7 research outputs found

    Cache-Enabled in Cooperative Cognitive Radio Networks for Transmission Performance

    Get PDF
    The proliferation of mobile devices that support the acceleration of data services (especially smartphones) has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceeding the throughput of the backhaul. To improve spectrum utilization and increase mobile network traffic, in combination with content caching, we study the cooperation between primary and secondary networks via content caching. We consider that the secondary base station assists the primary user by pre-caching some popular primary contents. Thus, the secondary base station can obtain more licensed bandwidth to serve its own user. We mainly focus on the time delay from the backhaul link to the secondary base station. First, in terms of the content caching and the transmission strategies, we provide a cooperation scheme to maximize the secondary userโ€™s effective data transmission rates under the constraint of the primary users target rate. Then, we investigate the impact of the caching allocation and prove that the formulated problem is a concave problem with regard to the caching capacity allocation for any given power allocation. Furthermore, we obtain the joint caching and power allocation by an effective bisection search algorithm. Finally, our results show that the content caching cooperation scheme can achieve significant performance gain for the primary and secondary systems over the traditional two-hop relay cooperation without caching

    Transmission of wireless backhaul signal in a cellular system with small moving cells

    Get PDF
    Deployment of small moving cells (SMCs) has been considered in advanced cellular systems, where wireless backhaul links are required between base stations and SMCs. In this paper, we consider signal transmission by means of multiuser beamforming in the wireless backhaul link. We generate the beam weight in an eigen-direction of weighted combination of short- and long-term channel information of the backhaul link. The beam weight can maximize the average signal-to-leakage-plus-noise ratio (SLNR), while providing the transmission robust to SMC mobility. We analyze the performance of the proposed scheme in terms of the average signal-to-interference-plus-noise ratio (SINR) and optimize the transmit power by iterative water-filling. Finally, we verify the performance of the proposed scheme by computer simulation.This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1F1A1063171)

    ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ด์šฉํ™˜.Advanced wireless communication systems may employ massive multi-input multi-output (m-MIMO) techniques for performance improvement. A base station equipped with an m-MIMO configuration can serve a large number of users by means of beamforming. The m-MIMO channel becomes asymptotically orthogonal to each other as the number of antennas increases to infinity. In this case, we may optimally transmit signal by means of maximum ratio transmission (MRT) with affordable implementation complexity. However, the MRT may suffer from inter-user interference in practical m-MIMO environments mainly due to the presence of insufficient channel orthogonality. The use of zero-forcing beamforming can be a practical choice in m-MIMO environments since it can easily null out inter-user interference. However, it may require huge computational complexity for the generation of beam weight. Moreover, it may suffer from performance loss associated with the interference nulling, referred to transmission performance loss (TPL). The TPL may become serious when the number of users increases or the channel correlation increases in spatial domain. In this dissertation, we consider complexity-reduced multi-user signal transmission in m-MIMO environments. We determine the beam weight to maximize the signal-to-leakage plus noise ratio (SLNR) instead of signal-to-interference plus noise ratio (SINR). We determine the beam direction assuming combined use of MRT and partial ZF that partially nulls out interference. For further reduction of computational complexity, we determine the beam weight based on the approximated SLNR. We consider complexity-reduced ZF beamforming that generates the beam weight in a group-wise manner. We partition users into a number of groups so that users in each group experience low TPL. We approximately estimate the TPL for further reduction of computational complexity. Finally, we determine the beam weight for each user group based on the approximated TPL.์ฐจ์„ธ๋Œ€ ๋ฌด์„  ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ (massive MIMO) ๊ธฐ์ˆ ๋“ค์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋Œ€๊ทœ๋ชจ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ๊ธฐ์ง€๊ตญ์€ ๋งŽ์€ ์ˆ˜์˜ ์‚ฌ์šฉ์ž๋“ค์„ ๋น”ํฌ๋ฐ (beamforming)์œผ๋กœ ์„œ๋น„์Šคํ•ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ์•ˆํ…Œ๋‚˜ ์ˆ˜๊ฐ€ ๋ฌดํ•œํžˆ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ์„œ ์ฑ„๋„์€ ์ ๊ทผ์ ์œผ๋กœ ์„œ๋กœ ์ง๊ต (orthogonal)ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ, ๋‚ฎ์€ ์‹ค์žฅ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง€๋Š” ์ตœ๋Œ€ ๋น„ ์ „์†ก (maximum ratio transmission)์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์‹ ํ˜ธ์ „์†ก์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ˜„์‹ค์ ์ธ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ๋Š” ์ฑ„๋„ ์ง๊ต์„ฑ์ด ์ถฉ๋ถ„ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๋Œ€ ๋น„ ์ „์†ก์€ ๊ฐ„์„ญ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. ์ œ๋กœ-ํฌ์‹ฑ (zero-forcing) ๋น”ํฌ๋ฐ์€ ๊ฐ„์„ญ์„ ์‰ฝ๊ฒŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ํ˜„์‹ค์ ์ธ ์„ ํƒ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๋น” ๊ฐ€์ค‘์น˜ (beam weight) ์ƒ์„ฑ์œผ๋กœ ์ธํ•ด ๋†’์€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์š”๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๊ฐ„์„ญ ์ œ๊ฑฐ์— ๋Œ€ํ•œ ๋Œ€๊ฐ€๋กœ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ (์ฆ‰, transmission performance loss; TPL)๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. TPL์€ ์‚ฌ์šฉ์ž ์ˆ˜๊ฐ€ ๋งŽ๊ฑฐ๋‚˜ ์ฑ„๋„์˜ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๊ฐ€ ํด ๋•Œ ๋” ์‹ฌ๊ฐํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‹ ํ˜ธ-๋Œ€-๊ฐ„์„ญ ๋ฐ ์žก์Œ ๋น„ (signal-to-interference plus noise ratio) ๋Œ€์‹  ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ ๋น„ (signal-to-leakage plus noise ratio)๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์ตœ๋Œ€ ๋น„ ์ „์†ก๊ณผ ๊ฐ„์„ญ์„ ์„ ํƒ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜๋Š” ๋ถ€๋ถ„ ์ œ๋กœ-ํฌ์‹ฑ (partial zero-forcing)์˜ ์‚ฌ์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๋ฐฉํ–ฅ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ๋น„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๊ทธ๋ฃน ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‚ฎ์€ ๋ณต์žก๋„์˜ ์ œ๋กœ-ํฌ์‹ฑ ๋น”ํฌ๋ฐ ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‚ฌ์šฉ์ž๋“ค์ด ๋‚ฎ์€ TPL์„ ๊ฐ–๋„๋ก ์‚ฌ์šฉ์ž๋“ค์„ ๋‹ค์ˆ˜์˜ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฆฌ์‹œํ‚จ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ TPL์„ ๊ทผ์‚ฌ์ ์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ TPL์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ˜•์„ฑ๋œ ๊ฐ ์‚ฌ์šฉ์ž ๊ทธ๋ฃน์— ๋Œ€ํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. System model 10 Chapter 3. Complexity-reduced multi-user signal transmission 15 3.1. Previous works 15 3.2. Proposed scheme 24 3.3. Performance evaluation 47 Chapter 4. User grouping-based ZF transmission 57 4.1. Spatially correlated channel 57 4.2. Previous works 59 4.3. Proposed scheme 66 4.4. Performance evaluation 87 Chapter 5. Conclusions and further research issues 94 Appendix 97 A. Proof of Lemma 3-4 97 B. Proof of Lemma 3-5 100 C. Proof of strict quasi-concavity of SLNR_(k) 101 References 103 Korean Abstract 115Docto

    ๊ณ ์† ์ด๋™ ํ™˜๊ฒฝ์—์„œ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์ด์šฉํ™˜.Advanced cellular communication systems may obtain high array gain by employing massive multi-input multi-output (m-MIMO) systems, which may require accurate channel state information (CSI). When users are in high mobility, it may not be easy to get accurate CSI. When we transmit signal to users in high mobility, we may experience serious performance loss due to the inaccuracy of outdated CSI, associated with so-called channel aging effect. This problem may be alleviated by exploiting channel correlation matrix (CCM) in spatial domain. However, it may require an additional process for the estimation of CCM, which may require high signaling overhead in m-MIMO environments. In this dissertation, we consider signal transmission to multiple users in high mobility in m-MIMO environments. We consider the estimation of CSI with reduced signaling overhead. The signaling overhead for the CSI estimation is a challenging issue in m-MIMO environments. We may reduce the signaling overhead for the CSI estimation by using pilot signal transmitted by means of beamforming with a weight determined by eigenvectors of CCM. To this end, we need to estimate the CCM, which may still require large signaling overhead. We consider the estimation of CCM with antennas in a uniform linear array (ULA). Since pairs of antennas with an equal distance may experience spatial channel correlation similar to each other in ULA antenna environments, we may jointly estimate the spatial channel correlation. We estimate the mean-square error (MSE) of elements of estimated CCM and then discard the elements whose MSE is higher than a reference value for the improvement of CCM estimation. We may estimate the CSI from the estimated CCM with reduced signaling overhead. We consider signal transmission robust to the presence of channel aging effect. Users in different mobility may differently experience the channel aging effect. This means that they may differently suffer from transmission performance loss. To alleviate this problem, we transmit signal to maximize the average signal-to-leakage-plus-noise ratio, making it possible to individually handle the channel aging effect. We consider the signal transmission to the eigen-direction of a linear combination of CSI and CCM. Analyzing the transmission performance in terms of signal-to-interference-plus-noise ratio, we control the transmit power by using an iterative water-filling technique. Finally, we consider the allocation of transmission resource in the presence of channel aging effect. We design a sub-optimal greedy algorithm that allocates the transmission resource to maximize the sum-rate in the presence of channel aging effect. We may estimate the sum-rate from the beam weight and a hypergeometric function (HF) that represents the effect of outdated CSI on the transmission performance. However, it may require very high computational complexity to calculate the beam weight and the HF in m-MIMO environments. To alleviate the complexity problem, we determine the beam weight in dominant eigen-direction of CCM and approximate the HF as a function of temporal channel correlation. Since we may estimate the sum-rate by exploiting spatial and temporal channel correlation, we may need to update the resource allocation only when the change of CCM or temporal channel correlation is large enough to affect the sum-rate. Simulation results show that the proposed scheme provides performance similar to a greedy algorithm based on accurate sum-rate, while significantly reducing the computational complexity.๊ธฐ์ง€๊ตญ์ด ์ˆ˜๋งŽ์€ ์•ˆํ…Œ๋‚˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋†’์€ ์ „์†ก ์ด๋“์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜(massive MIMO) ์‹œ์Šคํ…œ์ด ์ฐจ์„ธ๋Œ€ ๋ฌด์„  ํ†ต์‹  ์‹œ์Šคํ…œ์œผ๋กœ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ์ฑ„๋„ ์ •๋ณด(channel state information)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‹ ํ˜ธ ์ „์†ก ๋ฐ ์ž์› ๊ด€๋ฆฌ ๊ธฐ์ˆ ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌ์šฉ์ž๊ฐ€ ๊ณ ์†์œผ๋กœ ์ด๋™ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ๊ธฐ์ง€๊ตญ์ด ์ถ”์ •ํ•œ ์ฑ„๋„ ์ •๋ณด์™€ ์‹ค์ œ ์ „์†ก ์ฑ„๋„์ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š” ์ฑ„๋„ ๋ณ€ํ™” ํšจ๊ณผ(channel aging effect)๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ, ์‹œ์Šคํ…œ ์ „์†ก ์„ฑ๋Šฅ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ํ•˜๋ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ์œ„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์ƒ๋Œ€์ ์œผ๋กœ ์‚ฌ์šฉ์ž ์ด๋™์„ฑ์— ๋Š๋ฆฌ๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ(channel correlation matrix)์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ธฐ์ง€๊ตญ์ด ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์„ ์ถ”์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ ํฐ ํŒŒ์ผ๋Ÿฟ(pilot) ์‹ ํ˜ธ ๋ถ€๋‹ด์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์† ์ด๋™ ํ™˜๊ฒฝ์—์„œ์˜ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์—์„œ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ์‹ ํ˜ธ ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์šฐ์„ , ๋‚ฎ์€ ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ ๋ถ€๋‹ด์„ ๊ฐ–๋Š” ์ฑ„๋„ ์ •๋ณด ์ถ”์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ์‹œ์Šคํ…œ์—์„œ ์ฑ„๋„ ์ •๋ณด ์ถ”์ •์€ ํฐ ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ ๋ถ€๋‹ด์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์„ ํ™œ์šฉํ•œ ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ ์„ค๊ณ„๋ฅผ ํ†ตํ•˜์—ฌ ์ฑ„๋„ ์ •๋ณด ์ถ”์ •์œผ๋กœ ์ธํ•œ ์‹ ํ˜ธ ๋ถ€๋‹ด์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์„ ์ถ”์ •ํ•ด์•ผ ํ•˜๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ํฐ ์‹ ํ˜ธ ๋ถ€๋‹ด์ด ์•ผ๊ธฐ๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ธฐ์ง€๊ตญ์ด ๊ท ์ผํ•œ ์„ ํ˜• ์•ˆํ…Œ๋‚˜ ๋ฐฐ์—ด(uniform linear array)์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํ™˜๊ฒฝ์—์„œ, ๊ฐ™์€ ๊ฑฐ๋ฆฌ์˜ ์•ˆํ…Œ๋‚˜ ์Œ๋“ค์˜ ์ฑ„๋„ ๊ฐ„ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๊ฐ€ ์œ ์‚ฌํ•˜๋‹ค๋Š” ํŠน์ง•์„ ํ™œ์šฉํ•˜์—ฌ, ์ƒ๊ธฐ ์•ˆํ…Œ๋‚˜ ์Œ๋“ค์˜ ์ฑ„๋„ ๊ฐ„ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๋ฅผ ์ตœ์†Œ์ž์Šน์ถ”์ •๋ฒ•(least-square estimation)์„ ํ™œ์šฉํ•˜์—ฌ ์ถ”์ •ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ถ”์ •๋œ ๊ณต๊ฐ„ ์ƒ๊ด€๋„์˜ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(mean-square error)๋ฅผ ์ถ”์ •ํ•˜์—ฌ, ์ƒ๊ธฐ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ๊ฐ€ ํฐ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๋ฅผ 0์œผ๋กœ ์น˜ํ™˜ํ•˜์—ฌ ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์˜ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ๋†’์ธ๋‹ค. ๋˜ํ•œ ์ƒ๊ธฐ ์ถ”์ •ํ•œ ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์„ ํ™œ์šฉํ•˜์—ฌ ๋‚ฎ์€ ์‹ ํ˜ธ ๋ถ€๋‹ด์œผ๋กœ ์ฑ„๋„ ์ •๋ณด๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋‘˜์งธ๋กœ, ์‚ฌ์šฉ์ž ์ด๋™์„ฑ์— ์˜ํ•œ ์ฑ„๋„ ๋ณ€ํ™”์— ๊ฐ•์ธํ•œ ์‹ ํ˜ธ ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฌ์šฉ์ž๋“ค์ด ์„œ๋กœ ๋‹ค๋ฅธ ์†๋„๋กœ ์ด๋™ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” ์ฑ„๋„ ๋ณ€ํ™”์— ์˜ํ•œ ์‹ ํ˜ธ ์ „์†ก ์„ฑ๋Šฅ ์ €ํ•˜ ์—ญ์‹œ ์‚ฌ์šฉ์ž๋งˆ๋‹ค ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ์œ„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ์ฑ„๋„ ๋ณ€ํ™” ํšจ๊ณผ๋ฅผ ๊ฐœ๋ณ„์ ์œผ๋กœ ๊ณ ๋ คํ•˜๋ฉด์„œ ํ‰๊ท  ์‹ ํ˜ธ ๋Œ€ ๋ˆ„์ˆ˜๊ฐ„์„ญ ๋ฐ ์žก์Œ๋น„(signal-to-leakage-plus-noise ratio)๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ „์†ก ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‚ฌ์šฉ์ž๋“ค์˜ ์ฑ„๋„ ์ •๋ณด์™€ ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์˜ ๊ณ ์œ ๋ฐฉํ–ฅ(eigen-direction)์œผ๋กœ ์‹ ํ˜ธ๋ฅผ ์ „์†กํ•œ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ๋•Œ์˜ ์‹ ํ˜ธ ๋Œ€ ๊ฐ„์„ญ ๋ฐ ์žก์Œ๋น„(signal-to-interference-plus-noise ratio)๋ฅผ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ „์†ก ์ „๋ ฅ ๋ถ„๋ฐฐ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋์œผ๋กœ, ์‚ฌ์šฉ์ž ์ด๋™์„ฑ์— ๋”ฐ๋ฅธ ์ฑ„๋„ ๋ณ€ํ™”๋ฅผ ๊ณ ๋ คํ•˜๋Š” ์ž์› ํ• ๋‹น ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ, ์ƒ๊ธฐ ์ฑ„๋„ ๋ณ€ํ™”๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์‹œ์Šคํ…œ ์ „์†ก ์„ฑ๋Šฅ(sum-rate)์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ํƒ์š•(greedy) ์•Œ๊ณ ๋ฆฌ๋“ฌ ๊ธฐ๋ฐ˜์˜ ์ž์› ํ• ๋‹น ๊ธฐ์ˆ ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๊ณ ์† ์ด๋™ ํ™˜๊ฒฝ์—์„œ ์‹œ์Šคํ…œ ์ „์†ก ์„ฑ๋Šฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‚ฌ์šฉ์ž๋“ค์— ๋Œ€ํ•œ ์ „์†ก ๋น” ๊ฐ€์ค‘์น˜์™€ ํ–‰๋ ฌ์— ๋Œ€ํ•œ ์ดˆ๊ธฐํ•˜ ํ•จ์ˆ˜(hypergeometric function of a matrix argument)์™€ ๊ด€๋ จ๋œ ๋ณต์žกํ•œ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ณต๊ฐ„ ์ƒ๊ด€๋„ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฒฐ์ •ํ•˜๊ณ , ์ดˆ๊ธฐํ•˜ ํ•จ์ˆ˜๋ฅผ ์ฑ„๋„ ์‹œ๊ฐ„ ์ƒ๊ด€๋„์— ๋Œ€ํ•œ ํ•จ์ˆ˜๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์ƒ๊ธฐ ์ „์†ก ์„ฑ๋Šฅ ์ถ”์ • ๋ฐฉ๋ฒ•์ด ์ฑ„๋„์˜ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ ์ƒ๊ด€๋„์—๋งŒ ์˜์กดํ•œ๋‹ค๋Š” ์ ์„ ํ™œ์šฉํ•˜์—ฌ, ์ฑ„๋„ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ ์ƒ๊ด€๋„๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ™”ํ•œ ์‚ฌ์šฉ์ž๊ฐ€ ์กด์žฌํ•  ๋•Œ์— ํ•œํ•˜์—ฌ ์‚ฌ์šฉ์ž๋“ค์— ๋Œ€ํ•œ ์ž์› ํ• ๋‹น ์ƒํƒœ๋ฅผ ๊ฐฑ์‹ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ์ œ์•ˆ ๊ธฐ๋ฒ•์ด ๋ณต์žกํ•œ ์‹œ์Šคํ…œ ์ „์†ก ์„ฑ๋Šฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ž์› ํ• ๋‹น ๋ฐฉ๋ฒ•๊ณผ ์œ ์‚ฌํ•œ ์ž์› ํ• ๋‹น ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉด์„œ๋„ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ด๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค.Abstract i Contents v List of Figures vii List of Tables ix Chapter 1. Introduction 1 Chapter 2. M-MIMO systems in the presence of channel aging effect 9 Chapter 3. Estimation of channel correlation matrix 13 3.1. Previous works 14 3.2. Proposed scheme 19 3.3. Performance evaluation 29 Chapter 4. Mobility-aware signal transmission in m-MIMO systems 43 4.1. Previous works 44 4.2. Proposed scheme 46 4.3. Performance evaluation 62 Chapter 5. Mobility-aware resource allocation in m-MIMO systems 73 5.1. Sum-rate-based greedy algorithm 74 5.2. Proposed scheme 76 5.3. Performance evaluation 88 Chapter 6. Conclusions 99 Appendix 103 References 105 Korean Abstract 115 Acknowledgement 119Docto
    corecore