12,218 research outputs found

    Case-based analysis in user requirements modelling for knowledge construction

    Get PDF
    Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements

    Re-thinking technology and its growing role in enabling patient empowerment

    Get PDF
    © The Author(s) 2018. The presence and increase of challenges to eHealth in today’s society have begun to generate doubts about the capability of technology in patient empowerment, especially within the frameworks supporting empowerment. Through the review of existing frameworks and articulation of patient demands, weaknesses in the current application of technology to support empowerment are explored, and key constituents of a technology-driven framework for patient empowerment are determined. This article argues that existing usage of technology in the design, development and implementation of patient empowerment in the healthcare system, although well intentioned, is insufficiently constituted, primarily as a result of fragmentation. Systems theory concepts such as holism and iteration are considered vital in improving the role of technology in enabling patient empowerment

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    An introduction to STRIKE : STRuctured Interpretation of the Knowledge Environment

    Get PDF
    Knowledge forms a critical part of the income generation of the system and the complex environment in which actors participate in the creation of knowledge assets merits robust, eclectic consideration. STRIKE - STRuctured Interpretation of the Knowledge Environment affords an unobtrusive and systematic framework to observe, record, evaluate and articulate concrete and abstract elements of a setting, across internal and external dimensions. Inter-relationships between actor and environment are preserved. STRIKE is supported by underlying techniques to enrich data and enhance the authenticity of its representation. Adoption of photography and videography tools provides illustrative and interpretive benefits and facilitates researcher reflexivity. This structured approach to data analysis and evaluation mitigates criticisms of methodological rigour in observational research and affords standardisation potential, germane for application in a verification or longitudinal capacity. Advancing exploratory validation studies, the method is employed to evaluate the knowledge environments of two enterprises in the UK creative sector. These occupy a critical role in fostering entrepreneurial innovation alongside participant self-efficacy. Access Space in Sheffield and the Bristol Hackspace are committed to open software, open knowledge and open participation; sharing peer learning, creativity and socio-technical aims to address broadly similar community needs. Drawing on Wittgenstein’s Picture Theory of Meaning, the knowledge management perspective is abstracted from the STRIKE assessment. It is argued that the tiered analytical approach which considers a breadth of dimensions enhances representation and interpretation of the knowledge environment and presents a diagnostic and prescriptive capability to actualise change. The paper concludes by evaluating framework effectiveness, findings application and future direction

    Trail records and navigational learning

    Get PDF
    An emerging wave of 'ambient' technologies has the potential to support learning in new and particular ways. In this paper we propose a 'trail model' of 'navigational learning' which links some particular learning needs to the potentialities of these technologies. In this context, we outline the design and use of an 'experience recorder', a technology to support learning in museums. In terms of policy for the e-society, these proposals are relevant to the need for personalised and individualised learning support

    Integrating constructive feedback in personalised e-learning

    Get PDF
    When using e-learning material some students progress readily, others have difficulties. In a traditional classroom the teacher would identify those with difficulties and direct them to additional resources. This support is not easily available within e-learning. A new approach to providing constructive feedback is developed that will enable an e-learning system to identify areas of weakness and provide guidance on further study. The approach is based on the tagging of learning material with appropriate keywords that indicate the contents. Thus if a student performs poorly on an assessment on topic X, there is a need to suggest further study of X and participation in activities related to X such as forums. As well as supporting the learner this type of constructive feedback can also inform other stakeholders. For example a tutor can monitor the progress of a cohort; an instructional designer can monitor the quality of learning objects in facilitating the appropriate knowledge across many learners

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Skills for a green economy : a report on the evidence

    Get PDF
    • …
    corecore