160,093 research outputs found

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Playing Smart - Artificial Intelligence in Computer Games

    Get PDF
    Abstract: With this document we will present an overview of artificial intelligence in general and artificial intelligence in the context of its use in modern computer games in particular. To this end we will firstly provide an introduction to the terminology of artificial intelligence, followed by a brief history of this field of computer science and finally we will discuss the impact which this science has had on the development of computer games. This will be further illustrated by a number of case studies, looking at how artificially intelligent behaviour has been achieved in selected games

    Playing Smart - Another Look at Artificial Intelligence in Computer Games

    Get PDF

    A Case for Machine Ethics in Modeling Human-Level Intelligent Agents

    Get PDF
    This paper focuses on the research field of machine ethics and how it relates to a technological singularity—a hypothesized, futuristic event where artificial machines will have greater-than-human-level intelligence. One problem related to the singularity centers on the issue of whether human values and norms would survive such an event. To somehow ensure this, a number of artificial intelligence researchers have opted to focus on the development of artificial moral agents, which refers to machines capable of moral reasoning, judgment, and decision-making. To date, different frameworks on how to arrive at these agents have been put forward. However, there seems to be no hard consensus as to which framework would likely yield a positive result. With the body of work that they have contributed in the study of moral agency, philosophers may contribute to the growing literature on artificial moral agency. While doing so, they could also think about how the said concept could affect other important philosophical concepts

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Development of Computer Science Disciplines - A Social Network Analysis Approach

    Full text link
    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and workshop proceedings. That results in an imprecise and incomplete analysis of the computer science knowledge. This paper presents an analysis on the computer science knowledge network constructed from all types of publications, aiming at providing a complete view of computer science research. Based on the combination of two important digital libraries (DBLP and CiteSeerX), we study the knowledge network created at journal/conference level using citation linkage, to identify the development of sub-disciplines. We investigate the collaborative and citation behavior of journals/conferences by analyzing the properties of their co-authorship and citation subgraphs. The paper draws several important conclusions. First, conferences constitute social structures that shape the computer science knowledge. Second, computer science is becoming more interdisciplinary. Third, experts are the key success factor for sustainability of journals/conferences

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering
    • …
    corecore