4 research outputs found

    Recent Advances in Σ-definability over Continuous Data Types

    Get PDF
    The purpose of this paper is to survey our recent research in computability and definability over continuous data types such as the real numbers, real-valued functions and functionals. We investigate the expressive power and algorithmic properties of the language of Sigma-formulas intended to represent computability over the real numbers. In order to adequately represent computability we extend the reals by the structure of hereditarily finite sets. In this setting it is crucial to consider the real numbers without equality since the equality test is undecidable over the reals. We prove Engeler's Lemma for Sigma-definability over the reals without the equality test which relates Sigma-definability with definability in the constructive infinitary language L_{omega_1 omega}. Thus, a relation over the real numbers is Sigma-definable if and only if it is definable by a disjunction of a recursively enumerable set of quantifier free formulas. This result reveals computational aspects of Sigma-definability and also gives topological characterisation of Sigma-definable relations over the reals without the equality test. We also illustrate how computability over the real numbers can be expressed in the language of Sigma-formulas

    A Proof Planning Framework For Isabelle

    Get PDF
    Centre for Intelligent Systems and their ApplicationsProof planning is a paradigm for the automation of proof that focuses on encoding intelligence to guide the proof process. The idea is to capture common patterns of reasoning which can be used to derive abstract descriptions of proofs known as proof plans. These can then be executed to provide fully formal proofs. This thesis concerns the development and analysis of a novel approach to proof planning that focuses on an explicit representation of choices during search. We embody our approach as a proof planner for the generic proof assistant Isabelle and use the Isar language, which is human-readable and machine-checkable, to represent proof plans. Within this framework we develop an inductive theorem prover as a case study of our approach to proof planning. Our prover uses the difference reduction heuristic known as rippling to automate the step cases of the inductive proofs. The development of a flexible approach to rippling that supports its various modifications and extensions is the second major focus of this thesis. Here, our inductive theorem prover provides a context in which to evaluate rippling experimentally. This work results in an efficient and powerful inductive theorem prover for Isabelle as well as proposals for further improving the efficiency of rippling. We also draw observations in order to direct further work on proof planning. Overall, we aim to make it easier for mathematical techniques, and those specific to mechanical theorem proving, to be encoded and applied to problems

    Arithmetic operations on ordinals.

    No full text
    corecore