
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Engineering Technology Faculty Publications Engineering Technology 

2021 

The Enlightening Role of Explainable Artificial Intelligence in The Enlightening Role of Explainable Artificial Intelligence in 

Chronic Wound Classification Chronic Wound Classification 

Salih Sarp 

Murat Kuzlu 
Old Dominion University, mkuzlu@odu.edu 

Emmanuel Wilson 

Umit Cali 

Ozgur Guler 

Follow this and additional works at: https://digitalcommons.odu.edu/engtech_fac_pubs 

 Part of the Artificial Intelligence and Robotics Commons, Diagnosis Commons, Electrical and 

Computer Engineering Commons, and the Investigative Techniques Commons 

Original Publication Citation Original Publication Citation 
Sarp, S., Kuzlu, M., Wilson, E., Cali, U., & Guler, O. (2021). The enlightening role of explainable artificial 
intelligence in chronic wound classification. Electronics, 10(12), 1-15, Article 1406. https://doi.org/
10.3390/electronics10121406 

This Article is brought to you for free and open access by the Engineering Technology at ODU Digital Commons. It 
has been accepted for inclusion in Engineering Technology Faculty Publications by an authorized administrator of 
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/engtech_fac_pubs
https://digitalcommons.odu.edu/engtech
https://digitalcommons.odu.edu/engtech_fac_pubs?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/945?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=digitalcommons.odu.edu%2Fengtech_fac_pubs%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/electronics10121406
https://doi.org/10.3390/electronics10121406
mailto:digitalcommons@odu.edu


electronics

Article

The Enlightening Role of Explainable Artificial Intelligence in
Chronic Wound Classification

Salih Sarp 1, Murat Kuzlu 2 , Emmanuel Wilson 3, Umit Cali 4,* and Ozgur Guler 3

����������
�������

Citation: Sarp, S.; Kuzlu, M.; Wilson,

E.; Cali, U.; Guler, O. The

Enlightening Role of Explainable

Artificial Intelligence in Chronic

Wound Classification. Electronics 2021,

10, 1406. https://doi.org/10.3390/

electronics10121406

Academic Editors: Hüseyin

Kusetogullari, Turgay Celik, Chafik

Samir, Amir Yavariabdi, Antonio

Orlandi and Byung-Gyu Kim

Received: 10 April 2021

Accepted: 7 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Virginia Commonwealth University,
Richmond, VA 23284, USA; ssarp001@odu.edu

2 Batten College of Engineering & Technology, Old Dominion University, Norfolk, VA 23529, USA;
mkuzlu@odu.edu

3 eKare Inc., Fairfax, VA 22031, USA; ewilson@ekareinc.com (E.W.); oguler@ekareinc.com (O.G.)
4 Department of Electric Power Engineering, Faculty of Information Technology and Electrical Engineering,

Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
* Correspondence: umit.cali@ntnu.no

Abstract: Artificial Intelligence (AI) has been among the most emerging research and industrial
application fields, especially in the healthcare domain, but operated as a black-box model with a
limited understanding of its inner working over the past decades. AI algorithms are, in large part,
built on weights calculated as a result of large matrix multiplications. It is typically hard to interpret
and debug the computationally intensive processes. Explainable Artificial Intelligence (XAI) aims
to solve black-box and hard-to-debug approaches through the use of various techniques and tools.
In this study, XAI techniques are applied to chronic wound classification. The proposed model
classifies chronic wounds through the use of transfer learning and fully connected layers. Classified
chronic wound images serve as input to the XAI model for an explanation. Interpretable results
can help shed new perspectives to clinicians during the diagnostic phase. The proposed method
successfully provides chronic wound classification and its associated explanation to extract additional
knowledge that can also be interpreted by non-data-science experts, such as medical scientists and
physicians. This hybrid approach is shown to aid with the interpretation and understanding of AI
decision-making processes.

Keywords: chronic wound classification; transfer learning; explainable artificial intelligence

1. Introduction

After alternating between periods of great passion and setback [1], AI has found its
place as a critical component of growth in a variety of applications [2]. These applica-
tions range from diagnostic decision assistants in healthcare, safety-critical systems in
autonomous vehicles, and long-term financial investment planning, and benefit from these
breakthroughs [3].

AI is capable of analyzing complex data and exploiting non-intuitive approaches
to derive meaningful relationships [4]. Healthcare applications based on AI are utilized
in early detection, diagnosis, treatment, as well as outcome prediction and prognosis
evaluation [5]. The barrier that stands in the way of AI applications is sourced from the lack
of transparency and black-box nature that cannot be explained directly [6]. The black-box
nature of AI systems could be explained as follows. When an AI model learns and gives an
output, it processes the data and deciphers the processed information immediately instead
of storing the learned data as a clear digital memory [7]. This is why an explainable and
understandable glass-box approach should be taken to enable transparent, trustable, and re-
traceable AI applications [8]. Chronic wound management, which is one of the important
fields in healthcare, also requires explainable AI models. In this study, AI techniques
are applied to the classification of chronic wounds, i.e., diabetic ulcers, lymphovascular,
surgical, and pressure injury.
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The Explainable Artificial Intelligence (XAI) term is coined to provide transparency
and guided inference in understanding the decision-making processes of the AI system [9].
The study in [10] provides a comprehensive review of XAI in terms of concepts, taxonomies,
opportunities, and challenges, as well as a discussion on adopting XAI techniques to
image processing. The study in [11] summarizes the recent developments in XAI and its
connection with artificial general intelligence, as well as identified trust-related problems of
AI applications. The study in [12] examines the state of AI-based FDA-approved medical
devices and algorithms. Although millions of dollars funded medical AI research in 2019,
only ten (10) medical devices have been approved by the FDA. The authors in [13] present
a comparative analysis of approved AI and ML medical devices. The approved devices
are being used mainly in radiology, and a few are qualified as high-risk devices. The
acceptance of AI is still low amongst medical practitioners with various matters related
to trustworthiness and reliability [14]. Authors in [15] identified nuances, challenges, and
requirements for the design of interpretable and explainable machine learning models and
systems in healthcare and described how to choose the right interpretable machine learning
algorithm. Conventional black-box AI systems are turned into glass-box systems with the
help of XAI techniques which provide data about the intermediate steps of the inference
process [16,17]. An example of this would be a computer-aided diagnosis system that
not only outputs a prediction but also shows where it looked during the decision-making
process by overlaying a heat map on top of an X-ray image. The study in [18] presents the
Grad-CAM technique by utilizing the gradients that are taken from the convolution layer
to generate a highlighted localization map. Grad-CAM benefits the convolutions, whereas
our proposed method calculates the most effective features by tweaking the input and
perceiving its effect on classification. Authors in [19] presented classification tasks using
LIME (Local Interpretable Model-Agnostic Explanations) to explain predictions of Deep
Learning (DL) models, to be able to make these complex models partly understandable.

In [20], the authors proposed a classification technique where they combined the
Genetic Algorithm (GA) and Adaptive Neural Fuzzy Inference System (ANFIS) to predict
heart attack through XAI at satisfactory rates. Authors in [21] developed an assisted and
incremental medical diagnosis system using XAI, which allows the interaction between
the physician (i.e., human agent) and the AI agent. Authors in [22] investigated the
problem of explainability in AI in the medical domain where wrong system decisions can
be very harmful and proposed two approaches to explain predictions of deep learning
models, (i) computes sensitivity of the prediction with respect to changes in input, and
(ii) decomposes decision in terms of the input variables. Authors in [23] investigated how
to increase the trust in computer vision through XAI and how to implement XAI to better
understand AI in a critical area such as disease detection.

This paper presents a highly transparent and explainable artificial intelligence tool
for the classification of chronic wounds, i.e., diabetic ulcer, lymphovascular, surgical, and
pressure injury. Objectives of the study are:

• Build a wound type classification model using deep learning and transfer learn-
ing methods.

• Showcase an approach to make common AI models more transparent and explainable
to understand the results and gain trust into the AI model.

• Utilize readily available AI neural networks to show that more transparency or ex-
plainability can be introduced to a variety of commonly available models, such as
transfer learning.

• Apply XAI methods to convert complex black-box AI systems to more understandable
glass box AI systems that aim to provide a look into the internal decision-making
mechanics to give the user the ability to follow the reasoning behind the AI mod-
els’ prediction.

• Provide insights into the complex decision-making processes of an AI system in the
field of healthcare applications, especially chronic wound type classification.
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2. Methodology

This section discusses the methodology of transfer learning for the wound type
classification and XAI for providing transparency to the classification task as well as the
overall model pipeline.

2.1. Transfer Learning

Predictions on new data utilizing data distributions and statistical properties of a
previously trained model are called transfer learning [24]. The same distribution of the
training and the testing dataset is needed for traditional machine learning models [25].
However, transfer learning provides flexibility and capability of training on a smaller
dataset by transfer of learned features from an old model to the new model.

The transfer learning application comprises two steps, (i) feature extraction, and
(ii) fine-tuning. The pre-trained network will extract meaningful features from new data
samples, with a final classifier added on top of the pre-trained network to do classification
tasks in the target domain. The pre-trained network masters feature extraction task with
convolutional networks. The second step is fine-tuning through freezing and unfreezing
some of the top layers from the pre-trained model to train for higher performance jointly.
ResNet [26], EfficientNet [27], and VGG16 (Very Deep Convolutional Neural Networks
for Large-Scale Image Recognition) [28] networks are a few of the successful DL models
for classification tasks. In this study, transfer learning is utilized with VGG16 architecture
in order to utilize its object detection capabilities. Its architecture is shown in Figure 1,
which gives the flexibility and best score among other DL models. VGG16 consists of
roughly 138 million parameters and is trained over 14 million images on the ImageNet [29]
database. The network is initialized with random weights before the training [30]. The
pre-trained convolution layers of the VGG16 architecture are kept frozen, and only fully
connected output layers after convolutional layers are trained in the first phase of the
transfer learning, where convolution layers’ weights are not updated. In the second phase,
the convolution layers are kept frozen, but the last convolutional layer is kept unfrozen.
The last convolution layer and fully connected layers are trained together to fine-tune
the model, i.e., deep neural networks (DNN). The weights of convolution layers from the
VGG16 are transferred to utilize their feature extraction skills. The training of the last
convolution layer provides the fine-tuning necessary to obtain better classification results.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. VGG16 architecture. 

2.2. Explainable AI 
Artificial Intelligence (AI) provides tremendous benefits in various sectors, but its 

adoption is limited due to the non-intuitive, opaque nature of machine learning models 
[31]. The internal working of an AI model is complicated and requires a strong mathemat-
ical background to understand. This can be a significant barrier to entry [32]. There are 
two kinds of approaches to explain an AI model; (i) the comprehensible, and (ii) the inter-
pretable model. Comprehensible models are explained with post-hoc explainability ap-
proaches. Classical machine learning methods (e.g., regression models and decision trees) 
are interpretable models as these reveal greater transparency when compared to convo-
lutional networks [33]. Inner workings of machine learning models might be complicated 
and hard to interpret, yet their efficiency and accuracy are higher than human perfor-
mance in many cases [34]. This improved efficiency and accuracy are the main reasons 
why we need to comprehend the inner workings of machine learning models. 

Generalized Linear Models (GLM) provide meaningful, clear, and accessible feature 
importance that indicates the relative importance of each feature when making a predic-
tion for the regression models. Outputs of regression models are a linear combination of 
features with different weights depending on the significance of features [35]. 

Tree-based models have individually meaningful features, with tabular-style da-
tasets used in these models. The connection of tree-based models to the training data re-
sults in greater interpretability with local explanations in comparison to linear regression 
models [36]. 

DL is a relatively new research field compared to classical machine learning models. 
The sheer number of parameters and non-linear structure of deep learning prevent linking 
inputs to the model prediction. Therefore, a post-hoc explainability approach is taken. 
Gradient and attention-based methods are developed and used in the context of the image 
and text-based models, respectively. The gradient-based method brings attention to im-
portant regions in the input image in the backward pass. The attention-based method 
trains attention weights, which determine how much each of the elements is in the final 
output [37]. 

Generalized explainable AI methods are designed to treat any machine learning 
model as a black-box with inputs and some outputs [38]. One of these methods is Local 
Interpretable Model-Agnostic Explanations (LIME) [39]. LIME finds the statistical connec-
tion between input and model prediction by training local surrogate models on perturbed 
inputs instead of training them globally [40]. It provides both an explanation of an in-
stance by an interpretable representation as well as visualization. This study provides the 
explainability and transparency of chronic wound classification using transfer learning 
implementation with Keras and XAI methods. 

Figure 1. VGG16 architecture.

2.2. Explainable AI

Artificial Intelligence (AI) provides tremendous benefits in various sectors, but its
adoption is limited due to the non-intuitive, opaque nature of machine learning models [31].
The internal working of an AI model is complicated and requires a strong mathematical
background to understand. This can be a significant barrier to entry [32]. There are
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two kinds of approaches to explain an AI model; (i) the comprehensible, and (ii) the in-
terpretable model. Comprehensible models are explained with post-hoc explainability
approaches. Classical machine learning methods (e.g., regression models and decision
trees) are interpretable models as these reveal greater transparency when compared to
convolutional networks [33]. Inner workings of machine learning models might be com-
plicated and hard to interpret, yet their efficiency and accuracy are higher than human
performance in many cases [34]. This improved efficiency and accuracy are the main
reasons why we need to comprehend the inner workings of machine learning models.

Generalized Linear Models (GLM) provide meaningful, clear, and accessible feature
importance that indicates the relative importance of each feature when making a prediction
for the regression models. Outputs of regression models are a linear combination of features
with different weights depending on the significance of features [35].

Tree-based models have individually meaningful features, with tabular-style datasets
used in these models. The connection of tree-based models to the training data results in
greater interpretability with local explanations in comparison to linear regression models [36].

DL is a relatively new research field compared to classical machine learning models.
The sheer number of parameters and non-linear structure of deep learning prevent linking
inputs to the model prediction. Therefore, a post-hoc explainability approach is taken.
Gradient and attention-based methods are developed and used in the context of the
image and text-based models, respectively. The gradient-based method brings attention to
important regions in the input image in the backward pass. The attention-based method
trains attention weights, which determine how much each of the elements is in the final
output [37].

Generalized explainable AI methods are designed to treat any machine learning model
as a black-box with inputs and some outputs [38]. One of these methods is Local Inter-
pretable Model-Agnostic Explanations (LIME) [39]. LIME finds the statistical connection
between input and model prediction by training local surrogate models on perturbed
inputs instead of training them globally [40]. It provides both an explanation of an in-
stance by an interpretable representation as well as visualization. This study provides the
explainability and transparency of chronic wound classification using transfer learning
implementation with Keras and XAI methods.

2.3. Model Pipeline

The proposed model architecture consists of two main parts, i.e., classification, and
explanation. In the first part of the process, the chronic wound images are classified into
four categories, i.e., diabetic, lymphovascular, pressure injury, and surgical. This part of
the model employs a pre-trained VGG16 network, i.e., transfer learning, which is capable
of extracting features using 13 convolution (conv) layers. These layers are already loaded
with pre-trained weights using the ImageNet dataset that is publicly available. The last
three fully connected (FC) layers and the softmax layer is trained with the chronic wound
dataset from the ground up to provide weights for the classification of chronic wounds.
After training the classification part of the model with these steps, images are fed to the
explainable AI part of the model, where the LIME XAI tool and heatmap are utilized for
the explanation. The process of classification and explanation of chronic wound images is
illustrated in Figure 2. The input wound image is simply classified by the model consisting
of transfer learning and DNN and then explained with an XAI tool, i.e., LIME, and heatmap
for providing transparency to the classification.
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3. Data Collection, Pre-processing, Environment, and Validation

This section discusses data collection, data pre-processing, and the test environment.
Details about the dataset are given in the data collection section. Forming a ground
truth for classification and the environment that the model runs on is explained in data
pre-processing and environment sections, respectively.

3.1. Data Collection

The chronic wound data repository, which includes diabetic, lymphovascular, pressure
injury, and surgical wound types, are collected from the eKare Inc. data repository and was
anonymized for patient privacy [41]. eKare Inc. specializes in wound management, with its
services used by many hospitals and wound clinics for patient/wound management. A to-
tal of 8690 wound images were chosen by an MD specialized in wound care to represent the
aforementioned wound types. The dataset comprises 1811 diabetic, 2934 lymphovascular,
2299 pressure injuries, and 1646 surgical wound images.

The proposed model uses wound images to predict wound etiology utilizing transfer
learning, data augmentation, and deep neural networks (DNN).

3.2. Data Pre-Processing

The dataset was reviewed by a trained MD to ensure the correct classification of
underlying chronic wound etiology. This validated classification serves as the clinical
ground-truth. Wound images are then hand-labeled for wound type classification.

The distribution of the dataset is not even, as the dataset is fine-tuned for a correct
representation of chronic wound classes. Data augmentation techniques such as mirroring,
rotation, and horizontal flip are used to increase dataset size and maintain class balance.
The dataset, 8690 images in total, was split into training and test sets comprising 6520 and
2170 images, respectively. The collected data was pre-processed to increase data quality.
This includes formatting, rescaling, and normalization of the images. Images were scaled
to 224 × 224 pixels and normalized for a faster learning process.

3.3. Environment

The proposed model was implemented using the Keras deep learning framework with
Python version 3.6. We used a workstation to run our model, which has an Intel® Core ™
i7 -8700X CPU @3.20 GHz with 32 GB memory, NVIDIA GeForce GTX 1080 GPU with 8 GB
dedicated and 16 GB shared memory. We trained the model for 1000 epochs where the
model has warmed up 250 epochs with only training fully connected (FC) layers, then an
additional 750 epoch with the training of FC layers, and the final set of the convolutional
layers. The total training of the model took around 8 h. We used a constant learning rate of
0.001 for the “RMSprop” optimizer for the training.
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3.4. Validation

Validation was done using the confusion matrix shown in Table 1. Precision gives
the ratio of correctly classified wound types over total positive wound type predictions.
Recall is a measure of how many of the positive wounds are correctly classified. This metric
checks predictions in the eye of true labels. A high recall value relates to the identification
of more true positive, and therefore, fewer incorrectly classified samples. Interestingly, both
of these metrics could be high, yet the model could still underperforms. This is why a third
metric is utilized to characterize the model performance. F1-score is a hybrid measurement
that brings together both precision and recalls for a better evaluation.

Table 1. Confusion Matrix.

Prediction

y’ = 0 y’ = 1

True label
y = 0 True Negative False Positive

y = 1 False Negative True Positive

Performance measures are given in Equations (1)–(3) below.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 score = 2 × Precision × Recall
Precision + Recall

(3)

(ROC) curve and area under the curve (AUC) are also used as performance measures
and shown in Figure 3. Higher AUC values indicate the classification capability of the
proposed model. The X-axis of the ROC curve is recall, and Y-axis is the false positive rate
(FPR) which is given in Equation (4) below.

FPR =
False Positive

True Negative + False Positive
(4)
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4. Implementation of Transfer Learning and XAI Approaches on Wound Classification

The objective of this paper is to explore and apply XAI methods on chronic wound
classification to expand knowledge about the opaque “black-box” structure of the machine
learning models. The test dataset comprised 25% of the data, while the remaining 75%
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was used as training data. Data augmentation techniques, such as mirroring, rotation, and
horizontal flip, are used to avoid overfitting and to increase the dataset for better training
performance. Test data is indexed for generalization of the model and proper comparison.
Transfer learning is realized in two steps, first, a warm-up phase, and second, a fine-
tuning phase. This study, using transfer learning, provided satisfying results according to
performance metrics, which are F1 score, re-call, and precision (features extracted from the
confusion matrix). Precision, recall, and F1-scores of each wound type, and their averages,
are compared in Table 2.

Table 2. Classification performance evaluation of the proposed model.

Model Precision Recall F1-Score

Diabetic 0.85 1.00 0.92

Lymphovascular 0.95 0.98 0.96

Pressure Injury 1.00 0.86 0.92

Surgical 1.00 0.91 0.95

Average 0.95 0.94 0.94

Higher precision values of lymphovascular, surgical, and pressure injury wound types
indicate the model performed very well with these wound types, whereas pressure injuries
were harder to diagnose (low recall score for pressure injury wounds). This means that
some pressure injury wounds are not learned or are similar to another wound type and
misclassified by the model. Lymphovascular wounds have one of the highest recall scores
among all wound types, which reveals that the proposed method is capable of diagnosing
lymphovascular wounds. The F1 score on the performance of lymphovascular wounds is
high, and pressure injury is low. Surgical wounds have fair precision and F1 scores, but
have low recall scores. Hence our model is likely to classify a surgical wound as diabetic.
The recall of diabetic wound types is pretty high, and it has one of the lowest F1 scores,
which is a result of low precision. The ROC curve and AUC results are depicted in Figure 3.
Lymphovascular and surgical wounds have the highest AUC values, whereas diabetic and
pressure injury suffers from low precision (diabetic) and recall (pressure injury).

As AI-based products provide efficiency and automation, AI becomes very popular
in low-risk fields, such as agriculture, customer services, and manufacturing. However,
applications of AI remain limited in high-risk domains such as health care, as trust is critical
in medical practice [14]. Reliability issues concerning patients and medical practitioners,
as well as regulations, hinder the adoption of AI-based systems [12]. Understanding the
rationale behind model predictions would certainly help users decide when to trust or not
to trust their predictions.

A deep neural network using the transfer learning technique was trained using
chronic wound images to predict the wound type. Accurate wound type designation helps
a clinician to classify the wound type, which serves to better steer the treatment approach.
Prediction of the image classification is then explained by an “explainer” that points to
visual features of the image that are the most important to the model. With this information
related to model rationale, the clinician can decide to trust the model or not. Model outputs
include an understandable qualitative link between inputs and predictions, which is an
essential part of the explainability aspect [42]. The rich model feature-set is too numerous
and difficult to interpret directly, yet by facilitating a guided qualitative approach, human
reasoning can be augmented with additional model data [43]. Another significant property
that a reliable explainer should have is local faithfulness. Local faithfulness is achieved by
characterizing the response of a local function with a range of adjacent inputs [44].

In this study, the DNN model with transfer learning and extended XAI technique is
used to provide explainability and transparency for wound image classifiers by visually
indicating what particular class is estimated for various model regions. The proposed
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model forms a hybrid XAI framework through the use of LIME and heatmap proposals.
LIME architecture using superpixels is implemented similar to the study in [42]. LIME
provides a set of correlated and connected pixels which are used as input to the heatmap
method. The proposed model provides a focus on the classification task through the use
of a heatmap. Medical practitioners often conceptualize the clinical problem based on
their knowledge acquired in medical school, as well as clinical experience. The heatmap
approach is a fairly naïve method of raising focus to different image regions based on the
model. The basic intuition with the use of the heatmap is that by drawing focus to certain
image regions, practitioners will narrow their attention to regions where the heatmap data
correlates with their medical intuition. Warmer colors indicate the more critical areas of the
wound in the importance map.

The proposed model classifies a chronic wound as a lymphovascular wound with a
probability of 99.9%, shown in Figure 4. Figure 4b highlights the model’s focused area for
classification tasks in the wound image with an importance map as an explanation.
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affects the model to choose the proper wound type. Diabetic wound is correctly predicted 

Figure 4. Original lymphovascular wound image and its explanation using heatmap.

Figures 5–8 show images of diabetic, lymphovascular, pressure injury, and surgical
wounds. Each wound type has a respective heatmap highlighting the focused area that
affects the model to choose the proper wound type. Diabetic wound is correctly pre-
dicted at 95.36% (Pressure injury: 4.07%, lymphovascular: 0.01%, surgical: 0.56%) and
lymphovascular wound is predicted at 100% (Diabetic: 0%, pressure injury: 0%, surgical:
0%) in Figures 5 and 6, respectively. The low diabetic wound classification probability
can be increased with additional data to amplify feature extraction of diabetic wounds
during training.
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Figure 8. The probabilities of wound types: Surgical: 99.91%, diabetic: 0.05%, pressure injury: 0.03%,
lymphovascular: 0.01% (Surgical).

Probabilities of wound classification are very high for Figure 7, i.e., pressure injury
wound at 100% (Lymphovascular: 0%, surgical: 0%, diabetic: 0%), and for Figure 8, i.e.,
surgical wound at 99.91% (Diabetic: 0.05%, pressure injury: 0.03%, lymphovascular: 0.01%).

Figure 5a,b show explanations of the most important features that contribute to the
prediction. Like Figure 5a,b, Figure 6a,b shows explanations and map features with the
highest contribution to prediction for lymphovascular classification. Both figures provide
insights as to why the wound type was predicted to be diabetic or lymphovascular. Focus
on the diabetic wound includes surrounding wound tissues and toes, with the shape of the
ulcer and its proximity to toes as the explanations of the diabetic foot ulcer.

The lymphovascular wound, as seen in Figure 5a, is explained with a focus on deeper
damaged tissue. This kind of explanation enhances trust in the wound classifier, and helps
caregivers make a decision and support their decision with a visual explanation.

The pressure injury wound explainer focuses on the wounded area and indicates the
correct placement of the wound, shown in Figure 7b. In Figure 8, a surgical wound image is
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explained with a scar pattern and the shape of the wound. The explainer identifies the scar
of the wound as the highest feature, and the wound area is highlighted by the proposed
model with an importance map.

The proposed method explains diabetic wounds with respect to wound tissue and
ulcer location. Diabetic ulcers mostly occur under the foot and follow a similar pattern. A
different diabetic wound occurs just below the ankle in Figure 9, which is misclassified as a
lymphovascular wound. This kind of ulcer is hard to differentiate from lymphovascular
wounds because of its location, as lymphovascular wounds frequently occur at the ankle.
Misclassification of a diabetic wound can also be the result of a large wound area, wherein
lymphovascular wounds typically cover larger areas than diabetic ulcers.
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Figure 9. The probabilities of wound types. Diabetic: 29%, pressure injury: 14%, lymphovascular:
56%, surgical: 1% (Diabetic).

Lymphovascular wounds are detected with high probability. There is a slightly lower
probability of a lymphovascular wound in Figure 10. The spread of the wound forms
a line that looks like a surgical wound’s scar. The darker part of the wound also looks
like a diabetic ulcer. That’s why the proposed model gives about 7 percent probability
to each wound. Nonetheless, the proposed method highlights the important area for the
lymphovascular wound correctly.
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Figure 10. The probabilities of wound types: Lymphovascular: 80.8%, diabetic: 7.4%, pressure injury:
4.5%, surgical: 7.3% (Lymphovascular).

It is assumed that the pressure injury wound in Figure 11 is misclassified due to the
size and the shape of the wound area. Pressure injury typically has a large wound area
with surrounding damaged skin. As shown in Figure 11, the wound occurs under the foot,
which is a common diabetic wound area, and also the wound area is smaller in comparison
to the regular pressure injury wounds. These comprise the reasons why the proposed
model misclassified the image of pressure injury wounds.
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Figure 11. The probabilities of wound types: Pressure injury: 27.3%, lymphovascular: 12%, surgical:
2.5%, diabetic: 58.2% (Pressure injury).

Figure 12 depicts a surgical wound, which is correctly classified with a probability of
63.4%. This surgical wound might be the result of a previous pressure injury that covered
a larger area. The vast spread of the wound causes this conclusion for the model. In
addition to this, the model is confused with the edge of the white cloth, which causes a
larger highlighted area. The darker and deeper wound in the middle might be the reason
for the high diabetic wound percentage. On the other hand, surgical wounds tend to
take a longer time to heal and may convert to diabetic ulcers in diabetic patients. Model
classification performance could be increased by collecting more data as this will strengthen
the extraction of wound features in the training phase.
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Figure 12. The probabilities of wound types: Surgical: 63.4%, diabetic: 19.4%, pressure injury: 15%,
lymphovascular: 2.2% (Surgical).

5. Results and Discussion

The proposed model extracts features with convolutional networks from a pre-trained
VGG16 network. The use of transfer learning accelerates training and produces efficient
results, as shown in Figures 4–8. Performance metric evaluation of the model on diabetic
wounds (with a precision of 0.85, recall of 1.00, and F1-score of 0.92) indicate that the model
has limitations with feature identification for this wound type. This is especially evident
with sparse datasets. Surgical wounds have a fair performance on the evaluation metrics
where precision, recall, and F1-scores are 1.00, 0.91, 0.95, respectively. Precision, recall,
and F1 scores of lymphovascular wounds are 0.95, 0.98, and 0.96, respectively. Pressure
injury wound type has one of the highest precisions, 1.00, a low recall score, 0.86, and an
F1-score of 0.92. Surgical and pressure injury wounds have good precision and low recall
scores. The recall score of pressure injury wounds is low, which is an indicator that the
proposed model has some difficulty in learning the features of pressure injury wounds.
The proposed model has the average precision at 0.95, the recall at 0.94, the F1-score at
0.94. The ROC curve and the AUC provide a visualization related to the performance of
the model on the classification task. The performance of the model could be improved with
a larger training dataset [45] and fine-tuning the hyperparameters [46].
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The second part of the model is specialized in explaining why the model gives a
specific output with a hybrid structure. This part extends the LIME technique using a
heatmap model. Heatmap is used as a tool to draw focus to image regions based on work
done with the intuition being that practitioners will take less time under guidance. The
explainer of the proposed model is successful, while the classification part of the hybrid
model could be further improved with additional data (a common problem in data-hungry
deep learning models). The explainer provides visual cues through the use of a heatmap
overlaid on wound images to indicate image regions identified by the AI model.

A clinician may eliminate certain wound types for consideration based on the location
of the wound. For example, in the case of a plantar foot ulcer, a doctor will likely eliminate
sacral pressure injury wounds from the possible wound type list. This is why wound
location is important, and an explanation of a wound type should also indicate location
information for a complete understanding. Diabetic wound type is explained via the
corresponding deeper and darker damaged tissue size and location on toes. These features
are stressed and shown in Figure 5. Lymphovascular wound features are highlighted and
shown in Figure 6, where the size and texture of the damaged tissue are essential indicators.
Explanation of the lymphovascular wound type is unexpected; its focus is on the border of
the lesion and the adjacent areas instead of the whole lesion. This is another case whereby
deep learning utilizes a non-intuitive search space that provides important information.
Pressure injury wounds are explained via wound tissue and the surrounding wound area,
as seen in Figure 7. Pressure injury wounds often have a surrounding region of newly
healed or damaged skin immediately adjacent to the larger wound. A surgical wound has
more straightforward features to explain, such as postoperative scar and stitches.

Observations deduced from the results of the proposed model are summarized below:
Observation 1: AI applications with XAI have high potential in improving explainability

and transparency in high-risk industries, such as healthcare where trust is key.
Observation 2: Limitation in the classification task is carried to the explanation part of

the model.
Observation 3: The list of possible wound types is decreased significantly based on

wound location.
Observation 4: Explainer has different approaches for each class, yet it uses a qualitative

method to explain decisions.
Observation 5: Qualitative methods may explain AI models better to non-subject

experts as model parameters and inputs alone are too numerous to be meaningful to
non-experts.

Observation 6: Given hardships in understanding quantitative methods, human rea-
soning can be augmented through qualitative methods.

Observation 7: XAI has great potential to improve overall model performance by
analyzing the effect and importance of features.

Observation 8: Non-expert users are often able to intuitively grasp the rationale behind
class decisions made by the model.

Observation 9: AI decision-making processes might be unanticipated, yet they can
provide insights and improve how we handle certain tasks through a bottom-up approach.

6. Conclusions

This paper presents a use case of wound type classification in the healthcare domain
using an explainable artificial intelligence model. The proposed model is used to augment
decision-making through clinician guidance. Moreover, the proposed method reveals the
underlying reason for a particular output by analyzing the relationship between input and
output. This study intends to showcase an approach to make common AI models more
transparent and explainable to understand the results and gain trust into the AI model.
By utilizing readily available AI neural networks, it can be shown that more transparency
or explainability can be introduced to a variety of commonly available models, such as
transfer learning.
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DNN using the transfer learning technique is utilized to predict the classification of
four wound types: diabetic, lymphovascular, pressure injury, and surgical. The model
accepts an image as input and predicts the etiology of a chronic wound as output. It
is discussed that trust is crucial for effective human interaction with machine learning
systems and that explaining individual predictions is important in assessing trust. We used
XAI techniques identified here in a healthcare application to faithfully explain predictions
of wound type classifications in an interpretable manner through the use of heatmaps.
The proposed model extends the LIME technique with a heatmap method for better
explainability. XAI techniques allow AI systems to cooperate with non-expert end-users.
The AI and end-user give each other feedback to arrive at a decision together by guiding a
human, e.g., researcher or caregivers, during a classification task. It can also explain how a
decision was made, tracing back to the inner workings of the AI system. Transparency is
crucial in developing caregiver confidence and improving wound treatment.

This study demonstrated that explanations are useful for wound type classification
in the healthcare domain, when assessing trust, to develop new approaches to wound
classification and prediction insights. The proposed hybrid model performs well on both
chronic wound classification and explanation tasks. Collecting additional data will increase
classification performance further. Interpretation of the results obtained from the XAI
module provides satisfactory information about the chosen wound type. Application of
other XAI techniques such as Taylor Decomposition, Grad-CAM, and sensitivity analysis
will enhance the overall trustworthiness of the model as well.

It is expected that this work can benefit researchers and caregivers who work in
the chronic wound management field in healthcare by providing insights into the XAI
potentials and availability in healthcare applications.
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