentation include the develop-

ment of an image analysis algorithm that is capable of wound area assessment, seg-

mentation, and extraction of wound color without correlating to wound tissue from

wound images using smartphone cameras [84]. The study [85] proposes the use of

the K-means clustering algorithm, which requires feature engineering, for the wound

border segmentation and tissue classification using 113 images. Multispectral imag-

ing is utilized by Thatcher et al. [86]. This study examines the tissue characteristics

of burn wounds in the light of medical imaging without segmentation of the wound

area and tissue. Authors in [87] explored the feasibility of RGB-D (Red Green Blue -

Depth) cameras in wound detection, segmentation, and chronic wound area measure-

ment in 3D. However, the use of special RGB-D cameras increases the cost and model

complexity of wound management systems. Also, tissue segmentation is not included

in this study [87]. K-Nearest Neighbours (KNN), Decision Tree (DT), and Linear

Discriminant Analysis (LDA) are used for the burn tissue classification. This study is

limited to burn wounds, whereas the proposed method in this chapter covers a variety

of wound types. The study in [88] proposes a DL and data augmentation model for

wound-region segmentation. The model used in the study [88] segments each wound

tissue separately. Also, detection and segmentation tasks are done using different ML

models. Authors in [89] propose an automatic skin ulcer region assessment framework

using Convolutional Neural Network (CNN) and encoder/decoder DNN. The study

in [89] achieves overall wound segmentation, but the segmentation of different wound

tissues is not studied. The study in [90] proposes a CNN-based model for the segmen-
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tation of wound tissue types. Authors in [90] provide tissue segmentation of pressure

injury wounds with the help of manual pre-processing steps, including external mask

application and flashlight removal. The study in [91] describes chronic wound status

monitoring with wound tissue segmentation using LDA, DT, random forests, and

näıve Bayesian. This study only segments the wound into two tissue types, where

our proposed method gives more details. The authors in [92] proposed a model that

utilizes color correction and a CNN for wound region segmentation. A two-step pre-

processing pipeline is discussed in [92] to segment the overall wound without tissue

segmentation. The authors in [22] propose a model that segments solely diabetic

wounds using CNN and the removal of artifacts with probability maps after a pre-

processing step. The study in [93] investigated CNN with different architectures, i.e.,

U-Net [94], Segnet [95], FCN8 [96], and FSN32 for the wound tissue segmentation.

The study in [97] proposes a wound segmentation model using both traditional and

DL methods. In [93], the authors added a pre-processing step that includes detec-

tion of the wound and a post-processing step that segments solely the overall wound

area. The model also could not be trained end-to-end because of the model complex-

ity. Authors in [98] propose a model for automatic wound region segmentation and

wound condition analysis with infection detection and healing progress prediction.

This study [98] utilizes traditional pre-processing and post-processing steps to im-

prove segmentation performance and does not have tissue classification. Authors in

[99] provide a tool for segmenting and locating chronic wounds to facilitate bioprint-

ing treatment using edge detection and segmentation algorithms. In [99], authors

utilize semi-automatic overall wound segmentation on a limited number of wound

images. Pre-processing and feature extraction steps are used to improve the perfor-

mance of the segmentation task. The study in [100] proposed a framework for tissue

classification based on the appearance and texture of the current and prior visual

appearance of chronic wounds. Pre-processing and feature extraction steps are used
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for the segmentation task.

In this chapter, the state-of-the-art GAN algorithm [28, 101] is utilized to develop

a model that can classify and segment different wound tissue types simultaneously.

Unlike previous studies that require pre-processing or post-processing steps, which

increases the model complexity, the proposed method provides wound detection and

segmentation without implementing such additional steps. Hence, end-to-end train-

ing is possible. Furthermore, while many of the previous studies lack the segmentation

of different wound tissues, this study provides segmentation of wound tissues; hence,

important information related to wound healing status can be recognized. Addition-

ally, the proposed novel approach could be applied to various wound types such as

diabetes, pressure injury, and burn despite the prior studies. The medical image syn-

thesis using GAN for hybrid wound border segmentation and tissue classification has

not been done previously. These two tasks are realized individually by the previous

studies with a focus on one type of wound.

The main contributions of this chapter include:

(i) The development of a hybrid GAN algorithm to perform wound border segmen-

tation and wound tissue classification in one step on different wound types,

(ii) Providing guidance to healthcare researchers with respect to how many images

and epochs are needed to perform successful medical image synthesis with GANs

for various applications.

3.2 Methodology

A GAN model comprises two neural networks, which are the generator (G), and

the discriminator (D). Both generator and discriminator are concurrently trained with

real data to capture the data distribution. A random uniform or a Gaussian noise

(z) is fed to the generator network to produce fake images(y), G: z → y [102]. This

makes the output of the generator unique. This newly created fake image is then fed
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to the discriminator network [102]. The discriminator network aims to determine if

the generated image is from the training set or not, D: y → [0,1]. The generated

images are labeled as fake or real, depending on the training data distribution. The

generator is to deceive the discriminator network that generated images are from the

training set [103]. Figure 3.1 shows the basic structure of the GAN model.

Figure 3.1: The basic structure of the GAN model.

Different versions of the GAN model are developed for different applications,

such as conditional GAN (cGAN) [104], cycle-consistent GAN (CycleGAN) [105] ,

Gaussian-Poisson GAN (GP-GAN) [106], and super-resolution GAN (SRGAN) [107].

Results of a cGAN-based model are evaluated in the scope of this study. The

CycleGAN-based model was also examined in this study. However, after initial trials,

this model did not yield good results and suffered from the mode collapse issue, a well-

known problem in the GAN field, which causes the generation of a particular output

image regardless of different inputs [105], for border segmentation and tissue classi-

fication tasks. Since this approach failed to produce output results, it was discarded

from this study. Other DL-based segmentation methods [108], to our knowledge,

have no evidence of their use to simultaneously perform wound segmentation and

classification. Existing research firstly performs the segmentation step and consecu-

tively the classification step. Hence, the proposed algorithm could not be compared

to other work as a whole because of its novelty. On the other hand, the proposed
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novel model in this chapter successfully accomplishes the border segmentation and

tissue classification tasks simultaneously by utilizing end-to-end training. In addition

to this, the border segmentation task performance is compared with the five different

DL models, i.e., VGG16, Segnet, U-Net, Mask R-CNN [109], and MobileNetV2 [110],

using the Dice Coefficient metric.

The cGAN architecture has additional properties over the regular GAN architec-

ture, which is also called vanilla GAN. cGAN gets an image as an input (x) in addition

to the random noise (z) and generates an output (y) conditioned on that input image,

G: x, z→y. The generated image carries similar features to the input image while

maintaining the data distribution of the training set, consisting of paired and aligned

images. The mapping of input to the output images is learned by the generator net-

work, where the discriminator network learns a loss function to train this mapping,

D: x, y→ [0,1] [111]. The objective of both generator and discriminator networks is

the same as the vanilla GAN algorithm, with the difference that discriminator and

generator observe the input image [104]. Figure 3.2 shows the general architecture of

the cGAN model.

Figure 3.2: The cGAN model overview.
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The cGAN model encapsulates two networks and four loss functions to generate

plausible fake data. The discriminator networks are updated directly, but generator

networks are trained by the feedback coming from the discriminator model while

updating the loss function. Trained by the second model, the generator network

lacks an objective function, which is the primary reason for GANs’ hardship to train

[112].

For the generator network, “U-Net” encoder-decoder with skip connections ar-

chitecture is utilized to get high resolution. The skip connection is a widely used

method to keep the original data between the layers. The input is downsampled and

flows through many layers, which concludes the input to be a bottleneck. On the

other hand, for the image translation, there should be some shared common features

needed to have. That’s why the cGAN is trained over paired and aligned data, which

helps to predict the conditioned output. We used a 70x70 patch-wise comparison of

images by discriminator network to classify the generated image as fake or real.

The discriminator network learns to classify real images and fake images with

binary cross-entropy loss. There are two loss functions to update the discriminator

for real and fake samples, namely Dreal and Dfake. The generator network also has two

different losses to provide plausible generated images. The weights of the generator

model are then updated with adversarial loss (GGAN) via the discriminator network

and L1 loss (GL1). L1 loss is calculated by comparing the generated images with the

real image. Adversarial loss and L1 loss scores are combined to obtain the loss of the

generator network, shown as:

LGen = LAdv + (LL1) · λ (3.1)

Where:

LGen: Generator network loss
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LAdv: Adversarial loss from the discriminator network

LL1: L1 loss

λ: Regularizing hyperparameter

L1 loss serves as a regularizing term in the generator network loss with a hyper-

parameter lambda, λ = 100. The objective of adversarial loss of cGAN architecture

can be depicted as:

LAdv(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 −D(x,G(x, z)))] (3.2)

Where the generator (G) competes with the discriminator while G is trying to

minimize this objective, and D is trying to maximize it [112]. The final objective

function can be expressed as shown in equation (3).

G∗ = argminGmaxDLAdv(G,D) + λLL1(G) (3.3)

3.3 Data Collection, Pre-processing, Environment, And Val-
idation

This section discusses data collection, data pre-processing, the simulation envi-

ronment, and model validation.

3.3.1 Data Collection and Preparation

The chronic wound data repository is provided by eKare Inc., which provides pro-

fessional wound imaging and analysis services. Images are taken with commercially

available cameras by regular users in a natural hospital environment on a normal

wound assessment process at the clinic. The chronic wound images, including burn,

pressure injury, and diabetic wounds, are semi-automatic segmented for training and

testing purposes. The wound tissues are classified as necrotic, sloughy, and gran-
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ulation, which are represented in blue, yellow, and red colors, respectively, in the

segmentation task. The variety of wounds improves the applicability of the algorithm

implemented in this chapter. In this study, anonymized wound images were rescaled

to 512x512 pixels. To test the effect of the number of images by the GAN algorithm,

we created a set of 100, 500, 1000, 2000, and 4000 images from 13,000 images con-

taining different wound types. The test set was fixed to the same 100 images., and

data augmentation, i.e., flipping, was used. Some of the images used in this study

can be seen below in the result section.

The number of publicly available chronic wound images is minimal and not suffi-

cient for the comparison of a training dataset of DL-based wound border segmentation

and tissue classification tasks. Additionally, it is very challenging or impossible to

find chronic wound images with ground truths. Another issue is related to the qual-

ity of the images. Medetec wound database [113] is a publicly available dataset that

suffers degraded image quality because of the presence of mold growth on the original

35mm transparencies. This will further decrease the resolution of generated images

as well. In contrast, the unique eKare Inc. chronic wound image repository provides

us with a sufficient number of images, higher quality, and above all, ground truth

data in order to sustain high-quality training.

3.3.2 Environment

We implemented the wound border segmentation and tissue classification model

using the PyTorch DL framework on the Anaconda platform with Python version 3.6.

Our implementations ran on Intel® Core ™ i7 -7800X CPU @3.50 GHz with 16 GB

RAM and NVIDIA GeForce GTX 1080 GPU with 8 GB dedicated and 8 GB shared

memory. We trained our model 2000 epochs using 100, 500, 1000, 2000, and 4000

images, which took 4 hours, 9 hours, 20 hours, 42 hours, and 76 hours, respectively.

The batch size is chosen as 64 to increase the benefit from the GPU. We used a

constant learning rate of 0.0002 and an “adam” optimizer for the first half of the
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training. The rest of the training was done with a linearly decaying learning rate to

zero until convergence.

3.3.3 Validation

Validation was done using MSE and Dice Coefficient metrics for the evaluation of

(generated) fake image quality. MSE, which is a pixel-wise loss function, was used to

measure the quality of the generated images in addition to losses of GAN. Minimizing

the pixel-wise error measurement provides converging results in contrast to GAN loss.

Generated segmented images are expected to be very similar to the actual segmented

images. In addition, segmented images consist of a combination of three colors, which

makes them easy to compare. That’s why the MSE metric fits appropriately for the

evaluation of this similarity. MSE score was calculated by comparison of real and

fake images on pixel level in three color channels. MSE metric can be written as:

MSE =
1

n

n∑
i=1

[(Y R − Y ′
R)2 + (Y G − Y ′

G)2 + (Y B − Y ′
B)2] (3.4)

Where:

n: Number of pixels

YR, YG, YB: RGB (Red Green Blue) pixel values of the real images

Y’R, Y’G, Y’B: RGB pixel values of generated images.

The Dice Coefficient is used to evaluate the performance of the proposed method

in addition to the MSE metric. The harmonic means of recall and precision provide

a Dice Coefficient which is also known as the F1-score, which is calculated as follows:

DiceCoefficient =
2 | A ∩B |
| A | + | B | (3.5)
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(a) (b) (c)

Figure 3.3: cGAN model achieves good results with 2,000 images at 200 epochs: (a)
Original image, (b) Segmentation ground truth and (c) Generated segmented wound.

Where A and B are the ground truth, and model output respectively. Dice scores

range from 0 to 1 where a score of 1 indicates a perfect segmentation.

3.4 Results and Discussion

This section discusses the output of the model, loss graphs, the effect of epoch

on border segmentation and tissue classification, as well as the optimum training

conditions of the model.

3.4.1 Model Output

The output of the proposed method was compared with the ground truth. A

successful result from the model is given in Figure 3.3, which indicates a proper

border segmentation and tissue classification of the wound by training with 2,000

images and 200 epochs.

As shown in Figure 3.3, the proposed model successfully segments the wound

border and classifies the wound tissue concurrently. The model learned the wound

area in Figure 3.3, where there are paled areas around the heel and the side of the

foot. The model is insensitive to color changes and could identify the wound in a

crowded environment. The background is discarded as well.
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3.4.2 Effect of Number of Images on Model Loss

The loss curves of cGAN are depicted in Figure 3.4 and Figure 3.5, when trained

with 100, 500, 1,000, 2,000, and 4,000 images, respectively. The GL1 loss has the

most meaningful loss for the generated image quality. GL1, GGAN, Dreal, and Dfake

losses oscillate because the GAN model moves from one type of sample generation

to another type of generation before reaching a balance [114]. Training two opposing

neural networks concurrently in zero-sum game results in a non-converging problem

[114]. GL1 represents the generator loss only, and it lacks the contribution of the

adversarial loss. GL1 loss could be used only to determine the learning capability of

the proposed model with respect to dataset size. However, the training progress is

unpredictable from the loss alone. That is why an additional technique is needed to

predict the progress of training and the quality of generated images.

(a) Loss curve for 100 images. (b) Loss curve for 500 images.

(c) Loss curve for 1000 images. (d) Loss curve for 2000 images.

Figure 3.4: Model’s loss graphs using a different number of images.
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The loss curves for the model with 4000 training images are shown in Figure 3.5.

A comparison of loss graphs in Figure 3.4 and Figure 3.5 reveals the drop rate of the

Figure 3.5: Loss curve for the model with 4000 training images.

GL1 loss increases with an increasing number of images for the training. The GL1

loss drops to 10 at around the 40th epoch and stays stable under five (5) around the

100th epoch with a training set of 100 images, see Figure 3.4a. The drop rate of GL1

loss increases in Figure 3.4b, which is the model loss with a dataset of 500 images.

The loss of the proposed model reaches 10 at the 10th epoch and stabilizes under five

(5) at the 75th epoch. These are four times and one-and-a-half times improvements

over the model with 100 images, respectively. A five-fold increase in the training

set provides a similar increase in the GL1 drop rate. The drop rate further increases

two and four times, respectively, in the models trained with 1,000 and 2,000 images,

shown in Figures 3.4c and 3.4d. The results of the model trained with 4000 images

are consistent with Figure 3.4b - 3.4d. GL1 loss converges to 10 in the first couple of

epochs and becomes stable under five (5) in 15 epochs. The results indicate that our

proposed model learns the data distribution faster with a larger dataset.
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(a) Original Image (b) Importance Map

Figure 3.6: (a) Original image, and (b) Ground truth for border segmentation and
wound tissue classification tasks.

(a) Epoch=5 (b) Epoch=75 (c) Epoch=200

Figure 3.7: Effect of the epoch count on border segmentation and tissue classification
tasks.

3.4.3 Effect of Number of Epochs on Border Segmentation and Tissue
Classification

Figure 3.6a - 3.6b depicts the original wound image and the ground truth wound

tissue classification. By varying the number of epochs, Figure 3.7a - 3.7c shows

the results of the model with a dataset of 2000 images, which is trained using 5,

75, and 200 epochs, respectively. With five epochs, as shown in Figure 3.7a, the

result does not represent the segmented wound, although it carries similar tissue

features. Training the model further to 75 epochs in Figure 3.7b provides a better

representation. Adequate generation of the wound segmentation is achieved after 200

epochs of training, shown in Figure 3.7c.

Figure 3.8 depicts the original wound image and the ground truth for wound tissue

classification. Figure 3.9 illustrates the output of the model with a dataset of 100
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(a) Original image (b) Ground truth

Figure 3.8: (a) Original image, (b) Ground truth for border segmentation and tissue
classification tasks.

images after it was trained for 5, 500, 1000, and 2000 epochs. Training the model for

five (5) epochs produces a similar shape but a blurry result with Figure 3.8a, which

indicates that the model could not get the data distribution yet. An increase in the

epoch count generates better-segmented wound images, but these results could not

catch the wound shape as a result of inadequate training images.

The results were also analyzed using MSE scores, as summarized in Table 3.1,

which shows the MSE values for a different number of epochs and training images.

MSE score is a good indicator of the model’s learning ability to mimic the real image

data distribution. The MSE score of the model trained for five epochs with 100 images

is the highest and improves with the increase in the number of training images and

epochs.

Table 3.1: MSE scores for the cGAN model.

Images
Epochs

5 200 500 1000 2000

100 40737 4094 3911 3695 3329
500 11843 2847 2730 2528 2333
1000 6983 3319 3251 3293 3144
2000 3565 2027 2024 2061 2056
4000 3907 1958 1955 1968 2019

MSE values of the different numbers of images are shown in Figure 3.10. The

model trained with 100 images dataset did not yield efficient results and was omitted
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(a) Generated image at the 5th epoch. (b) Generated image at the 500th epoch.

(c) Generated image at the 1000th epoch. (d) Generated image at the 2000th epoch.

Figure 3.9: The model trained with 100 images is not converging to synthesize border
segmentation and tissue classification.

for simplicity in Figure 3.10. The decrease in the MSE score in the first 200 epochs is

the highest for all dataset sizes. The dramatic decline in the first 200 epochs indicates

that the proposed method successfully learns to segment the wound and classify the

tissue type at 200 epochs. Results confirm that increasing epoch count results in a

better MSE value for the first 200 epochs, and training for more epochs decrease MSE

values slightly. This is a good indicator of optimum training parameter selection that

200 epochs are the optimum epoch number for training the proposed method.

Note that: The model trained with 500 and 1000 images has an equilibrium

around 3,000 MSE score, and the model trained with 500 images keeps decreasing,

which could be a result of a limited number of images representing a few samples
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Figure 3.10: MSE vs epoch for the different number of images.

and overfitting that data. There may be a potential overfitting problem. The model

trained with 2,000 and 4,000 images share similar MSE values of around 2,000. The

outcome in Figure 3.10 indicates that increasing the number of images for training

produces lower MSE values, which is a good sign that the proposed model works as

expected.

The changes in MSE values with 5-200 and 200-2000 epochs are compared for

different datasets, i.e., 100-4000 training images, as shown in Table 3.2. It appears

that the MSE value improves significantly during the first 200 epochs of training.

Training from 200 to 2000 epochs improves MSE slightly. The changes in MSE score

with a smaller number of training images, i.e., 100 and 500, are higher than those

with a higher number of training images, i.e., > 1000. This is because the model

with a larger dataset converges faster during the first couple of epochs. Negative

values imply the increase in the MSE metric, which results from the deformation of

generated images and noises in input images.

The Dice Coefficient is also calculated for each epoch and image combination. The

Dice scores are shown in Table 3.3 for further analyses. The correlation between the

MSE score and Dice Coefficient indicates that the model with 2000 images and 200

epochs is the best performing model, requiring a lower number of images and epochs.

The differences between MSE scores and the Dice scores are sourced from the calcu-
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Table 3.2: The decrease in the MSE score between different numbers of epochs.

Images
Epochs

5 to 200 Epochs 200 to 2000 Epochs

100 90.0 % 18.7%
500 76.0% 18.1%
1000 52.5% 5.3%
2000 43.1% -1.4%
4000 49.9% -3.1%

lation of both metrics. The MSE metric considers both overall wound segmentation

and the segmentation of the wound tissues. It provides more information about the

segmentation performance.

Table 3.3: Dice Coefficients of the proposed model.

Images
Epochs

5 200 500 1000 2000

100 0.09 0.77 0.62 0.84 0.73
500 0.09 0.77 0.89 0.88 0.86
1000 0.18 0.74 0.83 0.76 0.82
2000 0.79 0.90 0.88 0.85 0.78
4000 0.42 0.93 0.93 0.91 0.79

The Dice Coefficient metric provides a measurement of wound area segmentation

performance regardless of the wound tissue. The models with a lower number of

training dataset images, i.e., 100 and 500, do not provide higher scores as expected.

The Dice Coefficient of the model with 1000 training images increases with an in-

creasing number of epochs. The 2000-image model’s Dice score is also in line with

its MSE score. The 4000-image model has the highest performance metrics, whereas

the required number of images doubles compared to the 2000-image model.

The comparison of the proposed model with the previous works [115] is shown in

Table 3.4. Five different previous models are compared with the proposed model.

The comparison indicates that the proposed model has similar performance to

other highest-performing models. In addition to wound segmentation, the proposed
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Table 3.4: The comparison of Dice Coefficients of the proposed model and other
models.

Model VGG16 Segnet U-Net Mask-RCNN MobileNetV2 Proposed Model
Dice Score 0.81 0.85 0.90 0.90 0.90 0.90

(a) Original image (b) Ground truth

Figure 3.11: (a) Original and (b) Ground truth of tissue classification images.

model provides tissue classification and respective segmentation of tissues as well.

That’s why the proposed model has not only good segmentation performance but

also tissue classification capability as well.

3.4.4 Effect of Number of Images on Border Segmentation and Tissue
Classification

Figure 3.11 depicts the original wound image and the ground truth for wound

tissue classification. The fixed number of epochs at 200, the results of the models

with different training datasets are shown in Figure 3.12. Input datasets that have

fewer than 500 images give poor performance. Therefore, they are excluded from

Figure 3.12. As shown, the proposed method provides efficient segmentation and

tissue classification on a dataset consisting of around 2,000 images or more. It is a

significant conclusion that having at least 2,000 images at hand results in efficient

training for GAN to generate qualified images in this study. Smaller datasets face

difficulties in mimicking the data distribution, or these models overfit the training

images, which is the case for the model with a training set of 500 images or less,
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(a) 500 images (b) 1000 images.

(c) 2000 images. (d) 4000 images.

Figure 3.12: Effect of training dataset size at 200 epochs.

whereas datasets with higher than 2,000 images generate plausible images.

3.4.5 Discussion

Based on the study results, the following observations regarding the application

of the GAN algorithm could be made.

Observation 1 : The proposed method can perform both wound border segmenta-

tion and tissue type classification in one step.

Observation 2 : cGAN has a high potential of producing close to real synthetic

images for wound tissue segmentation and classification.

Observation 3 : The quality of the generated images is in line with the image

count. 2,000 image count is the threshold for a valid generated image as the results

of our study.

Observation 4 : The epoch count has a significant impact on the generated image

quality, but after surpassing the 200-epoch threshold, the model reaches its conver-

gence, and additional training has a marginal effect on the quality of the generated
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image.

3.5 Conclusion

This chapter presents that the cGAN algorithm can achieve chronic wound border

segmentation and tissue classification efficiently. The wound border segmentation and

the wound tissue type classification using GANs were performed for the first time. Re-

sults from different numbers of dataset sizes and epoch counts are evaluated through

the MSE metric and visual inspection of generated images. MSE metric provides

valuable information in interpreting the quality of the generated segmentation and

classification tasks due to the simplicity of the generated images. The optimum train-

ing dataset size and epoch count are determined at 2000 images and 200 epochs. This

study confirms that the generated image quality increases significantly by increasing

the dataset size to 2,000 images. After that threshold, the image quality improves

marginally. Currently, data collection in healthcare is an expensive task and process;

this study introduces the optimum dataset size for related healthcare applications

utilizing GAN. The proposed method achieves border segmentation and tissue classi-

fication simultaneously without additional processing steps and expertise. The MSE

score decreases, and the Dice Coefficient increases with the increase in generated seg-

mented image quality. The proposed model is in line with these conditions, which

are explained in the validation section. The ability to perform end-to-end training

and testing ability simplifies the application of the proposed model in healthcare for

broader adoption. However, the healthcare industry requires robust and explainable

models that will require adopted models to be transparent. The proposed method

and DL models in general, lack transparency and behave as a black-box.

The scope of this study includes detection of the various wound types such as burn,

lymphovascular, pressure injury, and classification of three different wound tissues,

namely necrotic, slough, and granulation. Some limitations in this study could be

further addressed in future work. Firstly, the image quality of the overall model
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could be further improved. The image quality selected for this study is to provide

a fast and straightforward implementation which is the case for many algorithms in

the object detection and segmentation field. This is also due to the resolution of

available data sets. Since images were collected by various cameras with different

settings, it is necessary to format them to a common size for further processing.

Secondly, due to the non-converging nature of the GAN algorithm, the loss curves

of our model also have limitations providing the relationship between the training

and the generated image quality. That’s why the hyperparameter optimization was

performed by observing both the generated images and the loss curves together.

Possible future work may include the modification of the algorithm to generate

high-resolution images. The structure of the proposed algorithm resizes the images to

512x512 pixels. With model modification, the generated image quality may increase

to 2048x2048 pixels. Another future research direction can be the consideration of an

additional class of tissues, i.e., bones or foreign objects such as metal fixations in the

wound. This will enhance and increase the use cases of this model. The next iteration

of this model may identify wound etiology, such as diabetic, lymphovascular, pressure

injury, and surgical. Identification of wound type will enhance wound management

further by determining the right wound care plan.

It is expected that this study will help caregivers in deciding the wound treat-

ment plan by understanding the wound tissue classification visually, as well as assist

researchers in providing an insight into the wound border segmentation and tissue

classification through advanced ML methods.
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4 AI-based Synthetic Wound Image Generation

Medical image synthesis is a diverse field that has great potential to assist clinician

training. In this chapter, we propose a synthetic wound image generation model based

on GAN architecture to increase the quality of clinical training. We also discuss and

examine the use of this model for patient privacy in Section 4.1. In Section 4.2, details

about the synthetic wound generation model are presented. One of our primary

contributions in this area of research is a novel synthetic wound generation using DL

methods. Section 4.4 shares the results of the experiments done with chronic wound

datasets of various sizes taken from real hospital environments. Hyperparameters

such as epoch count and dataset size for training tasks are presented to find optimum

training conditions as well. Section 4.5 provides related discussions and Section 4.6

concludes the chapter.

4.1 Introduction

Computer-human interaction has an important impact on facilitating knowledge gen-

eration, dissemination, access, and utilization [116]. The study of this interaction has

evolved in broader terms into the active research domain of ML or AI over the past

60 years [117].

A key element of successful DL depends on the availability of massive amounts

of data [118]. DL applications in healthcare are found to be lagging, in large part,

due to the high cost of accurate and tagged data collecting. The total cost of data

management in healthcare could rise to millions of dollars [119], which affects medi-

cal training as well. Medical students’ education costs are high, with many instances

of not enough data to showcase the pathologies, wounds, and diseases. In addition,

class imbalances hinder the performance of AI models, such as decision trees, neural

networks, and support vector machines [120]. Limited generalization ability and over-

fitting problems are too common without reliable training datasets utilizing neural
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networks with millions of parameters [121]. One could say that data augmentation

techniques could be used to prevent overfitting and improve imbalanced class prob-

lems [122]. However, augmented data still resembles the original image intuitively

[123]. This is why the quantity of training data is crucial to train and validate a

model utilizing ML techniques [124]. Determining optimal hyperparameters is criti-

cal to AI models. However, the process is largely considered black art [80]. Training

dataset and the number of epochs play an essential role while building new types of

AI models, i.e., data-hungry and DL models. The number of epochs to train a model

could be determined through loss functions in traditional ML models, whereas a GAN

algorithm provides complicated loss functions. Hence, finding the optimum number

of epochs is also a critical parameter that requires labor, time, and expertise in the

healthcare field [26, 27]. In the scope of this study, the performance of the synthetic

wound generation was examined extensively regarding the number of training epochs

and the training dataset size. Six (6) different wound datasets were created to mea-

sure the effect of dataset size, and the model was trained for 2000 epochs. Results of

every five epochs till the 2000th epoch were compared to analyze the effect of epoch

count in detail.

In the literature, there are limited studies using the GAN algorithm in the health-

care domain. A conditional Wasserstein GAN framework was introduced for Elec-

troencephalography (EEG) data augmentation to improve emotion recognition [125].

Magnetic Resonance (MR) image generation using Wasserstein GAN was presented

for data augmentation, and physician training [126]. In the study by Antoniou et

al. [127], a data augmentation GAN model was developed to generate broader data

augmentation techniques such as mirroring and rotation. Synthetic data was gener-

ated through GAN models to augment the dataset with synthetic images to maximize

the performance of the classifier [128] and to improve the classification task on blood

cells [129]. Authors in [130] propose balancing GAN (BAGAN) to balance class dis-
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tribution while training the GAN with all available images. It generates synthetic

underrepresented class images utilizing conditioning in the latent space. A study by

Wang et al. introduces the generation of belittled class plankton images while train-

ing the GAN with belittled class images and classifying plankton types using shared

Conv layers with a discriminator network [131]. The authors in [132] propose a train-

ing scheme that implements classical data augmentation techniques to enlarge the

Computed Tomography (CT) images of the liver and then enlarge the dataset a sec-

ond time through synthetic image generation with GAN using classically augmented

data for training. The study in [133] investigates different GAN architectures, such

as SRGAN and DualGAN [134], to generate CT images from real Magnetic Reso-

nance Imaging (MRI). The authors in [135] propose an autoencoder combined GAN

to synthesize jellyfish using a small dataset compared to other GANs. The study in

[136] investigates the generation of synthetic fundus images of Age-related Macular

Degeneration (AMD), which are indistinguishable from real ones using Progressively

grown GANs (ProGANs) [137]. In this chapter, a GAN architecture is utilized to

create a novel model that generates synthetic wound images, which was not done pre-

viously. This can help the training of medical students and clinicians on wound type

and wound healing prediction more accurately. This study also presents a criterion

for the optimum number of training images and epochs for generating wound images

using GAN algorithms.

The objectives of this study are:

(i) Development of a model using the GAN algorithm in a conditional setting to

generate synthetic wound images.

(ii) Use of MSE metric to compare similarity between generated and actual wound

images.

(iii) Validate and evaluate model performance visually.
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(iv) Develop a hyperparameter selection guideline that can be utilized by healthcare

researchers while training medical AI applications.

4.2 Methodology

GAN has the ability to mimic any data distribution with the help of adversarial

generator and discriminator networks. The minimax optimization between the ad-

versarial generator (G) and discriminator networks (D) is at the heart of the GAN

architecture. Both networks are trained simultaneously with real data to learn the

data distribution evenly. The generator network gets uniform or Gaussian noise (z)

as an input and produces fake images (y), which are fed to the discriminator network

so as to be classified as real or fake, D: y → [0,1]. The generator and the discrimi-

nator networks are trained once with the training set. Following this, the generator

network is used to generate fake images that are not differentiable from the training

set. Figure 4.1 shows the basic structure of the GAN model.

Figure 4.1: The basic structure of the GAN model.

There are various versions of the GAN algorithm for different applications. For

our study, Vanilla GAN, DCGAN [138], CycleGAN, and cGAN-based versions were
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examined. The Vanilla GAN and DCGAN-based models for synthetic wound genera-

tion were not suitable for our study as generated wound images were not compatible

with the tissue segmentations. On the other hand, the CycleGAN-based model was

promising due to its ability for unpaired image-to-image translation. The initial tri-

als with the CycleGAN model revealed that the generated synthetic wound images

experience a mode collapse problem, a well-known complication in the GAN field,

which causes the synthesized wound images to look similar despite different tissue

segmentation inputs [105]. As these models failed to generate proper wound im-

ages coherent to the given wound tissue segmentation images, these different GAN

approaches, namely Vanilla, DCGAN, and CycleGAN-based models, are discarded

from this study due to mentioned issues above. A cGAN-based architecture is used

for conditioning the output (generated image), for specific data distributions, with

an input image (x) and the addition of a noise (z) factor. In order to condition the

output of the generator, the input is given to the generator. The input image is the

segmented image ground truth that is gathered from eKare LLC. The discriminator

is also fed with the segmented input image and the real data to distinguish whether

the generator performed meaningful image synthesis or not.

The generator network learns a mapping from the input domain to the output

domain, G: x, z→ y. The discriminator network learns a loss function to train this

mapping [111] and tries to differentiate the fake image (y) from the real one, D: x,

y→ [0,1]. This architecture is used to generate outputs that are similar to the input.

This architecture gets paired and aligned images as an input to generate look-alike

images. Both networks, the discriminator and generator, observe the input. Figure

4.2 shows the general architecture of the model that is fed with noise and input data.

Loss coming from discriminator is fed to generator.

The discriminator network has two losses, namely Dreal and Dfake, which indicate

the ability of the discriminator network to differentiate the real and the fake images.
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Figure 4.2: The general framework of the model architecture.

Another loss used for the generator loss is GL1, which compares the generated fake

image and the real image to generate more plausible fake images. Adversarial loss

(LAdv) coming from the discriminator network together with L1 loss (LL1) of the

generator network (GL1) used for generator training causes complicated objective

functions for the generator network.

LAdv(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 −D(x,G(x, z)))] (4.1)

This is why the process of training a GAN architecture is hard to interpret. L1 loss

behaves as a regularizing term with a hyperparameter, lambda (λ), which is chosen

as 100. The final objective function is an analogy of a minimax game where the

generator tries to minimize, and the discriminator maximizes an adversarial objective.

This relationship is depicted as:

G∗ = argminGmaxDLAdv(G,D) + λLL1(G) (4.2)
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The hyperparameter problem was examined through various experiments. To measure

the effect of dataset size, six (6) training datasets were created. For each of these

datasets, a model was trained for 2000 epochs. The performance of the model has

been measured every five (5) epochs through the MSE metric for extensive analyses

of the hyperparameter selection. The significance of the hyperparameter is examined

via visual inspection as well.

4.3 Data Collection, Pre-processing, Environment, and Val-
idation

This section discusses data collection, data pre-processing, the simulation envi-

ronment, and the validation methods.

4.3.1 Data Collection

Chronic wound images were provided by eKare, Inc (Fairfax, VA). Chronic wounds

of various types, i.e., diabetic, burn, lymphovascular, pressure injury, and surgical,

are anonymized and semi-automatically labeled for training and testing. The diver-

sity of chronic wound types increases the applicability of the model. This dataset

includes around 4100 wound images ranging in size from 1224x1224 to 2160x2160

pixel dimensions (depending on the camera used to acquire measurement). Wound

images were acquired under standard ambient room lighting by clinical users with

commercially available 3D wound cameras [139].

4.3.2 Pre-processing

Chronic wound images are rescaled to 512x512, with the original wound and its

labeled pair concatenated to form a 512x1024 pixel image. Before concatenation,

the background of the labeled image is cleaned and made white. One hundred wound

images out of the 4100 are chosen for the test dataset. The training dataset constitutes

the rest of the dataset. To study the effectiveness of the dataset size, training datasets
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with sample sizes of 500, 1000, 2000, and 4000 were created. Normalization and

formatting were done to ensure high performance during training.

4.3.3 Environment

The proposed synthetic wound image generation using the GAN (WG2AN) model is

implemented using the Pytorch DL framework with Python version 3.7. The model

runs on an Intel® Core ™ i7 -8700X CPU @3.20 GHz with 32 GB memory and

NVIDIA GeForce GTX 1080 GPU with 8 GB dedicated and 16 GB shared memory.

The model training for 2000 epochs took around 4 hours, 6 hours, 10 hours, 16 hours,

29 hours, and 58 hours for 100, 250, 500, 1000, 2000, and 4000 images, respectively.

The batch size is 64 for maximum GPU performance.

The Adam optimizer with a learning rate of 0.0002 is utilized for the first half of

the training, while the rest is done with a linearly decaying learning rate to zero. The

Adam optimizer is used as it converges faster, and also lower loss values are generated

for the generator network in comparison to other optimizers in GAN applications

[140]. The learning rate setting is chosen in line with the previous works done in

image synthesis using GAN algorithms [104].

4.3.4 Validation

Validation of the proposed method is done with the MSE metric, which is a pixel-

wise error measurement. Three color channels (RGB) are considered while calculating

the MSE scores where YR, YG, YB are used for the color channels of real images, and

Y’R, Y’G, Y’B are used for the color channels of generated images. Additionally, n

denotes the number of pixels.

MSE =
1

n

n∑
i=1

[(Y R − Y ′
R)2 + (Y G − Y ′

G)2 + (Y B − Y ′
B)2] (4.3)

The MSE metric is applied to each pixel in the fake and real images. Each pixel
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has three channels, namely red, green, and blue. Each corresponding pixel in fake and

real images is compared, and the MSE score is calculated. The MSE metric provides

better quality scores [141]. Converging and meaningful results for the synthetic wound

generation task are obtained using the MSE metric. The synthetic wound results are

expected to be similar to actual wound images, where the MSE metric could evaluate

such similarity properly.

4.4 Experiments

Model and loss function outputs, the effect of dataset size, and epoch count on

synthetic wound generation are discussed with MSE score and visual inspection in

this section. Additionally, the optimum training conditions are determined with hy-

perparameter tuning.

4.4.1 Model Output

The proposed model gets wound tissue segmentation and produces synthetic

wound images. Wound segmentation is done with respect to wound tissue types,

namely necrotic (blue color), granulation (red color), and slough (yellow color). This

classification is of foremost importance to the caregiver while assessing a wound and

deciding on a treatment plan. A successful result from the WG2AN model is de-

picted in Figure 4.3, which indicates proper synthetic wound generation by training

with 4000 images and 2000 epochs. Actual wound, Figure 4.3b, and synthetic wound

image, Figure 4.3c, were presented without background for a better comparison with

the segmentation input, Figure 4.3a.

In addition to the original wound image, a combination of the synthetic wound

and original wound background is shown in Figure 4.4a - 4.4b. The generated image
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(a) Segmentation (b) Actual wound (c) Synthetic wound

Figure 4.3: WG2AN model results trained with 4000 images and at 2000 epochs.

(a) Original wound (b) Combined wound

Figure 4.4: WG2AN model results applied on a real limb that is trained with 4000
images and at 2000 epochs.

has characteristics of a real wound.

4.4.2 Effect of Number of Images and Epochs on Model Loss

The chronic wound dataset is pre-processed and arranged as six (6) subgroups,

which have 100, 250, 500, 1000, 2000, and 4000 images. The proposed model with

WG2AN architecture to synthesize wound images is trained for 2000 epochs. The

effects of dataset size and epoch count are examined to find the optimum training

dataset.

The GL1 loss curves of the model with different training dataset sizes are depicted

in Figure 4.5. The adversarial and the discriminator network losses, i.e., Dfake and

Dreal, do not provide useful information, and they are not included in Figure 4.5. The

proposed model could not settle down in the first 75th epochs as the losses increase,

which is a common problem because of the randomized weights in the neural networks.

The loss curves also share a similar fluctuating but decreasing pattern. The general

zigzag behavior of the loss curves is a result of the alternating wound image samples
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during training. The proposed model moves along the different training samples

without reaching an equilibrium, which causes this oscillation [114].

The loss curve of the model with 100-images has the lowest loss. The model with

250-images has the second-lowest loss values. Other curves follow this characteristic

as well. It can be deduced that models with fewer training images produce lower loss

values. The loss graphs are compared to evaluate the learning ability of the model

in Figure 4.5. The model with 100-images goes below the loss of 25 at the 180th

epoch and stabilizes under the loss of 15 at the 600th epoch. 250-image model’s loss

decreases to 20 at the 200th epoch and becomes stable under 15 at the 700th epoch.

The models with 100 and 250 images move closer curves as their training dataset size

difference is small, i.e., 150.

The loss of the model with 500 images reduces to 25 at the 300th epoch and

balances under 15 at the 950th epoch. The 1000-image model drops to 25 at the

350th epoch and flattens under 15 at the 1100th epoch. The 2000-image model

decreases to the 275th epoch and stays stable under 15 at the 950th epoch. The

model with 4000 images goes down to 25 at the 250th epoch and balanced around 15

at the 1000th epoch.

The 4000-image model has been trained for 4000 epochs; however, it does not

stabilize under 15 and oscillates. The drop rate of the GL1 loss indicates that our

proposed model learns the data distribution faster with a smaller dataset. The models

with a larger training set have more complicated data distributions that take more

epochs to mimic.

As stated in 4.2, the generator and the discriminator networks compete over a

min-max game, which results in a nonconverging problem [111]. Although GL1 loss

has a meaningful curve that could be used to determine if the model is learning

the training data distribution, it lacks the contribution of the adversarial loss. That’s

why an additional evaluation metric is needed, i.e., MSE. MSE score provides a better
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Figure 4.5: Model’s loss graphs using a different number of images.

understanding of the generation of synthetic wound images by the proposed WG2AN

model, whether they look like real wounds or not.

4.4.3 Effect of Number of Images and Epochs on Synthetic Wound Gen-
eration

The effect of training parameters, i.e., dataset size and epoch count, are discussed

in this section. The models with different training dataset sizes (100, 250, 500, 1000,

2000, and 4000) are evaluated visually and using the MSE score. Figure 4.6 indicates

the actual wound and the segmented wound, which is the input of the model. The

outputs of four different models are compared in Figures 4.7 - 4.12 with respect to

epoch counts (200, 500, 1000, and 2000).

The model with the 4000-image dataset is trained for 4000 epochs, but the effect

is negligible. That’s why we cut training at the 2000th epoch for each model. The

generated images before the 75th epoch lack the details and texture of a wound in

general and suffer from the checkerboard effect significantly. The up-sampling layer in

the generation pipeline of a GAN model, which produces high-resolution images from

low-resolution ones, causes checkerboard artifacts [142]. The checkerboard pattern

emerges when deconvolution has uneven overlap [143].
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(a) Original wound (b) Segmentation

Figure 4.6: (a) Original wound and (b) wound segmentation.

The models with smaller training datasets tend to be biased towards a particular

data distribution, which is the case for 250 and 500-image models, which produced

darker wounds. After further training of the same model, dataset limitation recovered

at the 500-image model at 2000th epochs, as seen in Figure 4.9d. Training the models

longer provides detailed texture and balance in the distribution of the tissue (also

visible in Figure 4.9d).

The 100-image model generated insufficient wounds for the 500 epochs and the

lower epoch counts. However, increasing the training to 1000 epochs improved the

generated images significantly. Results for the 100-image model in Figure 4.7c - 4.7d

have close to real composition but generated samples in Figure 4.7a - 4.7b are far

from a real wound nature.

The 250-image model generated primitive wounds at 200 epochs in Figure 4.8a.

Generated wounds have more balanced wound tissue characteristics with some limi-

tations, such as overall darker colors at 500, 1000, and 2000 epochs in Figure 4.8b -

4.8d. The 200 epochs of training is not enough for a life-like wound image generation,

as seen in Figure 4.8a.

The model with the 500 images produced more life-like wounds at 200 and more

epochs of training, shown in Figure 4.9c - 4.9d. The result of 500 images at 200

epochs in Figure 4.9a does not represent a real wound.

The model with 1000 images exhibits better performance than previous models.

66



(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.7: WG2AN output using 100 images for different epochs.

(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.8: WG2AN output using 250 images for different epochs.
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(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.9: WG2AN output using 500 images for different epochs.

At 200 epochs of training in Figure 4.10a, it shows a reasonable output where previous

models just produce a crude output from fed segmentation data. The results of 500,

1000, and 2000 epochs of training produce better-wound images, as seen in Figure

4.10b - 4.10d.

The 2000 image model produced life-like images at 500, 1000, and 2000 epochs in

Figure 4.11b - 4.11d. The 200 epochs of training in Figure 4.11a also form a wound

with close to wound tissue characteristics.

The model with 4000 images generates life-like wounds at 200 epochs to 2000

epochs in Figure 4.12a - 6.3d. Every generated sample carries characteristics of the

wound and well-balanced tissue distribution.

By varying the number of epochs and dataset size, generated image quality has

improved significantly. It can be inferred that the lack of data could be substituted

by further training the model.
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(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.10: WG2AN output using 1000 images for different epochs.

(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.11: WG2AN output using 2000 images for different epochs.
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(a) 200 epochs (b) 500 epochs

(c) 1000 epochs (d) 2000 epochs

Figure 4.12: WG2AN output using 4000 images for different epochs.

4.4.4 Evaluation of the Model with MSE Metric

The model performance is evaluated by the MSE metric, as summarized in Table

4.1, which indicates the MSE scores of the models with different training images and

epochs. A comparison of the MSE scores can be examined in Figure 4.13. MSE scores

are calculated on individual images, after which the median average is calculated. A

comparison of the MSE scores provides guidance for the generated image quality. A

lower MSE score means better-generated image quality. The overall trend of the MSE

scores in Table 4.1 is decreasing with expanding dataset size and further training of

the models. The first 75 -100 epochs of training are necessary for the model to settle.

The models’ MSE scores for 100 epochs are also included in Table 4.1. The MSE score

of the 100-image model was the highest for every epoch. It starts with the MSE score

of 745, decreases to 732, increases to 747, and then keeps increasing with additional

epochs of training.

The 250-image model has an MSE score of 727 at the 100th epoch and drops to
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Table 4.1: MSE scores for the WG2AN model.

Images
Epochs

100 200 500 1000 2000

100 745 732 747 759 785
250 727 711 720 721 721
500 627 707 707 701 691
1000 736 703 703 704 709
2000 729 709 709 706 706
4000 721 697 697 705 710

711, and has higher MSE scores with the increase in training. The model with 500

images does not settle at the 100th epoch, where the MSE score is lower than any

other MSE score in the table. It becomes 707 and stays stable at that MSE score.

There is a drop in the 2000th epoch of the 500-image model, which is a result of an

overfitting problem.

Figure 4.13: MSE scores (Median) of the models with the different training dataset.

The 1000-image model has an MSE score of 736 at the 100th epoch and reduces

to 703 at the 200th epoch. It stays stable till the 1000th epoch. It rises slightly to 704

at the 1000th epoch and 709 at the 2000th epoch. The smaller increase means that

there is a deformation in the generated images. This can be observed by comparing

Figure 4.10c and 4.10d. The slough area gets smaller in the former one, which causes
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a slight MSE increase. Models with a higher number of training images, i.e., 2000

and 4000, follow a similar pattern to the 1000-image model.

MSE score of the fifth epoch results is negligible as generated images are not

good enough to mimic wound texture and detail. Training the model with a smaller

dataset for a more extended number of epochs results in overfitting, i.e., an increase

in MSE score. This can be seen in Figure 4.13, especially after the 500th and 200th

epochs. It is confirmed that increasing dataset size and epoch count until the 500th

epoch gives a better MSE score. For the first 200 epochs of training, the decrease in

MSE score is so significant that later increase of training has minimal effect on the

score. Therefore, 200-epoch is the optimum epoch number for training the proposed

method. The amount of dataset size to generate plausible images is 1000 because the

1000-image model generated most life-like wounds, as seen in Figure 4.10a. That’s

why we conclude that the 1000 images and 200 epochs of training are the optimum

training hyperparameters for plausible wound image generation.

4.5 Discussion

The proposed method generates synthetic wound images that have an input of

segmented tissue outline, shown in Figure 4.2. The output is compared with the

ground truth wound images. Two views of a successful result from the model are

presented in Figure 4.3 and Figure 4.4, indicating optimal synthetic wound generation

from the segmentation of a wound by training with 4000 images and 2000 epochs. The

generated wound image is combined with the rest of the limb. The generated wound

tissue has a life-like structure, proper color, and detailed texture. The colors of the

wound tissues are well-matched and conformable. Figure 4.5 shows the loss graphs of

the L1 loss of models with the different training datasets. The loss curves have similar

characteristics. The model with fewer training images learns the data distribution

faster and stabilizes loss earlier than the model with more training images.
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The generated image comparison with respect to epoch count and training dataset

size is shown in Figures 4.7 - 4.12. An increase in the training dataset size helps to

generate more plausible wound images. Blurry images become more realistic with an

increase in dataset size given the same conditions, i.e., epoch count. These results

show that a lack of training can be overcome by increasing the training dataset

size. The effect of epoch count is also examined in Figures 4.7 - 4.12, where better

wound images are produced with increased training. Figure 4.9a - 4.9d prove that

the impact of epoch count overcomes the deficiency of the training dataset. Further

training yields better-wound images.

These extensive investigations suggest that the optimal performance for synthetic

wound generation could be achieved using 1000 images and 200 epochs of training.

On the study results, the following observations regarding the application of the

WG2AN model could be made.

Observation 1 : The proposed model can perform synthetic wound generation from

provided wound segmentation.

Observation 2 : WG2AN has a high potential of producing close to real synthetic

images.

Observation 3 : The quality of the generated images is in line with the image

count. 1,000 image count is the threshold for a valid generated image as the results

of our study.

Observation 4 : The epoch count has a significant impact on the generated image

quality. Yet, after surpassing a 200-epoch threshold, the model reaches its conver-

gence, and additional training has a marginal effect on the quality of the generated

image.

Observation 5 : The WG2AN model can generate detailed tissue texture.

Observation 6 : Lack of training can be solved by increasing the training dataset.

Observation 7 : Scarcity of training images can be mitigated to some extent by
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further training the model.

Observation 8 : Generated wound images can be combined with any part of the

body to demonstrate the wound characteristics at that body location.

4.6 Conclusion

This chapter compiles a synthetic wound image generation using the proposed

WG2AN architecture. Synthetic wound generation using GAN is implemented for

the first time in the literature. The wounds are segmented with respect to tissue

types using semi-automatic ML techniques. The proposed model is then fed with

segmented wound images to generate synthetic wounds.

With respect to patient privacy and the lack of enough datasets for wound images

in healthcare, the generation of synthetic anonymous wound images could enable

further studies in AI, which could improve the adoption of AI in clinician training.

L1 loss is also examined in order to understand the impact of training dataset size

and epoch count, where the loss curve does not reveal much information other than

models’ learning behavior. The generated images are examined and compared visually

to evaluate their resemblance to a real wound. It can be concluded that the hardship of

finding adequate training images in healthcare can be mitigated by additional model

training. The effect of dataset size is also evaluated visually for further analyses. An

increase in the training dataset brings in more life-like wound images. The results

of different dataset sizes and epoch counts are evaluated through the MSE metric to

compare the generated image. The generated images are expected to be very similar

to actual wound images. This is why the MSE metric gives acceptable guidelines

when comparing actual and synthetic images. The proposed model confirms that the

1000-image model with 200 epochs of training yields optimum results. Increasing

these parameters could provide better synthetic images.

As future work, the segmentation of the wound could be done in more detail. In
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addition, the use of the proposed model in an education package could bolster the

performance and practice of medical training.

Balancing underrepresented classes with synthetic image generation could help

with the adoption of AI in the healthcare industry, where sourcing context-specific

data is expensive. It is expected that this study can provide a handy clinician tool

for generating and interacting with live wound models.
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5 Chronic Wound Care and Digital Twin

Throughout this dissertation, we have proposed many AI models to enhance

chronic wound management with the idea of generalized care for any wound. Devel-

oped models form a framework in the wound healing continuum that could successfully

provide end-to-end care using wound images. What we proposed and developed in

this study’s scope aligns with the digital twin concept to wound care. That is why

we bring up the digital twin concept to wound care.

There have been many attempts to provide optimum healthcare services with ad-

vanced computing and communication technologies in the last decades. The digital

twin is an emerging technology that promises personalized and predictive healthcare.

The digital twin concept has been broadly accepted in many fields, such as manufac-

turing, construction, smart building, smart grids, smart cities, and more. However,

its application in healthcare is still in its infancy. The digital twin in chronic wound

management will shed light on providing optimal treatment pathways and better

interpretation of the treatment.

This chapter will thoroughly examine the potential of the digital twin in chronic

wound management. Section 5.1 lays the scene for digital twin and chronic wound

management. Section 5.2 visits the potential and use of digital twins in healthcare.

One of our primary contributions in this area is to research the applicability of the

digital twin concept to chronic wound care management. Section 5.3 reviews chronic

wound management and its components. Section 5.4 assesses the enabling technolo-

gies that lead to real-time digital health twin. Section 5.5 and 5.6 put forward the

digital twin concept in chronic wound management. Section 5.7 concludes the chap-

ter.

5.1 Introduction

Wound management has been studied for many years since its healing requires
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dedicated care [12]. This chapter will extend these studies to the digital twin concept,

where a digital clone of the wound would be built to ease the plan and track the

wounds. Besides diagnosis and management, prognosis and decision support systems

for chronic wounds could be developed using AI and the recently adopted digital twin

concept in healthcare. Digital twins are essentially virtual replications of physical

objects and processes. They use the Internet of Things, AI, and complex data in

models that create insights and support (real-time) decision-making. It is perhaps

healthcare that holds tremendous potential for digital twins.

Healing chronic wounds take weeks or months, requiring periodic examinations

and continuing care. Digital twin application in wound care is feasible as longer and

slower healing pace of hard-to-heal wounds will provide flexibility to handle surfacing

health conditions. This chapter examines chronic wounds and the digital twin concept

to develop a digital twin framework for chronic wound management. Contributions

of this study two folds:

(i) Investigation of chronic wounds and digital twin technologies for healthcare.

(ii) Development of digital twin framework for chronic wound management and

human digital twins.

5.2 Digital Twin in Healthcare

The digital twin concept in healthcare is still in its infancy due to privacy concerns

and the vulnerable nature of healthcare. The authors study the security aspect of

the digital twin usage in healthcare in [144]. Blockchain-based secure digital twin

framework is proposed, and a case study covering the recent COVID-19 pandemic is

discussed to provide security of the shared data. Another study that emphasizes vul-

nerability detection for cyber resilience in healthcare digital twin is explored by the

authors in [145]. One of the prior works proposes cloud-based digital twin healthcare

(CloudDTH) for elderly patients [146]. The cloud-based healthcare service platform
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is proposed for real-time monitoring, crisis warning, medication reminder, and dis-

ease diagnosis. One of the case studies that utilize digital twin is proposed for an

electrocardiogram classification framework to diagnose heart disease and detect heart

problems using ML techniques [147]. An Ischemic Heart Disease (IHD) recognition

digital twin architecture is also proposed by the authors in [148]. The presented digi-

tal twin model works on the edge and utilizes CNN to classify myocardial conditions

with an accuracy of 85.77%. Authors in [149] integrate digital twin with multi-agent

systems as mirror worlds in a case study. This case study digitalizes to support the

process of trauma management. An augmented digital twin is proposed to lay the

foundations of the complete life cycle digital twin of a human being [150]. In addition

to these, the potential of the digital twin technology in health is reviewed by Erol et

al. [151].

These studies indicate that the utilization of the digital twin concept has great

potential. More case studies should be done to unleash this potential since the needed

technology is available. New methods and technologies should also be adopted to

overcome privacy and security issues in the digital twin.

5.3 Review of Chronic Wound Management

Chronic wound management requires special care in order to heal [12]. Treatments

and the lengthy healing course are tracked with long-established visual methods. In

this section, the tissue types, treatment methods, and evaluation metrics are examined

for the construction of digital twins.

5.3.1 Types of Wounds and Tissues

There have been various diseases and incidents that could harm and break the

integrity of the skin. Wounds could be classified into two groups regarding their

healing process, i.e., acute and chronic. Acute wounds follow an orderly path during

the healing and tend to heal in a short period of time. In comparison, chronic wounds
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distinguish by their complicated and challenging healing process. These kinds of

wounds are also called hard-to-heal wounds. Along with hardship in healing, some

could pose severe risks like loss of limbs and mortality.

Some of the hard-to-heal wounds are pressure injury, burn, venous, diabetic, and

surgical. Pressure injury wounds are caused by stress or force on the skin’s surface,

resulting from limited mobility. Prolonged inpatient stay and lack of movement at

hospitals also pose a greater risk of pressure ulcers [152, 153]. Diabetes is one of the

largest epidemics in this century; around half a billion people suffer from it [154]. One

of the complications of diabetes is nerve damage, and neuropathy [155]. Studies have

shown that patients with diabetes have around 20% risk of developing an ulcer that

costs more than US$10 billion in the US only [156, 157]. Another primary wound type

is vascular or arterial wounds, caused by poor blood flow below the knee, affecting

both legs. A similar wound type, venous ulcers, are developed as a result of damaged

veins from high blood pressure [158]. These wounds share similar characteristics, but

different approaches are required to cure them. Burn wounds are also prevalent and

caused by heat which damages the tissues and underlying structure of the body [159].

These are some of the notable wound types.

The wound tissues are tracked for centuries as visual inspection of the wounds

plays utmost importance in determining the status of the wounds. There is a Red-

yellow-black (RYB) tissue classification methodology that was introduced by Cuzzell

in 1988 [160]. This tissue classification provided a more straightforward and univer-

sally accepted system that red areas can be granulation, yellow areas can be slough,

and black areas contain eschar (necrotic) tissue [161]. Eschar (Black) and slough

(Yellow) are tissues that are not ready to heal. These tissues will be removed to

accumulate a swift healing process.

5.3.2 Continuum of Wound Healing

After the incident, the injury breaks the blood circulation and causes bleeding.
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Granulation tissue (Red tissue) plays an essential role in healing. There are four

phases for the healing of wounds. The hemostasis phase is the first step of healing.

In this phase, the wound is sealed with various molecular binding agents. The in-

flammatory phase will cause swelling due to the production of a transudate. With

this phase, infections are prevented. The proliferative phase will form new tissues

and blood vessels for the circulation of enough oxygen and nutrients. The remodeling

or maturation phase will provide the required materials to heal a wound completely.

These phases follow a planned healing procedure that chronic wounds do not follow

any order.

5.3.3 Treatment Methods and Evaluation

The healing endeavor has been discussed and practiced for many centuries since

wounds are easily recognized visually, and their track depends on visual assessment

in the first place. Cleansing the wound and removal of the dead tissue, also called

debridement, is critical in some cases. After the application of debridement, readily

healed tissues have emerged, and healing is sped up with the living tissue. Ultrasound,

laser surgery, or irrigation are some debridement methods used in current wound

management. Another essential method to treat and heal wounds is dressing, which

could be dry or wet [162].

Each wound type has its own characteristics and requires distinct treatment meth-

ods. Pressure injury wounds are treated using various dressing hydrogels (water-based

gels), hydrocolloid dressing, and foam dressings. Diabetic ulcers are treated with a

silver ion foam dressing. Besides this, this type of wound care requires a care team to

manage the wound appropriately. Improving blood circulation is one of the essential

methods to cure arterial or vascular wounds. Compression stockings could be used

to prevent blood pressure to cure venous ulcers. Burn wounds could benefit from

dressings as well. Severe burns could require skin grafting from other healthy parts

of the body.
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Various ointments and dressings could be used to fight infection and oral medicines.

The techniques mentioned above are some of the traditional treatment methods that

can cure wounds. There are also dressing-free therapies and skin grafting, and 3D

bioprinting techniques. Emerging therapy solutions are investigated and proposed

continuously to improve healing procedures and patients’ quality of life.

The wound evaluation is carried out by surface area measurement, which is a sim-

ple and least expensive method. Some of the previously utilized methods are rulers,

mathematical models, manual planimetry, digital planimetry, stereophotogrammetry,

and digital imaging methods [163]. The latter method has been adopted as it is non-

invasive and provides better results. There are also near-infrared methods such as

angiography, laser speckle contrast imaging, and optical coherence tomography [164].

5.4 Enabling Technologies

5.4.1 High-Performance Computing

High-performance computing (HPC) is essential for developing the digital twin in

healthcare [165]. The digital twin requires efficient data management, processing, and

analysis. These tasks are demanding in terms of speed and accuracy. For instance,

the digital twin requires a large amount of data to model the patient, which is im-

possible with a single computer. Therefore, HPC is required to manage and analyze

this data. In addition, HPC will help to take advantage of the data collected from

various sources, such as Electronic Health Records (EHRs), clinical trials, sensors,

and imaging devices [166]. HPC can be used to develop new treatments, diagnostic

tools, personalized medicine, and clinical trials in the healthcare field.

5.4.2 Internet of Things

Internet of Things (IoT) is a network of physical devices, vehicles, buildings, and

other items embedded with electronics, software, sensors, actuators, and connectivity,

enabling these objects to connect, collect, and exchange data.
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IoT in healthcare can provide many benefits, such as improving patient care, re-

ducing costs, and improving clinical outcomes. In addition, IoT can be used for

remote patient monitoring, patient engagement, and disease management. IoT can

monitor patients’ vital signs and wound healing progress in chronic wound manage-

ment. For instance, IoT can collect data from sensors placed on the patient’s skin to

monitor the wound’s healing progress.

In addition, IoT can be used for remote patient monitoring. For instance, patients

with chronic wounds can be monitored remotely using IoT devices. These devices can

collect data from patients and send it to healthcare providers. This data can monitor

the patients’ health and provide them with the necessary care. That is why IoT

systems are essential parts of the digital twin in healthcare.

5.4.3 Artificial Intelligence (AI)

AI is the ability of a computer system to perform tasks that require intelligence.

AI can be used for various tasks, such as decision making, pattern recognition, and

natural language processing. AI has been used in many fields, such as manufacturing,

automotive, and healthcare. AI in healthcare can provide many benefits, such as

improving patient care, reducing costs, and improving clinical outcomes.

In chronic wound management, AI can be used for various tasks, such as wound

classification, segmentation, and healing prediction. AI can be used to classify wounds

into different categories, such as burns, ulcers, and cuts. AI can also be used to

segment wounds into different parts, such as the edges, center, and surrounding tissue.

AI can also be used for wound healing prediction to predict the healing progress of

wounds.

5.4.4 Edge / Fog Computing

Edge computing is a distributed computing paradigm that brings computation

and data storage closer to the location needed to improve response times and save
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bandwidth. Edge computing is used in many applications, such as video streaming,

virtual reality, and autonomous vehicles. In healthcare, edge computing can be used

for digital twin tasks, such as patient monitoring, disease management, and clinical

decision support.

5.4.5 Cloud Computing

Cloud computing is a type of computing that provides computing resources over

the Internet. Cloud computing can be utilized for digital twin tasks, such as storage,

data analysis, and ML. Cloud computing can be used for multiple tasks in health-

care, such as patient data management, disease management, and clinical decision

support. Cloud computing has many benefits, such as scalability, flexibility, and

cost-effectiveness.

5.4.6 Privacy Enhanced Techniques for Electronic Health Records

A massive amount of data is generated by chronic wound patients, which is con-

fidential and must be protected. Data privacy concerns and privacy-enhanced tech-

niques should be adopted to protect the data used in digital twins. In particular,

data privacy concerns and privacy-enhanced techniques are used to protect the data

in EHRs. There are two different approaches to protecting the privacy of sensitive

health records.

The first approach is to encrypt the EHRs using homomorphic encryption tech-

niques before storing them in the cloud. The second approach uses federated learning

techniques to train the ML models on the EHRs without sharing the EHRs with the

central server. Homomorphic encryption is a type of encryption that allows math-

ematical operations to be performed on ciphertexts, which results in an encrypted

result that, when decrypted, matches the result of the operations as if they had been

performed on the plaintext. There are three subcategories of homomorphic encryp-

tion: partially homomorphic encryption, somewhat homomorphic encryption, and
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fully homomorphic encryption.

The second approach to protecting sensitive EHR privacy is federated learning.

Federated learning is an ML method that allows multiple devices to train an ML

model without sharing their data or with a central server. The devices train the

ML model on their local data and send the model parameters to the central server.

The central server then aggregates the model parameters from all the devices and

updates the global model. The devices then download the updated global model and

continue training the model on their local data. This process is repeated until the

global model converges. The main advantage of federated learning is that it allows

the ML model to be trained on the data of multiple devices without sharing the data

or with a central server.

5.4.7 Blockchain

Distributed Ledger Technology (DLT) refers to one of the emerging Industry 4.0

technologies implemented as Bitcoin in 2009. Blockchain Technology is a subcategory

of DLT and a more popular terminology. Thus DLT is used interchangeably in the

industry and academy. DLT is offering new opportunities for the challenging nature

of the digital twins in healthcare. Collected data in digital twin applications in

healthcare require utmost security to eliminate any breach or modification. Corrupted

data could bear a high risk for the digital twins as it will lead to wrong decisions

[167]. Many functions in the digital twin could also be realized using smart contracts.

After a triggering event happens, a smart contract could initiate a default behavior

[168]. Having secure, immutable, and robust characteristics, DLT enables reliable

and automated digital twins. Figure 5.1 characterizes the use of Blockchain in the

digital twin.

5.4.8 Communication Networks

As communications technology evolves rapidly from 4G to 5G and beyond net-
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Figure 5.1: Blockchain implementation on digital twin.

works, a large number of technologies are expected to benefit from these networks in

terms of high speed, latency, accuracy, and security. The complexity of the services

such as the digital twin is not an incremental increase but an exponential leap. In

addition, the implementation of digital twin applications often demands always-on

service and near real-time solutions. These factors pose grand challenges in develop-

ing digital twin models utilizing 5G and beyond networks.

To overcome these challenges, advancement in communications is a promising and

potential solution that can facilitate the Data Acquisition (DAQ) for digital twins

with less complexity, less costly, and more timely. From data collection to its storage,

network technologies such as Bluetooth, Wi-Fi, NextG, LoRa, 5G, and beyond will

be employed for digital twins.

5.5 Chronic Wound Management System using Digital Twin

Wounds generally heal between 4 and 6 weeks and show signs of healing within

this time frame. However, the chronic wound fails to heal through the typical phases

of wound healing in an orderly and timely manner. Although there are many studies

and efforts to develop therapeutic ways to treat chronic wounds effectively, there is
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limited clinical success in chronic wound healing. One of the main reasons is the

lack of effective chronic wound management systems or their limitations in terms of

technology integration and adaptation [169]. Fortunately, the advanced data commu-

nication and computing technologies along with new concepts, e.g., digital twin, can

overcome all these issues and provide a perfect wound management system beyond

expectations. A digital twin is defined as a digital replica of anything from people and

processes to systems. A proposed general system architecture is shown in Figure 5.2

for human digital twin. The proposed architecture consists of four main components,

namely data collection, data management, analysis model management, and digital

twin. Each component is briefly explained below.

Figure 5.2: Proposed system architecture for human digital twin.

5.5.1 Data Collection

The data collection is the starting point of the proposed platform by collecting

data from several resources, such as IoT based-devices, i.e., the Internet of Medical

Things (IoMT), and healthcare systems. The primary IoMT sensors are pressure,

temperature, blood oxygen, image, and flow sensor. This list can be extended as

well. IoMT based-devices enable healthcare systems to be more interactive and con-
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nect with the patients. This type of patient care leverages connected devices with IoT

sensors to offer providers a continuous stream of real-time health data such as heart

rate, blood pressure, and glucose monitoring. Data collected from IoMT devices can

also help to find out the best treatment process for patients. IoMT-based applications

are also promising in the healthcare sector. These IoMT-based applications include

remote patient monitoring, glucose monitoring, heart-rate monitoring, hand hygiene

monitoring, depression and mood monitoring, Parkinson’s disease monitoring, con-

nected inhalers, ingestible sensors, connected contact lenses, and robotic surgery, and

many more [170]. In addition to the data collected from IoMT sensors, patient infor-

mation is also very crucial in healthcare applications, especially wound management,

such as age, gender, smoking, any drug, any previous condition, chronic wound type,

diabetes, etc.

5.5.2 Data Management

The second component of the proposed architecture is data management using

cloud sources. This component consists of two steps, namely cloud integration and

data processing. Cloud-based systems provide enhanced interoperability and consoli-

dation of the data. Without a uniform data management system, data transmission,

processing, and model development tasks suffer from asynchronous and complex data

flow. Cloud services provide real-time data collection and monitoring, which pave

the way for the digital twin concept. Without cloud sources, the required infrastruc-

ture for data processing and model deployment will cause a burden to many health

organizations [146]. Monitoring patients with chronic wounds at home is possible by

using cloud services. The use of the cloud will increase the treatment outcomes by

providing real-time data.

The collected data also needs processing, i.e., data processing, to produce mean-

ingful information for robust analysis and decision and digital twins. This process

includes removing or filling in the missing values, detecting outliers, and normalizing
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the data.

5.5.3 Analysis and Model Management

The third component of the proposed architecture is the analysis and model man-

agement. The proposed architecture offers a prescriptive analytic, where AI and big

data combine to help predict outcomes and identify what actions to take. In the

proposed architecture, prescriptive analytics allows one to take a deeper look into the

data and answer “what” and “why” questions for wound data, such as healing stages,

wound size details, etc.

Model management is a sub-component of the proposed architecture. A model

should be consistent and accurate in terms of performance metrics. Therefore, a log-

ical, easy-to-follow policy for model management is crucial for model management.

The primary purpose of model management is to provide a system for the develop-

ment, training, versioning, and deployment of models. It is expected that the models

to be developed will be AI-based models. The model management makes it easier

to manage the model life-cycle from creation, configuration, experimentation, and

tracking of the different experiments, all the way to model deployment. Under the

model management, models are also monitored, trained, or retrained with different

deployment deployment strategies. Tracking, comparing, and deploying a model

without model management would be challenging.

5.5.4 Digital Twin

The last component of the proposed architecture is the digital twin. In wound

management systems, digital twins are utilized to build digital representations of

those wound data through computer models. Digital twin technology can be used to

generate a virtual twin of a wound to review healing stages, size, and type details, to

identify the improvement and challenges. Collected tabular data from both sensors

and patient information could be utilized for forecasting tasks such as wound closure
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or healing times. By estimating patient discharge time, used resources could be

arranged more effectively. In addition to this, required treatments or operations could

also be forecasted using various information gathered from patients’ health history

and current status with the help of AI models.

The digital twin subpart in the proposed architecture provides a software-as-a-

medical service. The digital twin of the wound is generated from the developed

model using collected data. It is also expected that the proposed systems embedded

in digital twins can help optimize the software in medical devices as well as caregivers

capture and find information shared across physicians and multiple specialists. A

proposed image-based digital twin system for chronic wound management is depicted

in Figure 5.3. Images of the wound are used to construct the digital twin of the

chronic wound. The wound image is segmented to understand underlying tissue

distribution then a wound healing prediction model forecasts the healing progress of

the current chronic wound using AI models trained on similar cases. A lifelike wound

is generated to visualize the wound itself. The status of the actual wound is assessed,

and an appropriate treatment method is chosen accordingly.

5.6 Discussion

The application of the digital twin concept into chronic wound management will

ease the overwhelming burden that cumbered the healthcare system. Required con-

tinuous clinic visits and care will be reassessed since real-time monitoring and virtual

twin of the wound could detect and flag any imminent health issues. The more

digitalized wound care could bring many benefits and challenges, such as:

Observation 1 : Digital twins can significantly enhance the track and care of

wounds by increased monitoring and forecasting capabilities.

Observation 2 : Personalized care could be achieved with data-driven approaches

that could lead to more efficient and effective care and improved outcomes.
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Figure 5.3: Proposed framework for chronic wound management using a digital twin.

Observation 3 : Digital twins will provide more information to the patients and

encourage them to take more actions for their wellbeing.

Observation 4 : Digital twins will increase the use of telehealth applications as a

result of synchronous track of the wounds. Any medical issue could be detected, and

appropriate medical attention could be sought right away.

Observation 5 : Newly emerging technologies such as augmented reality and meta-

verse could be utilized together with the digital twin concept.

5.7 Summary and Conclusion

Chronic wounds or hard-to-heal wounds require special care as their healing course

is out of order and takes longer times in comparison with acute wounds. In order to

alleviate the high cost of constant care and track, new technologies should be adopted.

The digital twin is one of the critical technologies that could lift this burden with the

use of improved data management and ML techniques.

In this chapter, the adoption of the digital twin in healthcare, i.e., chronic wound
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management, is examined thoroughly to reach optimal treatment and management

of wounds. Pieces of the digital twin are reviewed to increase the opportunities and

awareness further. Chronic wounds and enabling technologies of the digital twin

are explored. A framework for the proposed chronic wound management system is

detailed using the digital twin concept. The proposed image-based model gathers

images of wounds and processes them to feed into an ML model. ML model then

predicts the healed version of the current wound to enhance wound management. In

addition to an image-based system, a hybrid model that utilizes both tabular data

coming from IoMT devices and visual data could realize a more comprehensive digital

twin formations.

This chapter sheds light on the digital twin concept adaptation into chronic wound

management. It is expected that this chapter will provide comprehensive knowledge

that can enhance the researchers, engineers, and institutions’ vision to reshape their

approaches for more efficient and effective wound management systems.
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6 Digital Twin Framework for Chronic Wound

Management

Digital twin technology has been in use for almost fifty years, but its adoption

in healthcare is relatively new. Providing treatments to chronic wounds could be

enhanced by using data-driven models, i.e., digital twin, which could improve the

outcomes. Tailored treatments by building a digital twin in healthcare will play an

essential role in identifying problems beforehand. The progress of the wound could

be foreseen with the application of different treatments with the help of a digital twin

in advance, which is not possible on the real wound. So possible treatment methods

could be assessed before applying to the real wound. The early identification of

non-healing wounds could also be accomplished, which will help arrange and adjust

chronic wound treatment effectively.

In this chapter, we analyze and design a chronic wound management framework

using state-of-the-art AI and digital twin technology. Digital correspondence of the

actual wounds will simulate and imitate the healing progress. Section 6.2 and Sec-

tion 6.3 review the previous works to tackle chronic wound management problems

and the use of digital twins in healthcare. The proposed chronic wound management

framework using digital twin is presented in Section 6.4. Phases of wound care with

a digital twin are explained in Subsection 6.4.3. Details of the developed model for

wound healing prediction are presented in Section 6.5. Section 6.6 share and discuss

the results. Section 6.7 overview the opportunities and challenges while adopting the

digital twin concept. Section 6.8 conclude the chapter.

6.1 Introduction

Classic wound assessment methods such as optical are still in use since the best

way to describe a wound’s progress is explained visually [171, 172]. The change in

tissue distribution and growth is tracked by most caregivers, where proportions of the
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tissues provide helpful information to analyze the state of the wound and its healing

status [173]. In addition to this, there is still room for the advancement of imprecise

optical techniques with the help of image processing and AI [174, 175, 176]. Non-

healing or slow-healing wounds could also be identified early with the use of advanced

computer vision techniques to provide medical care promptly [177].

ML techniques, especially DL, provided an unprecedented leap in image-based

medical tasks such as detection, classification, and segmentation [178]. The use of

these models in healthcare, i.e., wound care, is also realized by many works. These

prior studies provide image analysis models capable of either measuring wound area or

extracting the wound tissue’s characteristics individually. The classification of chronic

wounds is also studied. However, AI techniques could be incorporated together to

complete the modeling of human physiology. In the previous chapter, digital twin use

in wound management is introduced.

The digital twin concept will allow us to track and model health issues successfully.

A digital twin for chronic wounds, which is essentially a virtual replica of a chronic

wound, could provide many benefits, such as automated and enhanced medical care

with the use of AI techniques that could improve patients’ quality of life. Furthermore,

telehealth applications will also harness recent advances in the digital twin. Even after

the recent pandemic, telehealth applications boomed at an unpredictable rate where

management of wounds through less-trained resources (patient or family) became

possible [179]. Increased use of smartphones and wearable devices allows patients

to be more proactive with any health concerns, from identifying to tracking health

conditions. By incorporating these technologies and processes, digital twins of chronic

wounds could revolutionize the management of chronic wounds.

Wound care requires frequent visits to a clinic on a regular basis for wounds to

be evaluated by the caregiver, which is time-consuming and causes high costs [180].

Moreover, tracking manual visual examination in these continuous visits requires a
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laborious and complicated procedure that lacks quantifiable healing parameters. In

this chapter, a digital twin-based chronic wound management framework is developed,

and a new model that can predict wound healing is proposed. The main contributions

of this study two folds:

(i) Development of the digital twin concept and its components for chronic wound

care.

(ii) Development of a novel chronic wound healing prediction model that could

forecast the progress of wounds and identify the non-healing wounds.

6.2 Related Works

Many previous works utilize the ML methods to tackle problems in chronic wound

management. For instance, in [181], the author discussed the potential role of ML in

wound care. It is proposed that standardization and specialization of wound care will

be achieved with the use of data and DL techniques. The study in [21] systematically

reviews the image-based AI’s current state in wound assessment. Results suggest that

AI-based wound management platforms will deliver data-driven care efficiently. The

authors in [182] developed a prototype with a sunburst diagram to evaluate the clinical

decision support system to gain insights regarding its functionality. Their results are

affected by the insufficient data, while the sunburst diagram for diagnosis was found

to be beneficial. In another study, Howell et al. in [183] proposed an AI-based

wound assessment tool to evaluate the percentage of wound tissues quantitatively

and qualitatively. Around 1200 wound photographs were collected from two wound

care centers, and 199 images were selected for this study in total because of the

quality of the images. Results validated that AI models could be in good use to

determine wound features to obtain accurate wound assessment. Recent advances in

wearable bioelectronics are examined in [184]. Principles and current trends in wound

biosensors are discussed with the challenges and future perspectives.
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Also, advanced techniques based on AI have been proposed and employed to assess

wounds remotely in recent studies. In [185], the authors explored the telehealth appli-

cation of CNN to detect wounds. Four CNN architectures, namely SegNet, LinkNet,

U-Net, and pre-trained U-Net, are prepared to evaluate their performances. Results

show that U-Net-based architectures demonstrated better performances where the

base U-Net model achieves a specificity of 0.943 and sensitivity of 0.993. In an-

other study [186], wounds of 150 patients are evaluated using an AI-powered medical

device for clinical validation. Results show that medical devices reached 97% accu-

racy against wound bed preparation classification and tissue segmentation analysis in

comparison with a physician. In [20], data-driven specialization of wound care and

up-skilling through the use of AI-based models are discussed in the context of digital

health. A smartphone-based wound assessment system is proposed by Wang et al. in

[187] to enable the active participation of patients with diabetes in daily wound care.

After capturing them with a smartphone, they segment the wound images using an

accelerated mean-shift algorithm. Authors determine the healing status of the wound

by the widely accepted RYB wound tissue classification system [160]. Experiments

have been performed on two categories of wound images. The first dataset consists

of 30 simulated wound images, whereas the second dataset consists of 34 images of

actual patients. Simulated wounds are relatively simple than the actual ones. Results

show that their model accurately classifies tissues of simulated wounds. In contrast,

the results of the analysis of clinical images are not sufficient due to the complex na-

ture of the skin color and texture. The location and variable illumination conditions

affected their model as well. It could be inferred that the number of data and their

quality affects the performance of the models. Another study that uses the RYB

system is conducted by Chitra et al. to investigate the performance of the Random

Forest (RF) algorithm on the classification of chronic wound tissues [188]. In general,

existing approaches attempt solely to solve wound detection, segmentation, and tissue
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classification problems. However, complete wound care could be accomplished with

wound healing prediction and ultimately forming a digital twin of the wound.

6.3 Digital Twin in Healthcare

As mentioned previously, the digital twins can be defined as digital replications

of physical systems and processes with maintaining synchronization [189]. Digital

twins are a relatively new concept in healthcare, while their first use dates back to

Apollo 13 shuttle in 1970 [190]. Its incredible potential to revolutionize healthcare

brought colossal attention. The developments in IoT systems such as Wireless Body

Area Networks (WBAN) and underskin implants enable digital twin technology by

the real-time accumulation of personal vitals more accurately [191].

Transferring the idea of a digital twin to healthcare has been discussed and studied

in recent studies [146, 147, 151, 192, 193, 194, 195, 196]. These studies examine the

digital twin concept to orchestrate an ecosystem of data for the healthcare domain.

Many studies, such as [146, 147] proposed digital twin architectures based on IoT

and cloud systems. These critical enabling technologies are investigated, and details

regarding system workflows are assessed in detail. These studies provide illustrative

solutions to digital twins’ implementations, focusing on patients and the data flow.

In a position paper by Corral-Acero et al. [197], the applications of the digital twin

concept to cardiovascular medicine are reviewed. This study suggests that mechanistic

and statistical models need to be coordinated to tackle challenges for the deployment

in the treatment and prevention of cardiovascular diseases.

Another potential use of digital twins is to personalize the medicine. Current

healthcare utilizes only a small number of biomarkers, whereas increased data and

processing capabilities yield countless opportunities thanks to the availability of IoT

devices and advanced computing power. Customized medicines and vaccines have

already been proven to fight against diseases, i.e., recent COVID19 mRNA vaccines.
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In [198], the authors investigated the potential use of digital twins for personalized

medicine. The drug with the significant effect could be selected for each patient with

the use of a digital twin concept. The studies laid down here are only some of the

recent applications and reviews that have been published in recent years. Thousands

of new digital twin studies in healthcare are reported at an increasing rate each year.

6.4 The Proposed Chronic Wound Management Framework
Using Digital Twin

The proposed chronic wound management framework consists of many elements,

including data collection, data processing, analysis, model development, and forming

a digital twin. After digital twin formation, processing and prediction with the use of

AI tools are made. Then wound treatment method is chosen considering the outcomes

of the previous step. The status is reassessed, and the digital twin will be synchronized

with regard to feedback from the examination. A simplified overview of the proposed

framework is shown in Figure 6.1.

6.4.1 Collection, Processing, and Analysis of the Data

Data collection and its security are essential parts of the digital twin concept in

healthcare. Wound data could be collected via many sources such as prescreening

questionnaires, heart sensors, glucose levels, and intelligent devices such as watches,

phones, and IoT gadgets. The CIA triad [199] should be implemented to assure

information security to provide confidentiality, integrity, and availability of the data.

Data encryption and authentication methods should be adopted to address privacy

concerns. Deployment of blockchain technologies will be an alternative to the current

methods to enhance data storage and availability safely.

There are different kinds of data available in a digital twin concept. Without a

doubt, tabular data is one of them, and it could provide information about patients’

demographics such as gender, medical history, smoking status, and age. Besides pa-
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Figure 6.1: Chronic wound management framework using digital twin.

tient demographics, wound characteristics such as wound area, type, and location are

also recorded in wound care facilities. However, varying recordings of this informa-

tion include inaccuracies, inconsistencies, and duplications [200]. Depending the low

quality of the data causes unreliable models, which hinders the applicability of the

models. One of the critical studies by Fife et al. [201] compared the healing rates

of the publicly reported wound outcomes. This study finds that the healing rates

of the wounds posted by the providers appear impossible in such a short time with

an acceptable outcome. A detailed criterion needs to be developed and adopted for

the honest recording of wound outcomes. The proposed model in section five of this

study utilizes image data to form a digital wound. After collecting both tabular and

image data, preprocessing will be done with the use of python or R libraries such as

OpenCV, NumPy, and pandas to deal with data properties such as data shape, scale,

and missing data. Feature engineering techniques are also great tools in tabular data
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in order to find the underlying trends. Then an analysis of the data will be utilized

to gather insights to develop analytic tools and models.

Our proposed model in section five uses an RYB tissue classification system where

blue is chosen instead of black for better visuality. The strength of this classification

technique is well studied and universally accepted in the wound care field. Tradi-

tionally, the wound healing process continuum consists of three phases: reaction,

regeneration, and remodeling [161], which could be analyzed by the RYB system as

well. Granulation, slough, and eschar are represented by red, yellow, and blue colors,

respectively. This method offers a dependable, universal, comprehensible, and com-

prehensive representation of wounds for assessing the wounds. By using this system,

appropriate interventions have been designed and applied in wound care facilities

for many years for better treatments. That is why we have decided to use the red-

yellow-blue system to evaluate and form a chronic wound management framework.

6.4.2 Model Development and Digital Wound

Model development and its adoption in healthcare are still in their infancy due to

high risk and privacy issues. Two different kinds of datasets could be used in data-

driven digital wound management. The first one utilizes tabular data to forecast

the wound status as well as the wound healing rate [202]. The classification and

regression methods are used in these tasks. These ML architectures will reveal the

relations between the predictor variables [203]. Forecasting methods will be used to

predict the outcome of the wound using the wound area measurements.

Image-based ML models are utilized for most standard computer vision tasks in

wound care, i.e., detection, classification, and segmentation. As previously explained

in related works, current studies focus on assessing the wound status by either clas-

sifying the wound or segmenting it. The measurement of the wound area is also

calculated with image-based methods. Wound detection and classification models are
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developed using CNNs as well as utilizing transfer learning methods. Transfer learning

benefits from previously learned features and transfer this information to new tasks.

The most used transfer learning models are ResNet, VGG16, and EfficientNet. These

networks are pre-trained using different datasets such as ImageNet and CIFAR-10.

These datasets consist of millions of images with hundreds of classes. Learned feature

extraction capabilities and then re-trained to classify chronic wounds. In addition to

classification models, XAI techniques are developed to make the classification results

more transparent since ML models, especially DL models, are black-boxes to the users

[30, 204, 205].

Segmentation of the wound and its tissues is another task that will be used to form

a digital twin of the wound as well. Segmentation of wounds is simply a classification

of each pixel to a class. If only the wound is segmented, there will be two classes,

i.e., wound and rest. If there are more classes, such as three different tissue classes,

this will be a multi-class segmentation. This task provides the necessary informa-

tion to understand the current status of the wound. However, segmenting the wound

will not be sufficient for forming a digital wound. The segmentation of tissues has

great importance as it will allow for further processing and forecasting of the wound

by gathering tissue information. Tissue segmentation will allow tracking the tissue

distribution and wound healing status in consecutive images. Tissue distribution pro-

vides essential information regarding the wound status since different tissues indicate

unalike healing paths.

Other tasks that could be developed using wound images are detecting non-healing

wounds and predicting wound healing. These tasks will predict the wounds’ devel-

opment in a certain period. To forecast the wounds’ succeeding status requires the

knowledge of current wound properties. As tissue types affect the wound appearance

and distribution of these tissues is used to disclose the status of the wound, tissue

segmentation could be used to identify the successive wound status.
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6.4.3 Phases of Wound Care with Digital Twin

Digital representation of the wound consists of many elements that require syn-

chronization periodically. The digital twin framework for chronic wounds has four

steps, i.e., digital twin of the wound, process and predict, evaluation and treatment,

and status examination, that makes a loop through the life of the wound. These

stages enhance the wound status and improve treatment method choice.

(i) Digital Twin: Construction of a digital twin framework for chronic wound man-

agement is achieved using the data collection from similar cases, model building,

and storing this information in a database. Models and their properties are de-

signed and implemented to illustrate the physical wound on a digital platform

in this phase. Data analysis tools and ML techniques are used to represent the

features of the wound.

(ii) Processes and Predictions: After constructing the digital twin with various

data-driven models, these models are applied to the chronic wound at hand by

utilizing the sensor data to analyze and predict the outcomes using AI models.

AI models previously trained on similar cases are used to classify, localize, and

segment the wounds as a first step. These processes will help understand and

quantify the underlying wound features such as tissue distribution and wound

area. By using these and other tabular data coming from both sensors and

prescreening questionnaires, additional models will be run to analyze the devel-

opment of the wound. The wound healing prediction model is also proposed to

identify non-healing wounds in this study. The proposed model provides essen-

tial information for the early detection of severe conditions that might lead to

limb losses.

(iii) Evaluation and Treatment: In this stage, the interaction between the digital

twin and the physical twin is realized by evaluating the previous stage’s results.
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After examining the wound with its digital, proper wound care could be planned

and implemented by the intervention of professional caregivers. The digital twin

is more than just a decision support system for the treatment methods; it could

furnish the Key Performance Indicators (KPIs) and increase the situational

awareness related to the status of the wound and, ultimately, the patient’s

status.

(iv) Wound Status Examination: After choosing and implementing the customized

treatment, the obtained outcome of the medical administration is monitored and

assessed. Furthermore, the resulting wound status will be utilized to update the

digital twin framework using the sensors’ data. Physical and digital twins are

synchronized by enhancing the whole framework with current wound data.

6.5 Development of an AI Tool for Digital Twin

Tracking chronic wounds is an essential part of wound care as chronic wounds

do not heal timely and in a proper way. Identification of non-healing wounds has

utmost importance since non-healing status poses serious outcomes such as illnesses

and loss of limbs. The proposed model is developed to forecast the progress of wound

healing using wound images. To project the progress of a chronic wound using images

following tasks should be implemented:

(i) Classification of the wound type.

(ii) Segmentation and the classification of wound tissues.

(iii) Prediction of the wound tissue distribution.

(iv) Generation of lifelike wound.

These tasks will provide essential information to form a digital twin for wound

care. The flow of the proposed model and tasks are visualized in Figure 6.2. An
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image of the wound will be taken and preprocessed to remove the background from

the image. The tissue segmentation will be done to comprehend and extract the

wound’s features. The wound healing prediction model will forecast the distribution

of the wound tissues after four weeks of treatment. Another model will map this

tissue distribution to lifelike wound images in order to be easily understood by the

caregiver. Four weeks of the treatment are chosen as this time period is used to

evaluate wound status, and it is found that 50% of the wound area will be closed in

four weeks [172, 206, 207, 208, 209].

Figure 6.2: Wound healing projection model.

Perfect prediction of a wound’s progress is almost impossible as every wound heals

differently. The healing progress prediction could be beneficial significantly while

detecting a non-healing wound as this condition is an essential indicator of treatment

outcome. The tasks mentioned above are studied in our prior works [30, 32, 31] except

wound healing. This section develops the wound healing prediction and identification

of non-healing wound tasks using the state-of-the-art DL model, i.e., GANs [28].

6.5.1 Data Collection, Preprocessing, Environment, and Validation

Image data used in this study is collected from the chronic wound data repository

provided by eKare Inc. It provides 3D imaging and AI solutions to analyze wound

healing and optimize clinical workflow in hospitals and clinics worldwide. Provided

images are collected using commercially available cameras by caregivers in a natural

hospital environment during regular patient visits. Various chronic wound types are

included in the repository, such as pressure injury, diabetes, lymphovascular, and
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surgical wounds. The diversity of wound types increases the performance of the

model. The proposed model gets tissue segmented wound images and its healed

tissue segmented images after four weeks of conventional treatment, shown in Figure

6.3.

(a) Wound Image (b) Tissue Segmentation of (a)

(c) Wound Image (d) Tissue Segmentation of (c)

Figure 6.3: Samples from the dataset (a) and (b) a wound image and its segmentation
prior to treatment, (c) and (d) same wound and its segmentation after four weeks of
treatment.

Tissue distribution is one of the critical features in chronic wounds, which unfold

the status of the wound successfully. Therefore, tissue segmentation could be seen as

a feature extraction method for wound images. There are 700 wound couples, and

%10 of them are used for testing, and the rest is used for training.

A broadly accepted RYB tissue classification technique is adopted in segmenting

the images. Instead of black, blue is chosen for better visibility. The wounds are

semi-automatically segmented for the ground truth, and the resulting segmentation

is reviewed by the MD specializing in wound care. Wound images are anonymized and

rescaled to 512x512 pixels. Data augmentation techniques such as flipping, mirroring,
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and rotation are utilized to improve the model’s performance and robustness.

The proposed model is trained using the PyTorch DL framework on the VS Code

with Python version 3.6. Our implementations ran on Intel® Core ™ i7 -7800X CPU

@3.50 GHz with 16 GB RAM and NVIDIA GeForce GTX 1080 GPU with 8 GB

dedicated and 8 GB shared memory. The proposed model is trained for 200 epochs,

which took around 7 hours. It has a batch size of 64 and a learning rate of 0.0002.

Validation of the study is challenging due to the complexity of the problem. Since

each wound heals differently and depends on many conditions such as diets and activ-

ities, producing an exact healed version of a wound is almost impossible. That is why

we have used percentages of wound tissues and wound area as a validation method

in our study. Also, a comparison of these values will give sufficient information for

identifying non-healing wounds, which is one of the goals of this study. To compare

the percentages of the tissues’, the MSE metric is utilized. MSE metric can be written

as follows:

MSE =
1

n

n∑
i=1

[(PR − P ′
R)2 + (PY − P ′

Y)2 + (PB − P ′
B)2] (6.1)

Where:

n: Number of pixels

PR, PY, PB: RYB pixel percentages of the actual images

P’R, P’Y, P’B: RYB pixel percentages of generated images.

Area measurement error is also compared with the following equation 6.2:

PE = 100 · Actual − Predicted

Actual
(6.2)

Where:
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PE: Percentage Error

Actual: Real Image Area Measurement

Predicted: Predicted Image Area Measurement

6.5.2 Implementation Using GAN

GANs have been used in many applications such as DeepFake and style transfer.

It is a powerful tool to generate new images with the help of the generator (G) and

discriminator (D) couple. The overview of the model is depicted in Figure 6.4. The

generator network is fed with the random Gaussian noise (z) and wound images before

the treatment (x), then it generates the healed version of the wound after four weeks

of treatment (y), G: x, z→ y. This type of GAN implementation is also described

as conditioning the generated image with an input image. Input images behave like

labels, and the outputs are generated with the same input image domain structure.

That is why these implementations are also referred to as cGAN [104]. Feeding the

generator network with noise produces unique output generation. The generated im-

ages are unique with this formation while maintaining the training dataset’s aligned

and paired data distribution. The Discriminator network (D) is trained by the train-

ing dataset simultaneously with the generator network to learn the data distribution

of output images. Discriminator network classifies newly generated images whether

they are from the training set or not D: x, y→ [0,1]. Each network has different

loss functions; the discriminator network is updated directly by classifying actual and

generated images’ sigmoid cross-entropy losses. At the same time, generator loss is

a sigmoid cross-entropy loss with the L1 loss, which depends on the discriminator

network. This concurrent training of both networks results in non-converging loss

results in training [112]. After maturing the generator network and training with the
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Figure 6.4: The overview of the model.

(a) Original wound segmen-
tation before the treatment

(b) Ground truth segmen-
tation after treatment

(c) Predicted wound seg-
mentation after treatment

Figure 6.5: The proposed model outputs successful results.

discriminator network, the generator network is employed to generate test images.

6.6 Results and Discussion

After running the model on the test set, results show that the proposed model

successfully predicts the healing progress of a chronic wound so that it can be adapted

to identify non-healing wounds correctly. A sample output of the model is conveyed

in Figure 6.5c.

A sample wound progress and the output of the proposed model are shown in

Figure 6.5. The development of the natural wound is mimicked by the model success-

fully. The wound prior to the treatment has slough and granulation as well as a small

amount of eschar. After four weeks of treatment, the look of the wound indicates that

previously granulated areas are healed thoroughly. Slough tissues healed; moreover,

the granulation tissue appeared in the same sites. The necrotic tissue also falls off,

and the granulation tissue grows in these sites. A similar healing path can be tracked
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in the predicted model output depicted in Figure 6.5c. The tissue distribution and

area measurements show a similar development. The shape of the wound is also sim-

ilar to the actual wound. The orientation of the predicted wound is not in line with

the actual ones ideally since data augmentation techniques are implemented, and ev-

ery wound heals differently. By considering these features, it could be said that the

proposed model successfully predicts the healing progress of a chronic wound. The

healing prediction is evaluated using area percentage (predicted vs. actual) and the

change in tissue distribution (predicted vs. actual) since the healing wounds share

similar tissue distribution.

6.6.1 Comparison of Area

Area comparison is one of the KPIs used in wound care. In this section, the

comparison between natural wound healing and predicted wound healing is being

made to determine the performance of the proposed method. The MSE metric and

the difference in wound area percentages will be calculated to discuss the results

further.

Figure 6.6 depicts the progress of a sample wound. It can be deduced that the

progress of the wound is not always healing. After an excellent decreasing wound area

trend is broken, the wound area increases significantly. This change can result from

a treatment method or another secondary health problem complication. The early

identification of this non-healing condition is vital to prevent further health concerns

such as limb loss. Also, there is a wrong recording which leads to a substantial

decrease.

Wound area decreases or increases during the whole continuum of wound care.

The decreasing trend is targeted in most cases to heal the wound completely. Wound

area information of the dataset is given in Table 6.1, including mean, max, and min
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Figure 6.6: A sample wound healing with respect to area.

Table 6.1: Change in wound area after four weeks of treatment (Real vs. Predicted).

Area
Change

Original wound change (%) Predicted wound change (%)

Min Area -37.8 46.2
Mean Area 49.4 51.2
Max Area 82.2 56.8

area.

The results indicated that the area increase could happen in chronic wounds that

need to be detected before the severe outcomes. After four weeks of treatment, min

area change is found to be -27.8, indicating that the wound is worsening. Figure 6.7

depicts an example of a worsening wound and the output of the model’s prediction.

The depicted wound in Figure 6.7 is a non-healing wound, and it is not healing with

the applied treatment; however, our model indicates the expected healing progress,

which will be used to warn caregivers and patients. Looking at our model output

caregiver or the patient could detect the non-healing wound successfully.
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(a) Wound segmentation
prior to treatment

(b) Segmentation after four
weeks of treatment

(c) Predicted wound seg-
mentation after four weeks
of treatment.

Figure 6.7: A sample of worsening wounds and its prediction by the model.

6.6.2 Comparison of Tissue Distributions

The wound tissues are of utmost importance as the wounds heal with changing

tissue phases. Change in tissue distributions is given in Table 6.2. Areas with eschar

or necrotic tissue are non-viable due to the reduced blood supply, and it will fall off

during the healing. Areas with slough are also dead tissue caused by increased cell

deaths and white blood cells. Moreover, areas with granulation are an indicator of

healing [210]. That is why a healing wound should have more granulation concerning

other types of tissues. The proportion of the eschar should be decreased during the

healing process. The absence of granulation indicates a lack of adequate blood flow

and impedes healing.

Table 6.2: Change in wound tissue distributions.

Stage vs Tissue
Change

Granulation (Red)
Tissue (%)

Slough (Yellow)
Ratio

Eschar (Blue)
Tissue (%)

Before Treatment 58.7 32.9 8.4
After Treatment 69.9 24.5 5.6
Predicted 64.7 31.4 3.9

The results are also analyzed using the MSE metric. MSE value of 25.84 is calcu-

lated using equation 6.2. MSE score indicates that around 74 percent of the tissues

are predicted correctly. Results indicate that the proposed model could predict simi-

lar tissue distribution. Another result is conveyed in Figure 6.8. Original and healed

wound segmentations are shown in Figure 6.8a and 6.8b, respectively. Figure 6.8c
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(a) Wound segmentation
prior to treatment.

(b) Segmentation after the
four weeks of treatment.

(c) Predicted wound seg-
mentation after four weeks
of treatment.

Figure 6.8: A sample of worsening wounds and its prediction by the model.

indicates the predicted wound segmentation after four weeks of treatment.

6.7 Opportunities and Challenges

With the adoption of the digital twin concept, digitalized healthcare will provide

many benefits. The digital transformation which revolutionized many industries could

be carried to healthcare with the help of the digital twin concept. Its benefits could

be listed as:

1. Personalized wound care will be the first benefit of the digital twin concept

as it presents a data-driven and synchronous approach to the wound at hand.

Imminent health issues will be detected, and caregivers will be warned in real-

time. Personalized treatments will improve the outcomes.

2. Lower costs and higher efficiency are other benefits of the digital twin for wound

management. Frequent visits to clinics will be minimized, saving time and

money for both patients and clinicians. Furthermore, with the improved tele-

health approaches that could use digital twin, patients and their families could

play an active role. Treatments and medicines tailored to patients’ needs will

also result in efficient resource management.

3. Improved and increased self-aware decision support systems could be developed,

and treatments and medicines will be better analyzed for each patient. Digital

twin for wound care management conveys previous experiences to the new pa-
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tients that will improve the performance of the applied treatment. Optimized

healthcare will be given to the patients with detailed risk assessments.

4. Advanced analysis by gathering unseen correlations and insights will be made

using the digital twin for wound care. AI is capable of completing many tasks

with high accuracy. The underlying correlations could be detected effectively

by the AI systems. This is the result of using data-driven models and depends

on the quality of the data. The insights given by the analysis of AI systems will

be helpful in choosing and adjusting the treatment parameters.

Despite having enormous potential in digital twin for chronic wound management,

there are still challenges that need to be addressed. Following problems persist in

broad acceptance of the digital twin concept in wound care.

1. Technical difficulties such as multiple sourcing caused the complexity of the pro-

cesses that need to be tackled. Integration of IoT devices will also be practical

and effective in providing real-time data flow. Besides, simultaneous processing

of this data is essential to uncover the interactions of the accumulated informa-

tion. Furthermore, Cloud-based services, IoT and AI will play a significant role

in overcoming these difficulties.

2. Data security and privacy are other fields that need attention for adequately

handling sensitive information by the digital twin frameworks. The CIA triad

will be put to use with data encryption authentication techniques. Besides

these conventional methods, blockchain technologies have significant potential

to be applied in digital twin implementations for chronic wound management

and other data-sensitive areas.

3. Interoperability and standardization are the key elements in digital twin systems

to gather and process valuable information. Differences and inconsistencies in
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record-keeping hinder the data quality, resulting in inaccurate models. Interop-

erable systems and standard data and processing structures should be developed

for a feasible and scalable digital twin framework.

4. Resource management and network requirements in a healthcare facility are

other domains that need enhancement. The increased need for reliable, concur-

rent, and secure communication between digital and physical twins demands

better quality of service. Display and update the real-time data, and their

analysis will generate a massive memory load. New cloud-based technologies,

fog, and edge computing will be utilized to address these requirements.

5. Collaborative environment creation of digital twin in healthcare is still in its

infancy. Many major companies provide digital twin solutions for manufacturing

industries. However, the healthcare industry still cries out for reliable, efficient,

functional digital twin systems.

6.8 Conclusion

Chronic wounds cause a decrease in the quality of a patient’s life with the loss of inde-

pendent movement and altered lifestyle, including daily activities, emotions, sleeping,

and eating habits. These wounds could be non-healing, primarily resulting from in-

competence, misdiagnosis, inappropriate treatment strategies, or neglect [207], and

cause pain and reduced quality of life.

This study presents a framework for using the digital twin concept for chronic

wound care management to improve the outcomes. The elements of the digital twin

are examined, and the phases of digital twin use are explained. A new AI tool to

predict the wound healing status is proposed to enhance the use of AI in digital

twin for chronic wound care. The proposed model uses images of chronic wounds

before treatment and the same wounds’ images after a four-week treatment. The

first step is to segment images to extract their tissue features. The proposed model
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is trained to learn the tissue segmentation of the same wound after four weeks of

treatment. With this study, wound healing prediction was performed for the first

time using tissue segmentation. The proposed model provides straightforward, fast,

and accurate implementation without requiring labor-intensive preprocessing.

Visual and quantitative analyses are conducted to validate the study. MSE results

indicate that the model performs successfully, but further improvement will be im-

plemented for finetuning. The scope of this study includes the prediction of various

wound outcomes after four weeks of treatment. The progress of each wound type dif-

fers notably. However, tissue healing follows similar phases. In order to overcome the

limitation of finding structured data, tissue segmentation is a practical alternative.

With increased and structured data, the results will be further enhanced. Another

future study will be the extension of the study to enhance the proposed model by hy-

perparameter optimization and the use of high-quality structured images. We should

admit that wounds and their care have a colossal complexity that requires profes-

sional involvement. This study is expected to benefit the wound care community and

researchers working on digitalized healthcare by extending the concept of a digital

twin to chronic wound care. The telehealth applications using the digital twin con-

cept will also provide valuable insights regarding the active participation of patients

and their families in wound care.
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7 Conclusions and Further Developments

The preceding chapters have provided several aspects of chronic wound manage-

ment, including model and framework developments. In this chapter, a summary of

the major contributions is presented in Section 7.1. Further research directions are

suggested in Section 7.2.

7.1 Conclusions

The main contributions presented in this dissertation can be summarized in five

folds:

(i) A novel chronic wound classifier that can categorize chronic wounds and explain

why they belong to that category. The transfer learning technique is leveraged

to extract features of the wound images which will shorten the time for classifi-

cation and improve the classifier performance. In addition to transfer learning,

a novel explanation method is developed and proposed to highlight the wound

features that affect its classification. Utilizing this proposed XAI technique to

explain wound classification can help shed new perspectives on clinicians and

physicians during the diagnostic phase.

(ii) A new AI-based computer vision model is developed to localize and segment the

wound as well as its tissues. This hybrid approach is developed using a state-of-

the-art DL model, i.e., GAN, which provides a straightforward implementation

advantage and catches the data distributions accurately. The proposed model

will assist caregivers and clinicians in determining a proper wound treatment

plan by assessing the wound location, area, and tissue distribution. Assessing

these features is key to well-planned chronic wound care management. Hyper-

parameter optimization is also studied to find optimal conditions.

(iii) Scarcity of medical images hinders the development of computer vision models
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due to the privacy issues related to patients and hospitals. A new approach

has been developed to overcome privacy issues as the proposed model could

generate lifelike images of wounds without breaching the privacy of the patients

and hospitals. The proposed model is built conditionally using the GAN model.

This model could also be suitable for clinician training in medical schools to

improve chronic wound care. Hyperparameter optimization is also realized to

find optimal conditions for the DL-based model.

(iv) The digital twin concept is one of the critical technologies that transform many

industries, but its adoption in healthcare is still in its infancy. The use of

digital twin in chronic wound management is proposed by using AI methods.

The digital twin concept for health has great potential to fulfill personalized

and predictive healthcare. Enabling technologies of a digital twin for wound

management are examined after revising concepts and approaches to chronic

wound care management.

(v) We have proposed a data-driven wound healing prediction framework to improve

wound healing tracking with the assistance of DL. Instead of complex and time-

consuming ruler-based measuring systems, a data-driven approach using wound

images of successive weeks is used to predict the wound status after a certain

period of time. A digital version of the wound is built using the digital twin

concept, which could imitate the healing progress of the actual wound. By

using this framework, tailored treatments will be planned for optimal treatment

strategy for better outcomes.

7.2 Further Developments

Chronic wound care management is a critical healthcare field that requires con-

tinued care. Many new healthcare approaches arise from applications in AI and the
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digital twin. They provide new venues and motivations for future works. These

directions include:

(i) The aforementioned chronic wound care management approaches utilize the

wound images, whereas tabular data is not used. Although there are different

approaches and inconsistencies for keeping tabular data, it is required to collect

tabular data for a complete treatment plan. Tabular data includes patient

demographic information and other health data such as smoking status and

previous health conditions. Forecasting of wound closure rate and healing time

could be realized with the help of tabular data.

(ii) Most of the studies in the chronic wound care field utilize the RGB images.

However, the technological advancement in hyperspectral imaging could open

new approaches to chronic wound management by accessing beyond the RGB

spectrum. Although current literature has some implementations using hyper-

spectral imaging [211], these applications are limited by the number of patients

and wounds. New AI models could be developed to incorporate the features

detected by hyperspectral imaging, such as blood flow, temperature, and oxy-

genation.

(iii) Many healthcare fields utilize visual assessments in many forms, such as regular

images, X-rays, and CT scans. The previously developed AI models could be

utilized for different healthcare problems like eye and oral diseases. Human

digital twin will also be possible by utilizing these AI models for personalized

healthcare.
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