161,866 research outputs found

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    The Configurable SAT Solver Challenge (CSSC)

    Get PDF
    It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014

    Model for Human, Artificial & Collective Consciousness (Part I)

    Get PDF
    Borrowing the functional modeling approach common in systems and software engineering, an implementable model of the functions of human consciousness proposed to have the capacity for general problem solving ability transferable to any domain, or true self-aware intelligence, is presented. Being a functional model that is independent of implementation, this model is proposed to also be applicable to artificial consciousness, and to platforms that organize individuals into what is defined here as a first order collective consciousness, or at higher orders into what is defined here as Nth order collective consciousness. Part I of this two-part article includes: Summary; Introduction; Set of Postulates One; Set of Postulates Two; Overview of the Model; Model of Homeostasis; Model of the Functional Units; Model of the Body System; Model of the Other Basic Life Processes; Model of the Other Functional Systems; Model of Perceptions in the Perceptual Fields; Model of Body Processes as Paths in the Perceptual Field; & Model of Conscious Awarenes
    corecore