6 research outputs found

    Adversarial Bayesian Simulation

    Full text link
    In the absence of explicit or tractable likelihoods, Bayesians often resort to approximate Bayesian computation (ABC) for inference. Our work bridges ABC with deep neural implicit samplers based on generative adversarial networks (GANs) and adversarial variational Bayes. Both ABC and GANs compare aspects of observed and fake data to simulate from posteriors and likelihoods, respectively. We develop a Bayesian GAN (B-GAN) sampler that directly targets the posterior by solving an adversarial optimization problem. B-GAN is driven by a deterministic mapping learned on the ABC reference by conditional GANs. Once the mapping has been trained, iid posterior samples are obtained by filtering noise at a negligible additional cost. We propose two post-processing local refinements using (1) data-driven proposals with importance reweighting, and (2) variational Bayes. We support our findings with frequentist-Bayesian results, showing that the typical total variation distance between the true and approximate posteriors converges to zero for certain neural network generators and discriminators. Our findings on simulated data show highly competitive performance relative to some of the most recent likelihood-free posterior simulators

    Maximum Moment Restriction for Instrumental Variable Regression

    Full text link
    We propose a simple framework for nonlinear instrumental variable (IV) regression based on a kernelized conditional moment restriction (CMR) known as a maximum moment restriction (MMR). The MMR is formulated by maximizing the interaction between the residual and the instruments belonging to a unit ball in a reproducing kernel Hilbert space (RKHS). The MMR allows us to reformulate the IV regression as a single-step empirical risk minimization problem, where the risk depends on the reproducing kernel on the instrument and can be estimated by a U-statistic or V-statistic. This simplification not only eases the proofs of consistency and asymptotic normality in both parametric and non-parametric settings, but also results in easy-to-use algorithms with an efficient hyper-parameter selection procedure. We demonstrate the advantages of our framework over existing ones using experiments on both synthetic and real-world data.Comment: 34 page

    The m-connecting imset and factorization for ADMG models

    Full text link
    Directed acyclic graph (DAG) models have become widely studied and applied in statistics and machine learning -- indeed, their simplicity facilitates efficient procedures for learning and inference. Unfortunately, these models are not closed under marginalization, making them poorly equipped to handle systems with latent confounding. Acyclic directed mixed graph (ADMG) models characterize margins of DAG models, making them far better suited to handle such systems. However, ADMG models have not seen wide-spread use due to their complexity and a shortage of statistical tools for their analysis. In this paper, we introduce the m-connecting imset which provides an alternative representation for the independence models induced by ADMGs. Furthermore, we define the m-connecting factorization criterion for ADMG models, characterized by a single equation, and prove its equivalence to the global Markov property. The m-connecting imset and factorization criterion provide two new statistical tools for learning and inference with ADMG models. We demonstrate the usefulness of these tools by formulating and evaluating a consistent scoring criterion with a closed form solution

    Interactive Causal Structure Discovery

    Get PDF
    Multiple algorithms exist for the detection of causal relations from observational data but they are limited by their required assumptions regarding the data or by available computational resources. Only limited amount of information can be extracted from finite data but domain experts often have some knowledge of the underlying processes. We propose combining an expert’s prior knowledge with data likelihood to find models with high posterior probability. Our high-level procedure for interactive causal structure discovery contains three modules: discovery of initial models, navigation in the space of causal structures, and validation for model selection and evaluation. We present one manner of formulating the problem and implementing the approach assuming a rational, Bayesian expert which assumption we use to model the user in simulated experiments. The expert navigates greedily in the structure space using their prior information and the structures’ fit to data to find a local maximum a posteriori structure. Existing algorithms provide initial models for the navigation. Through simulated user experiments with synthetic data and use cases with real-world data, we find that the results of causal analysis can be improved by adding prior knowledge. Additionally, different initial models can lead to the expert finding different causal models and model validation helps detect overfitting and concept drift
    corecore