
A Proof Planning Framework For Isabelle

Lucas Dixon
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Centre for Intelligent Systems and their Applications

School of Informatics
University of Edinburgh

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429712744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Proof planning is a paradigm for the automation of proof that focuses on encoding intelligence
to guide the proof process. The idea is to capture common patterns of reasoning which can be
used to derive abstract descriptions of proofs known as proof plans. These can then be executed
to provide fully formal proofs.

This thesis concerns the development and analysis of a novel approach to proof planning
that focuses on an explicit representation of choices during search. We embody our approach
as a proof planner for the generic proof assistant Isabelle and use the Isar language, which is
human-readable and machine-checkable, to represent proof plans. Within this framework we
develop an inductive theorem prover as a case study of our approach to proof planning.

Our prover uses the difference reduction heuristic known as rippling to automate the step
cases of the inductive proofs. The development of a flexible approach to rippling that supports
its various modifications and extensions is the second major focus of this thesis. Here, our
inductive theorem prover provides a context in which to evaluate rippling experimentally.

This work results in an efficient and powerful inductive theorem prover for Isabelle as well
as proposals for further improving the efficiency of rippling. We also draw observations in order
to direct further work on proof planning. Overall, we aim to make it easier for mathematical
techniques, and those specific to mechanical theorem proving, to be encoded and applied to
problems.

i

Acknowledgements
This research was funded by EPSRC grant GR/N37414/01 and the work on this thesis has also
been supported by many people. Jacques Fleuriot, my supervisor, has helped me throughout,
especially with his bard-like advice on weaving stories. Technically as well as socially the
members of the DReaM group have also been constant torrent of support and inspiration. This
research group has exemplified clarity of mind, humility and honesty of science, and I cannot
say how much I appreciate you all. I would also like to thank my examiners who gave helpful
and insightful feedback.

The flexibility to enjoy working on this thesis has come from those who opened my mind,
those who showed me how to break down walls, and how to indulge feelings with a smile. My
amigos from tango provided such delightful and essential distraction. Aikido and the friends
who practice it have also played an essential role in making me feel balanced. This sense has
given me stability to work from.

But my deepest determination, this source of optimism and happiness, has come from the
cartoons that my sister sends me, from the lunches with my mum and her ear for dreams, from
the conversations with my brother, his deep hopefulness and natural scientific calm. Also from
my sister who shares so many quirks of my mind that her adventures and lessons are mine also.
To my father I owe my happy madness and to other-father the silicon seeds that guided to me
to this work.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Lucas Dixon)

iii

Table of Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Outline . 3

2 Background 5
2.1 Higher Order Abstract Syntax . 5
2.2 Isabelle . 6
2.3 Isar . 10
2.4 Rippling . 13
2.5 Proof Planning . 16
2.6 Terminology . 22

3 Observational Proof Planning 23
3.1 Motivation . 23
3.2 Introduction and Overview . 24
3.3 Encoding Techniques . 25

3.3.1 The Interpreted Style . 25
3.3.2 The Functional Style . 26
3.3.3 Representing Choice . 26
3.3.4 Information Sharing . 27
3.3.5 Expressivity . 28
3.3.6 Modularity and Reuse . 29
3.3.7 Extensibility of the Technique Language 30
3.3.8 The Construction of Proof Plans . 30
3.3.9 Debugging . 31

iv

3.4 The Observational Style . 32
3.4.1 Contextual Information . 33
3.4.2 Proof Critics . 34

3.5 A Basic Language for Observational Proof Planning 36
3.5.1 The Basic Elements . 36

3.6 Logical Dependency . 44
3.7 Proof Plans and Proof Scripts . 45
3.8 Conclusions . 47

4 Tracing Technique Applications 48
4.1 Introduction . 48
4.2 Tracing Proof Planning . 49
4.3 Supporting Efficient Search with Traces . 51
4.4 The Tracing Interface . 52
4.5 Debugging . 55
4.6 Development . 56
4.7 Explanation . 57
4.8 Specialised User Interaction . 59
4.9 Related Work . 59
4.10 Conclusions . 60

5 Search 62
5.1 Introduction . 62
5.2 Search in Observational Proof Planning . 64
5.3 Combining Search Strategies . 66

5.3.1 Nested Search . 66
5.3.2 Stacked Search . 67

5.4 A Uniform Functional View of Search . 68
5.5 Combining Search Strategies using Stacked Search 73
5.6 Extending IsaPlanner’s Technique Language 75
5.7 Further Interaction Between Reasoning and Search 76
5.8 Related Work . 77
5.9 Conclusions . 78

v

6 Proof Plans 79
6.1 Introduction . 79
6.2 Initial Experiments with Proof Plans as Tactic Lists 80
6.3 Proof Plans as Isar Proof Scripts . 81
6.4 The Generation of Proof Plans . 89

6.4.1 Chaining Results for Exploration . 90
6.4.2 Proof Plan construction with Gaps . 91
6.4.3 Nice Fresh Names . 92

6.5 Basic Tools for Proof Planning Techniques . 92
6.5.1 Lifting Methods to Techniques . 93
6.5.2 Constructing Context . 93

6.6 Exploring Subgoals with Context . 95
6.7 Proof Representation for Replay . 96
6.8 Meta Variables . 96
6.9 Stylistic Choices in Expressing Proofs . 97
6.10 Type Checking for the Correct of Construction of Proof Plans 98
6.11 Related Work . 98
6.12 Towards Ideal Machinery for Proof Plans . 103
6.13 Conclusions . 104

7 Higher Order Rippling 106
7.1 Static Rippling . 107
7.2 Dynamic Rippling . 110
7.3 Analysis of Rule Selection for Dynamic and Static Rippling 112
7.4 Smaill-Green Embeddings for Annotating Difference 113
7.5 Embedding Terms for Annotating Difference 116
7.6 An Algorithm for Finding Embedding Terms 121
7.7 A Notion of Depth for Measures and Inward Rippling 127
7.8 Selection of the Wave Rule Set . 127
7.9 Avoiding Symmetries in Rippling Search . 128
7.10 Storing Multiple Annotations with Each Goal 129
7.11 Redundant Search Over Annotation Directions 130
7.12 Identifying when Rippling has Finished . 131
7.13 Conclusions . 132

vi

8 Generic Equational Reasoning 134
8.1 Introduction . 134
8.2 Finding Unifying Subterms . 136
8.3 The Substitution Algorithm . 138
8.4 The Interactive Equational Reasoning Tactic 142
8.5 Flex-Flex Constraints from Higher Order Unification 143
8.6 Related Work . 143
8.7 Conclusions . 144

9 An Inductive Theorem Prover 145
9.1 Introduction . 145
9.2 Motivation . 146
9.3 The Top-level Induction Technique . 147

9.3.1 A Basic Induction Technique . 147
9.3.2 Adding Rippling to the Induction Technique 148
9.3.3 Adding Lemma Conjecturing to the Induction Technique 148

9.4 The Selection and Application Induction Schemes 149
9.4.1 Applying Induction Schemes in Isabelle 151
9.4.2 An Induction Tactic that Quantifies Non-Induction Variables 152
9.4.3 Naive Selection of Induction Schemes 154
9.4.4 Ripple Analysis . 155
9.4.5 Other Approaches to the Selection of Induction Schemes 155
9.4.6 The Proof Planning Induction Technique 156

9.5 Simplification . 157
9.6 Rippling in IsaPlanner . 158
9.7 Caching Exploration . 162
9.8 Fertilisation . 163
9.9 Conjecturing Lemmas . 165
9.10 Common Subterm Generalisation . 167
9.11 Caching Conjectures . 169

9.11.1 Subspaces for Efficient Lemma Search 170
9.11.2 Avoiding Loops . 170

9.12 Related Work . 171
9.13 Evaluation and Further Work . 173

vii

9.14 Conclusions . 175

10 Experiments with Rippling and our Inductive Prover 177
10.1 Introduction . 177
10.2 Theories of Peano Arithmetic and Varieties of Rippling 178

10.2.1 Methodology . 178
10.2.2 Primitive Recursive Theories of Peano Arithmetic 180
10.2.3 The Problem Set . 181
10.2.4 The Varieties of Rippling . 183
10.2.5 Results and Analysis of the Techniques 183
10.2.6 Results and Analysis of the Formalisation 188

10.3 A Brief Study in Ordinal Arithmetic and Comparison with λClam 189
10.3.1 A Theory of Ordinal Arithmetic . 189
10.3.2 Comparison with λClam . 192

10.4 Conclusions . 193

11 Conclusions and Further Work 194
11.1 Concluding Remarks . 194
11.2 Further Work . 195

A Formalisations of Peano Arithmetic 199

B A Formalisation of Ordinal Arithmetic 205

Bibliography 206

viii

Chapter 1

Introduction

The formalisation and automation of mathematical proof is one of the central foundations of
artificial intelligence. Any problem that can be clearly defined can be phrased in terms of the
discovery of a proof. However, we know from the incompleteness result of Gödel [42, 99] and
the presentation of the halting problem by Turing [98] that in any practical system we develop
there will be problems for which we cannot find a proof.

Despite this negative result, in practice, formalisation has many useful applications. For
instance, the characterisation of software and hardware in proof systems has been used to prove
properties about their behaviour. Another salient application is the expression, validation and
automation of mathematical reasoning, which was started in 1967 by de Bruijn’s Automath
project [31]. Since then, a large body of mathematics as well as software and hardware has been
formalised in a diverse collection of systems including Mizar [91], Isabelle [84], ACL2 [57,
58], HOL [43], PVS [79], and NuPRL [30]. Thus the negative theoretical results of Godel
and Turing seem to have had little impact on the practical task of formalisation. However,
the process of mechanisation is still largely considered difficult, slow, and cumbersome. An
important research direction that attempts to address this issue is further automation of proof.
This can be done by either adding new axioms or by automating the use of existing ones. The
latter approach avoids the danger of introducing inconsistencies with the new axioms, but it
requires more work to develop.

In 1988 Bundy suggested an approach, called proof planning, to ease the process of ex-
tending proof systems by providing a language with which to express common patterns of
reasoning [14,16,20]. Applying the encoded reasoning to problems results in abstract descrip-
tions of proofs called proof plans. These can then be executed to get a fully formal proof in

1

Chapter 1. Introduction 2

terms of the basic axioms of an underlying proof system. However, proof planning systems
have rarely ensured that the found proof plans can be executed to produce an independently
checkable represenrtation of the proofs, and have always separated the execution from the
planning. This brings into question the feasibility of a proof planning system that does produce
fully formal proofs. One of the contributions of this thesis is to show that the generation of
fully formal proofs by interleaving proof planning with the proof plan’s execution is feasible
and often desirable.

Proof planning has been championed by the development of inductive theorem proving
machinery. In particular, it was shown that a difference reduction heuristic, termed rippling, can
be used to guide the step cases of inductive proofs [17,19]. Many variations and extensions have
been proposed for rippling and a number of proof planning techniques have been developed for
other domains such as non-standard analysis [67], hardware verification [22], and first-order
temporal logic [23].

Traditional approaches to proof planning have represented the encoded patterns of reason-
ing as well as the generated proof plans in a interpreted and declarative form. The role of
the proof planner is to interpret the encoded techniques and use them to derive proof plans.
This thesis proposes a novel approach to proof planning based on an explicit representation of
choices within an encoded pattern of reasoning. We evaluate our proposal by implementing it
in a system, which we name IsaPlanner, and then by redeveloping and extending the inductive
theorem proving technology introduced in the proof planning literature.

Our system builds on the generic theorem prover Isabelle [84] and the Isar language [102].
In this sense, our work brings together recent developments in structured proof languages,
proof checking, and proof planning. Following the methodology of Isabelle’s existing proof
tools, we show that proof planning techniques can be made generic. Furthermore, we show
that it is feasible to ensure the soundness of proof planning by justifying results in terms of the
underlying proof system.

The second contribution of this thesis is the development and extension of inductive the-
orem proving techniques. In particular, we provide a rich framework for expressing different
versions of rippling. This results from a novel adaptation of rippling for higher order settings
that allows us to capture many of the variations introduced in the literature and compare them.
We perform an empirical evaluation of different versions within the context of our inductive
theorem prover. This helps clarify the effect of variations to rippling for an inductive theorem
prover. The result of these experiments highlight modifications to rippling that could further

Chapter 1. Introduction 3

improve its efficiency.
This results in expanding the applicability of proof planning and extending the automation

of inductive proof in Isabelle. Finally, the development these techniques has lead us to remark
on how proof planning frameworks can be further improved.

Publications

Different aspects of the work presented in this thesis have been published in [36–39].

1.1 Contributions

In summary, the main contributions of this thesis are:

� The introduction and analysis of a novel approach to proof automation we term observa-
tional proof planning.

� A representation of proof plans as Isar proof scripts which allows the automatic gen-
eration and manipulation of readable and executable proof scripts. However, we found
this representation to be somewhat problematic. From our analysis of these problems as
well as issues in other systems we provide a brief review to guide further research in the
representation of proof plans.

� A generic proof planner that interleaves proof planning and the execution of the gener-
ated proof plan, ensuring the soundness of the resulting proof.

� Improved automation in Isabelle which is provided by techniques that implement an
inductive theorem prover. We show some of the choices available to an inductive theorem
prover and illustrate their importance by experimentation.

� A rich framework for experimenting with rippling and a study of many of the varia-
tions available within the context of our inductive prover. This study shows that a novel
measure for rippling improves on the traditional one within the examined domains.

1.2 Thesis Outline

We start by presenting the foundations on which this work is based in chapter 2. This involves
an introduction to proof planning, interactive tactic driven proof in Isabelle, the readable and

Chapter 1. Introduction 4

machine checkable Isar language, and the rippling technique traditionally used to guide induc-
tive proof. Our observational approach to proof planning is detailed in chapter 3. This provides
an abstract view of our approach which we then illustrate, in chapter 4, with machinery to trace
the application of encoded techniques. We describe the relationship between techniques and
search in chapter 5. In this chapter, we also provide flexible and extensible machinery that
allows techniques to specify search strategies which can be applied locally or globally.

The tools described up to this point in the thesis are independent of Isabelle and abstract
over the actual representation of proof plans. In chapter 6 we provide a concrete implementa-
tion of proof plans as Isar proof scripts for Isabelle. We analyse this representation for proof
plans to suggest features for a more flexible representation.

We then examine the rippling technique as a prelude to implementing an inductive theorem
prover. In chapter 7, we provide flexible representation of rippling suitable for higher-order
settings. We examine issues of efficiency and provide suitable algorithms for working with our
representation. This results in several open questions for an implementation of rippling. In par-
ticular, we show that there are many variations of rippling which will behave differently. This
leads towards the development of an inductive theorem prover which we can use on the one
hand to evaluate the variations to rippling, and on the other as a tool in its own right to improve
the automation in Isabelle. Before describing the development of our inductive theorem prov-
ing technique in chapter 9, we describe, in chapter 8, some basic machinery for Isabelle which
provides the necessary support for fine grained control of reasoning with equations. Within
the presentation of our inductive theorem prover we note the utility of our approach to proof
planning.

In chapter 10 we evaluate our inductive theorem prover and examine the effects of various
modifications to rippling. We perform experiments that show the effectiveness of our inductive
theorem proving technique and highlight which variations of rippling are most effective in
terms of proving power and speed.

Finally, in chapter 11 we summarise our experience with the observational approach to
proof planning. We note particular characteristics of the language that are beneficial. We also
highlight important areas for further work, largely in the representation of proof plans and in
improved rewriting machinery for rippling.

Chapter 2

Background

2.1 Higher Order Abstract Syntax

Higher-order abstract syntax (HOAS) is a technique for the representation of syntax trees for
languages with variable binders. The term was introduced by Pfenning and Elliot and used for
a HOAS that provided practical representation for programs, formulas, rules and other such
syntactic objects [85]. We will use the term HOAS, as has become common in the literature,
to refer to the representation of term syntax with binders. Thus we consider the term represen-
tations of Isabelle [84] and HOL [43] and the encodings in λProlog [74], Twelf [86], Coq [4],
to all be variations of HOAS. The basic idea, which goes back to Church [28], is to provide a
uniform treatment of name binding for higher order settings. This can be done by representing
terms in the λ-calculus using a datatype. For example, a HOAS for untyped λ-terms could be
given by the following datatype:

term = Abs(term)

| App(term * term)

| Bound(nat)

This uses de Bruijn indices to refer to bound variables: Bound i refers to the ith abstraction
(Abs) above it in the term tree. It is common to write the application of “ f ” to “x” using a space
and “Abs” as “λx” where x replaces the binding constructors that refer to that abstraction. For
example, “Abs

�
App

�
f � Bound 0 ��� ” would simply be “λx � � f x � ”. When convenient, following

the literature, we will also write as lambda abstractions with names and use these names in-
stead of the bound indices. For example, the term “Abs

�
Abs

�
App

�
Bound 1 � Bound0 ����� ” can be

5

Chapter 2. Background 6

written more succinctly as “λx � λy � x y”. We indulge a final notational convenience which is to
group the binding of variables so that “λx0 ������� λxn � t” becomes “λx0 ����� xn � t”.

One of the central motivations for using HOAS is that it allows a single implementation of
many tools, such as unification, matching, and substitution, to suffice for all objects represented
in it. This makes it a practical internal representation for proof systems which are based on
unification matching and substitution.

The datatype expressing HOAS can be much more complex than the example given above.
For instance, that used by Isabelle also includes typing information, names for abstractions,
and a special case for constants, free variables and meta variables1 . When we write Isabelle
terms we will prefix meta variables by a “?”. Types for terms can usually be inferred, but we
will sometimes provide them explicitly using “::” infix with the type on the right hand side.
Constants will always be defined before they are used. Variables will be clear from the context
and will usually be single letters. For example, given a polymorphic binary infix constant “ � ”,
the term “?a � ?b � ?b � � ?a :: nat � ” expresses the commutativity of “ � ” for objects of type
“nat”.

2.2 Isabelle

Isabelle is a proof assistant written in ML which supports formal reasoning in a number of
object logics [83, 84]. Examples of such object logics include Zermelo-Fraenkel set theory
(ZF), first order logic (FOL), higher order logic (HOL), and constructive type theory (CTT).
Object logics are formed and manipulated by Isabelle’s intuitionistic higher order meta-logic,
which supports polymorphic typing and performs type-inference.

Formalisation of mathematics in Isabelle involves defining constants and types about which
properties are then proved. Mixfix annotations are used to manage the parsing and printing
for the concrete syntax of the underlying lambda calculus. Syntax translations support more
complex relationships between the syntax and the underlying terms.

Soundness is treated by following the LCF design principle of having a fixed logical ker-
nel containing the primitive inference rules. Additional tactics to perform higher-level proof
steps are written in terms of these rules and previously proved theorems. The ML type system
ensures that theorems are constructed only in this manner, thus reducing concerns about the
soundness of new tools to the consistency of the logical kernel. This provides a disciplined ap-
proach to ensuring soundness while providing flexibility for the development of more powerful

1For a more detailed account of terms in Isabelle, see the Isabelle reference manual [82].

Chapter 2. Background 7

proof tools.
To ease and speed the proof process, Isabelle provides the user with a number of generic,

as well as logic-specific proof tools. These range from simple mechanisms for combining
theorems to fully automatic theorem provers. One of these is the generic simplification pack-
age which supports higher order conditional rewriting using previously proved theorems. The
user can customise its behaviour by temporarily or permanently adding theorems to the sim-
plification set. Other generic automatic tactics provided by Isabelle include a classical rea-
soner [80, 81] and the automatic tactic which attempts to prove all subgoals by a combination
of simplification and classical reasoning.

Another important requirement for practical theory development is the need for tools to
support new definitions. In the methodology of conservative extensions, adopted by the higher
order logic of Isabelle (Isabelle/HOL), these mechanisms should not assert new axioms. Is-
abelle/HOL hosts an several such conservative mechanisms for writing definitions. These
including support for inductively defined sets, inductive datatypes, types as sets, extensible
records and the usual mechanisms for defining functions and types.

Isabelle’s higher order logic provides the largest theory platform for further development
and is the most widely used logic. It sports a large theory library of formalised mathematics
developed as conservative extensions of the object logic. This includes developments within
nonstandard analysis [41], a formalisation of Hilbert’s axioms for geometry [70], and mecha-
nisations of number theory [89], among many others [53]. Recently, Isabelle has also success-
fully imported all the theories from the HOL system.

The Representation of Proof

Isabelle can produce proof terms that describe a theorem’s derivation in terms of the primitive
logical inferences. This supports the validation of proof using a small proof checker indepen-
dent of Isabelle. However, such proof terms provide far too much detail to be humanly checked,
let alone easily readable. Furthermore, as well as failing to capture the ‘idea’ behind a proof,
these do not provide a useful way of storing proofs. This is due to their verbose nature and the
lack of support for their modification and maintenance. It is thus normal for users of Isabelle
to store proof scripts in a file that contains the tactic commands to re-derive the proofs.

Before the development of Isar, proof scripts were typically expressed ‘procedurally’ as a
sequence of ML proof commands. For example, a procedural-style proof that the sum of odd
numbers up to n is equal to n2, is shown Fig. 2.1. In this proof script, the by function applies a

Chapter 2. Background 8

Goal "∑i 	 n 2
 i � 1 � n2";

by (induct tac "n" 1);

by (Simp tac 1);

by (Simp tac 1);

by (simp tac (simpset() addsimps [power2 eq square]) 1);

qed "sum of odds";

Figure 2.1: An example ML procedural proof for the sum of n odd numbers in Peano
arithmetic.

tactic to the current goal and qed stores a proved theorem for later use. The tactic induct tac

selects and applies an induction scheme, and Simp tac and simp tac are tactics that simply the
goal. The latter simplification tactic is given an explicit simplification set, which in the above
proof includes the lemma (power2 eq square: n
 n � n2). Although these proofs support
reuse of tactics, they are generally not readable off-line, that is without tracing through the
goals resulting from each proof step. Isar provides a structured, human-readable, and Isabelle-
checkable language for writing proofs. We describe this language further in section 2.3.

Theories, Locales and Type Classes

Within each of Isabelle’s logics, developments are organised into theories. These are the
course-grained basic objects for organising mathematical development as well as storing con-
stants, types, sorts, syntax information, theorems, and contextual information used by proof
tools.

Isabelle’s theories provide local name spaces and support inheritance. Inheriting from sev-
eral theories merges their contents, and merges the information used by the corresponding proof
tools. Theories are outside the logic, in the sense that Isabelle cannot reason about a theory as
an object in its own right. A notion of modularity within the logic is provided by the locales
mechanism [3, 56]. This supports modularity using Isabelle’s meta-logic in terms of param-
eters, that correspond to abstract constants, which are fixed over a collection of assumptions.
For example, a semi-group can be specified as follows:

Chapter 2. Background 9

locale semigroup =

fixes prod :: "’a � ’a � ’a" (infixl " � " 70)

assumes assoc:
�
x � y �� z � x � � y � z �

Any theorem proved within this locale implicitly assumes the statement assoc and each
occurrence of the constant “ � ” is in fact a free variable. For example, the theorem

�
w � � x � y ����� z ��

w � x ��� � y � z � proved within the semigroup locale, corresponds to the meta-logical theorem:

p
�
p x y � z � p x

�
p yz ����� p

�
p w

�
p x y ��� z � p

�
p w x � � p yz �

Although Locales provide a powerful tool for modularity and have been extensively used in
many formalisations, they are still limited by Isabelle’s inherent lack of support for quantifying
over types. Locales provide a mechanism for modularity without having to assert new axioms.
However, in Hindley/Milner style higher order logics as used in Isabelle [75, 77], proof from
an axiom is not equivalent to proof from an assumption. This is due to types implicitly being
universally quantified over the whole statement. This means that modularity using locales is
not exactly equivalent to the use of axioms. One solution to regain this equivalence is to extend
higher order logic with quantification over types, as described by Melham [97].

Modularity is also provided by Isabelle’s axiomatic type classes [101]. These allow classes
of types to be defined in terms of basic properties that hold for the class. From these, theorems
can be proved about the objects within the type-class. Isabelle’s unification supports type-
classes and thus the proof tools fit naturally. Unfortunately, type classes are limited in their
expressivity. For instance, they can only be dependent on a single type variable.

Proof Construction and Notation

Proof construction in Isabelle is essentially by higher order resolution of sequents at the meta
level. The meta level connectives are implication (���), universal quantification (�) and equal-
ity (�). To prove a goal G an initial theorem of the form G ��� G is created by instantiation
of the basic meta-logical axiom trivial. The premise is then resolved with previously proved
results. This theorem represents the proof state. For example, we could resolve our proof state
with another theorem of the form P ����� G � , where G � unifies with G, to get a new proof state
P ��� G, where P is P � instantiated from the unification of G � with G. Thus we see that the meta
level implication is to denote subgoals as well as assumptions. When multiple assumptions ex-
ist, we follow Isabelle’s syntax and abbreviate terms such as A0 ��� �

A1 ��������� � An ��� C ��� to�
A0; ����� An � ��� C.

Chapter 2. Background 10

In Isabelle, meta-variables correspond to variables that are universally quantified at the
meta-level and whose scope is around the whole of the theorem. In order to stop meta variables
becoming instantiated, Isabelle can also represent them as what are called free-variable. These
have the same meaning as meta variables but avoid instantiation during resolution. They are
denoted just by their name.

Variables bound by meta-level universal quantifies around a subgoal correspond to arbitrary
but fixed parameters. For example, in a proof that there are infinitely many primes, we can
reduce this to showing that for any arbitrary but fixed number n we can construct a new prime
p larger than it. This would be expressed as the following theorem in Isabelle syntax:

� n � � ? f n ��� n � Prime
�
? f n ����� Infinite � x � Prime x � .

where the meta-variable ? f expresses the existence of some way to construct a prime greater
than n. Isabelle manages the parameters to meta variables. When this goal is eventually proved,
the assumption will be resolved away leaving the theorem Infinite � x � Prime x � .

2.3 Isar

Isar aims to provide a language which is both human-readable and machine-checkable [102],
following the style used by the Mizar system [91]. It provides a natural deduction style of
writing proofs for the Isabelle theorem prover and allows abbreviations using higher order
pattern matching. It is independent of the object logic and has been instantiated for Isabelle’s
HOL, ZF, and FOL, for instance. Furthermore, it has been designed in an extensible fashion
which supports defining additional domain specific elements.

A small example Isar script, proving that the sum of odd numbers up to n is equal to n2, is
shown in Fig. 2.2. This script shows a feature of Isabelle that allows “λ n � ∑i 	 n 2
 i � 1” to be
abbreviated to ?sumto by unifying the higher order pattern “?sumto n � ” with the main goal,
where ?sumto is a variable and “ ” is a wildcard.

Another feature of Isar shown in this proof script is the support for a calculational style
of proof, in the sense of iterated chains of transitive reasoning. In Fig. 2.2, this is indicated
by the sequence of commands “have”, “also have” and “finally show”. The ability to name
assumptions, for example by the calling the induction hypothesis “IH” in Fig. 2.2, further
supports calculational and other forward styles of proof.

We remark that although backward proof is supported within the language, if backward
steps are too large or numerous the proofs are once more unreadable and procedural in style.

Chapter 2. Background 11

theorem sum of odds: ∑i � n 2 i ! 1 " n2 (is ?sumto n ")

proof (induct n)
show ?sumto 0 " 02 by simp

next
fix n
assume IH: ?sumto n " n2

have ?sumto # Suc n $%" ?sumto n ! Suc # 2 n $ by simp

also have &'&(&)" n2 ! Suc # 2 n $ using IH by (simp)

also have &'&(&)"*# Suc n $ 2 by (simp add: power2 eq square)

finally show ?sumto # Suc n $+",# Suc n $ 2 .

qed

Figure 2.2: An example Isar proof for the sum of n odd numbers in Peano arith-
metic.

theorem sum of odds: ∑i � n 2 i ! 1 " n2 (is ?sumto n ")

proof (induct n, simp, simp)

fix n

show Suc # 2 n ! n $%",# Suc n $ by (simp add: power2 eq square)

qed

Figure 2.3: An example Isar proof where the backward proof step is so large that it
obscures the proof.

For example, the proof shown in Fig. 2.2 can be expressed in a briefer, but more procedural
form, as shown in Fig. 2.3. In this example, we show a proof script in which the backward proof
step includes induction, simplification to solve the base case, and a simplification that applies
the induction hypothesis to the step case. The resulting goal is then made explicit and proved
by adding the lemma power2 eq square to the simplifier. However, because of the large
backward proof step, it becomes unclear why showing this subgoal proved the main theorem.
Furthermore, the combination of proof steps in the proof command, are essentially procedural
as they hide the structure of the inductive proof. This also shows that some discipline is needed
to write Isar proof script that are readable.

Internally, Isar operates as a state machine with transitions that incrementally parse ele-
ments in the proof language. This machinery has two main modes, one of which supports
forward proof by allowing the user to express statements and one of which supports backward
proof by allowing the user to apply tactics. Fig. 2.4 shows basic elements of the language and

Chapter 2. Background 12

how they effect Isar’s mode. The transitions take arguments which are omitted for the sake
clarity. The basic Isar machinery is designed in terms of Isabelle’s meta logic and is thus in-
dependent of any object logic. Domain specific additions are be provided by the extensible
design of Isar. This allows new transitions and extensions to the notion of context build on top
of the basic machinery. Such additions allow new notations for proof, such as the calculational
style described earlier, to extend the basic Isar language within the theories that support them.

Prove
Mode

Statement
Mode

proof, done

have, show

let,
note,
fix,
assume,
qed,
next,
then,
{}

apply

(global) done (global) qed

theorem, lemma

Figure 2.4: The basic Isar state machine transitions for parsing a proof.

While the Isar language makes it easier to read proofs, supports abbreviations, and sim-
plifies forward reasoning, the language itself can be difficult to learn. Moreover, the lack of
proper support in exploring the application of tactics makes writing proofs slower and more
arduous. The reason for this difficulty in exploration is that to examine the effect of applying
a tactic, a user must take a backward, procedural proof step. If this solves the goal, then the
user can usually replace the backward step with a single tactic justifying the proved statement.
However, if the tactic fails to solve the goal, to maintain readability, the user either needs to
modify the tactic and try again, or remove the tactic application state and prove an intermediate
result in a forward manner. Only if the user is able to second guess the level of automation
available can they directly express the intermediate steps. As a result, it is common for users
to explore and find a proof using a procedural style, working backward from the goal, and then
rewrite the proof in Isar’s structured forward style. The lack of proper tools for exploring Isar
style proof is one of central issues that we try to address using proof planning.

Chapter 2. Background 13

2.4 Rippling

The term rippling was coined by Aubin who made the observation that during many inductive
proofs parts the terms introduced into the goal by induction are moved or removed to eventually
allow the induction hypothesis to be applied. Bundy turned this notion around by proposing
that rippling can be used as a heuristic to guide inductive proofs [17]. Many variations of
rippling have since been proposed [19, 49, 87, 96] and the strategy has found several other
applications [22, 64, 66] and been implemented in a few different systems [9, 32, 40, 50, 87].
This section gives a brief outline of rippling and introduces the key terminology. We give
further details and describe our characterisation in chapter 7.

While there are many variations of rippling, the central principle is to remove the differ-
ences between all or part of a goal and some defined skeleton constructed from a theorem or
assumption, typically an inductive hypothesis. Through the removal of this difference, the as-
sumption or theorem that was employed to construct the skeleton can then be used to either
solve the goal, a process known as strong fertilisation, or failing that it can be used to rewrite
a subterm in the goal, which is called weak fertilisation. Rippling can thus be seen as guiding
rewriting towards fertilisation.

The difference removal is facilitated by specialised annotations on the goal known as wave
fronts, wave holes, and sinks. More specifically, wave fronts indicate difference between the
skeleton and the goal while wave holes identify subterms inside the wave fronts that are similar
to parts of the goal. Sinks, for their part, indicate positions in the skeleton that correspond
to universally quantified variables. Fertilisation is possible when the wave fronts have been
removed from a subterm matching the skeleton and/or placed in sinks appropriately. Thus,
there are two directions rippling can pursue:

rippling-out: tries to remove a difference or to move it to the top of the term tree. Eventually
this will allow allowing strong fertilisation, or weak fertilisation in a subterm.

rippling-in: tries to move a difference into a sink which would allow it to be matched by the
corresponding universally quantified variable.

As an example consider the skeleton - b � a � b � b � a, then the term Suc
�
a ��� b � Suc

�
b �

a � can be annotated as: Suc
�
a �
.
�0/ b 12� Suc

� / b 13� a �
4

. The boxes indicate wave fronts,
and the underlined subterms are wave holes. The up and down arrows indicate rippling outward
and inward respectively, and the annotations / b 1 indicate that the subterm b is at the location
of a sink.

Chapter 2. Background 14

Out In
� 0 0

� Suc
� �����5�6����� �

4
0 1

Suc
�
a �
.

/ b 1 / b 1 a 1 0

Figure 2.5: The annotated term tree, outward measure and inward measure for the
goal Suc

�
a �7� b � Suc

�
b � a � with respect to the skeleton - b � a � b � b � a.

To provide rippling with a direction and to ensure its termination, a measure is used that
decreases each time the goal is rewritten. The measure is a pair of lists of natural numbers that
indicates the number of wave fronts (outward and inward) at each depth in the skeleton term.
The outward list is obtained by counting the number of outward wave fronts from leaf to root
and the inward list by tallying the inward ones from root to leaf. For the above example, this is
calculated as shown in Figure 2.5, which results in the measure

��8
1 � 0 � 0 9:� 8 0 � 1 � 0 9(� .

Such measures are compared lexicographically as if they were a single list starting with
the outward elements. For example, the above goal can be rewritten to Suc

�
a �;/ b 1 �

.
�

Suc
� / b 1�� a �

4
, using the defining equation for addition Suc

�
X �<� Y � Suc

�
X � Y � . This

new goal has a measure of
��8

0 � 1 � 0 9:� 8 0 � 1 � 0 9(� which decreases with respect to the previous
measure and so the rewrite expresses a valid ripple step. In contrast, it would be invalid
to ripple to Suc

�
a �
.
�0/ b 1=�>/ b 1�� Suc

�
a �
.

as the measure of this new goal increases to��8
0 � 2 � 0 9:� 8 0 � 0 � 0 9(� . This restriction allows wave fronts to move from out to in but not visa-versa.

We now present a simple example of rippling in the domain of Peano arithmetic to solve
the step case for an inductive proof of the commutativity of addition (a � b � b � a). We will
use the following annotated rewrite rules:

Suc
�
X �
.
� Y � Suc

�
X � Y �

.
(2.1)

X � Suc
�
Y �
.
� Suc

�
X � Y �

.
(2.2)

The step case assumes the inductive hypothesis “- x � a � x � x � a”, and from this proves
“Suc

�
a �?� b � b � Suc

�
a � ” for arbitrary but fixed a and b. The hypothesis is used as the skeleton

with which to annotate the goal and the following proof can then be carried out as shown in
Figure 2.6.

Chapter 2. Background 15

Suc
�
a �
.
�;/ b 1 � / b 13� Suc

�
a �
.

Measure :
��8

2 � 0 � 0 9:� 8 0 � 0 � 0 9(�
@@A Ripple using: 2.1

Suc
�
a �;/ b 1 �

.
� / b 13� Suc

�
a �
.

Measure :
��8

1 � 1 � 0 9:� 8 0 � 0 � 0 9(�
@@A Ripple using: 2.2

Suc
�
a �;/ b 1 �

.
� Suc

� / b 1�� a �
.

Measure :
��8

0 � 2 � 0 9:� 8 0 � 0 � 0 9(�
@@A Weak fertilise using the inductive hypothesis.

Suc
�
b � a �B� Suc

�
b � a �

C Solved by reflexivity

Figure 2.6: The rippling proof of the step case of “Suc
�
a �D� b � Suc

�
b �E� a” with

the induction hypothesis “- b � a � b � b � a”.

This proof shows how rippling can guide rewriting to move the differences to the top of the
term tree to allow weak fertilisation, and finally to prove the goal. While everything works in
this proof, it often happens that at some point during rippling, no wave rules apply and the goal
cannot be fertilised. In this situation, the goal is said to be blocked. This typically indicates
that some backtracking is required, or that a lemma is needed.

Further Terminology

The notion of an annotated term introduces some further terminology to rippling. The erasure
of an annotated term is simply the annotated term without annotations. For example, the erasure
of f

�
g
�
x �F/ y 1?�

.
� is f

�
g
�
x � y ��� . We sometimes want to consider annotations without a direction.

Such terms are said to have undirected annotations. For example, the undirected version of the
above annotated term is f

�
g
�
x �F/ y 1G� � .

The Inward Wave Front Sink Restriction

One restriction often added to rippling is to disallow inward wave fronts over subterms that
do not contain a sink. For example, this would exclude the possibility of rewriting the goal

Chapter 2. Background 16

Suc
�
a �
.
�0/ b 1H� Suc

� / b 13� a �
.

to Suc
�
a �
.
�0/ b 1H�I/ b 1�� Suc

�
a �
4

, which would nor-
mally be permissible as it decreases the measure from

��8
1 � 1 � 0 9:� 8 0 � 0 � 0 9(� to

��8
0 � 1 � 0 9:� 8 0 � 1 � 0 9(� .

The motivation for this restriction is that if a sink does not occur in the subterm under the
wave front, then there is no way to ripple the wave front inward to the location of a universally
quantified variable. Thus rippling is unlikely to allow fertilisation. In theory, it is sometimes
still possible achieve fertilisation as some rules may simply remove inward wave fonts. How-
ever, the argument for the restriction on rippling inward to non-sinks is that it is not worthwhile
because it significantly increases the search space while yielding few additional proofs. We
justify this heuristic restriction by experimentation in chapter 10.

2.5 Proof Planning

Proof planning was first introduced by Bundy [14,20] and first implemented in the Clam system
[15]. It tries to capture common patterns of reasoning for families of similar proofs in what we
shall call reasoning techniques. Proof planning involves searching through the ways that these
encoded techniques can be applied to conjectures. Applying a technique derives an abstract
description of the proof known as a proof plan. This is typically a tactic tree or compound
tactic that can be executed in a theorem prover to derive a fully formal proof.

Reasoning techniques are typically presented using diagrams that show the behaviour using
nested boxes and which abstractly describe the search space. For example, a simple inductive
proving technique based on rippling is shown in Figure 2.7. This technique tries to solve a given
goal by simplification or by applying an induction principle followed by symbolic evaluation
on the base cases and rippling on the step cases. When rippling has finished, the technique tries
to fertilise the goal and then solve it by simplification.

Both proof planning and the execution of the resulting proof plan can fail. The execution
process can fail when the effect of applying a tactic does not give the expected result. For
example, if a tactic failed to solve a subgoal that the proof planner expected it to, then the proof
plan would not result in a complete proof and part or all of the proof plan would have to be
changed. The proof planning process can fail when there is no reasoning technique applicable
to the current problem.

Experience in automated inductive theorem proving has shown that failed proof attempts
can often help to find a complete proof [12]. This has motivated the development of techniques
based on planning critics that try to make productive use of failure at the level of proof plan-

Chapter 2. Background 17

Figure 2.7: An illustration of an inductive theorem proving technique that uses
rippling. The boxes represent techniques and the ovals goals.

ning [51]. This notion of proof planning critic tries to capture the idea of a patch to a family
of failed proof attempts. Such critics are typically triggered by failure in the application of a
reasoning technique. They can then apply a transformation to the existing partial proof plan in
an attempt to allow the failed reasoning technique to be applied successfully. For example, if
a reasoning technique requires the goal to contain Suc

�
a � b � but the goal contains a � Suc

�
b �

then a critic may suggest to prove the lemma a � Suc
�
b �3� Suc

�
a � b � first.

In the next section we briefly describe the Clam family of proof planners which possess
a critics mechanism. We then give a brief overview of the Omega system and its knowledge
based approach to proof planning. We discuss particular issues concerning the approaches that
these systems embody in more detail as they come up throughout the rest of this thesis.

The Clam family of proof planners

The Clam family of proof planners refers to the Clam and λClam proof planners as well as to
the collection of alternative versions that have existed at various times. This family of proof
planners encode mathematical knowledge in methods. These are interpreted and declarative

Chapter 2. Background 18

Input
The input patterns to which this method can be applied.

Preconditions
Other conditions which hold for the method to apply.

Postconditions (or Effects)
Conditions which must hold after the method has been applied.

Output
Output patterns representing the subgoals generated.

Tactic
The name and arguments (if any) of the tactic which constructs the piece of object-level
proof corresponding to this method.

Figure 2.8: The slots that make up a λClam method.

objects, described in Figure 2.8, that consist of several slots representing components of a
mathematical technique.

Clam is the name of the original proof planner although their are now several variations of
this system. They are all written in Prolog which allows them to work in first order logic. The
contents of the various slots in a method are thus Prolog expressions. Techniques are encoded
in a two-level hierarchy of plan specifications which consisted of methods and sub-methods,
where sub-methods have to be explicitly invoked by methods.

Ireland’s proof critics have been developed for a modified version of Clam. This is because
the representation of the proof plans in the main version of Clam was an ad-hoc Prolog ex-
pression. Thus, there was no way to write critics that modified the proof plans. However, the
modified version of Clam lacked machinery to structure the methods.

The latest in the Clam family is λClam [32], which was designed to support reasoning in
higher order logics. This supports both a structuring of methods as well as the application of
proof critics. It is written in λProlog and thus the contents of its methods are higher-order
expressions. The λClam system also provides methodical expressions as a language for ex-
pressing a hierarchy of reasoning techniques in a declarative way [90]. Methodical expressions
comprise of methods linked by methodicals. Examples of methodicals that link two methods
are the THEN METH that applies the second method to the result of the first method, and the

Chapter 2. Background 19

ORELSE METH that only applies the second method if the first one fails. A methodical expres-
sion which contains methodicals is often called a compound method in contrast to an atomic
method which refers to the methods with slots. Methodical expressions provide a mechanism
by which methods can be selected and applied to subgoals. It is in this way that the λClam
proof planner reduces the search space of applicable methods.

Another feature of the Clam systems is the existence of a number of decision procedures
which have been developed by Janičić [55]. These are implemented as compound methods
which perform some translation on the goal and then call external procedures to apply the
decision procedure. This work is still in under development for λClam. The Omega system [8],
described in the next section, also makes use of external decision procedures.

The role of the Clam and λClam proof planners is to interpret the reasoning techniques
encoded in the methods and apply them to a problem. For its part, the process of applying an
atomic method to a goal involves first matching the input slot against the goal, then checking
the preconditions. Assuming the input slot matches the goal and the preconditions are true,
then the postconditions and output are generated. For methodical expressions in λClam, the
proof planner must decompose them to select and apply the contained atomic methods. Only
a depth-first and iterative-deepening search have been developed for the λClam system. We
remark that changing the search strategy or adding a new methodical in the Clam family of
systems involves modifying the proof planner.

The Omega System

In the previous sections we have described a few general notions of the proof planning paradigm
and focused on the Clam family of proof planners. In this section, we review of a knowledge
based approach to proof planning as presented by Mellis [71] and implemented in the Omega
system. This approach has a different interpretation of methods which is illustrated in Figure
2.9. Methods in the Omega proof planner are part of a hierarchical theory knowledge base that
also contains constraint solvers, control rules and other domain specific knowledge including
axioms, theorems and definitions. The knowledge base is organised into theories such as group
theory and dense linear logic.

The Omega style of proof planning does not have a methodical language. Instead, Omega
uses control rules from the knowledge base to reduce the search space of methods that can
be applied to open goals. These are separate from the method definitions. This separation of
control rules from methods characterises a difference in the notion of what a method represents

Chapter 2. Background 20

Premises & Conclusions
These are a set of sequents. Each sequent has some additional information associated with
it, in particular it is given a label and a justification. The premise-set and the conclusion-
set are each labelled as either an add or delete effect, this defines the direction of proof
performed by this operator. If the premises are labelled as an add-effect and the conclusion
is labelled as a delete-effect then the operator performs backward proof. If the add and
delete effects are the other way around then the method is performing forward proof.

Application conditions
These are written in some meta language. Their function is to restrict the applicability of
the operator and instantiations of parameters.

Proof Schema
These are a set of sequents annotated with a label and a justification. The justification is
OPEN if it needs further planning, and is otherwise some specification that defines how the
sequent can be derived from the state.

Figure 2.9: The slots that make up an Omega method.

between the Omega and Clam proof planners. Another difference between Omega and Clam
is that the Omega system does not have a notion of proof critics and does not possess rippling
methods.

One of the key characteristics of the Omega system is its integrated use of other tools in its
knowledge base to provide the justifications for method applications. For example Omega can
use a constraint solver to justify portions of a proof. This has been successfully used to find
proof plans for problems in the limit domain [72].

The HOL/Clam and FTL/λClam interfaces

Although proof planning looks like a promising approach to proof automation, it is still to be
widely used for interactive theorem proving.

In this section we examine how proof planners have been used in conjunction with external
object level theorem provers. When proof planning was first implemented in the Oyster/Clam
system, Clam performed proof planning and Oyster executed the proof plans [21]. More re-
cently Boulton et al. [9] developed an interface between Clam and HOL. The motivations for
their project included providing more automation in the HOL system and investigating the use

Chapter 2. Background 21

of proof planning for software and hardware verification.
The interface is implemented as a tactic called from HOL that first translates the goal to

the syntax of Clam, and then calls Clam to try and find a proof plan for the translated goal.
The proof plan given back to HOL is then translated into a tactic that HOL can apply to the
goal. A number of correspondences had to be maintained for this process to work. In particular
rules, definitions and induction schemes as well as the correspondence between terms had to
be maintained between the two systems.

Boulton and Slind also developed a more complicated protocol that allows a communica-
tion between the two systems using iterative ‘dialogues’ [94]. They believe that this interpro-
cess communication infrastructure is usable for a variety of other systems. For the HOL and
Clam systems, the more complicated protocol allowed them to share more information than
their initial implementation. The interface between these two systems has enabled HOL to use
Clam to find proof plans that it can execute, resulting in the successful automation of proofs
for a number of problems.

In recent work, Castellini has developed an interface between λClam and his FTL proof
checker [23,25]. This approach is used for proof planning in the domain of first-order temporal
logic (FOTL) and embeds FOTL in λClam methods. This involves providing a method for each
inference rule in FTL. Proof plans found by λClam can then be executed to derive fully formal
proofs in the proof checker.

As both the FTL theorem prover and λClam are implemented in λProlog, this made the
interface between the two systems relatively easy. The proof plan associated with the applica-
tion of these methods simply contains a tactic that applies the associated inference rule. More
complex methods, like case splitting, were more difficult to translate to FTL tactics. Some
automatic tactics exist in FTL, but they have not been used, although they may be in future
work.

In contrast to the interface between Clam and HOL, where HOL used Clam as a black box
to help prove conjectures, the interaction between FTL and λClam is one where λClam contains
the FTL theorem prover as a module which is used to execute proof plans. The theorem prover
is called from within λClam which involves translating the goal from the embedded first order
temporal logic in λClam to the equivalent in FTL, and also translating the resulting proof plan
into an FTL tactic which can then be applied to the goal. Castellini’s work gives an example
of how a logic can be embedded in a proof planner, enabling proof planning in the embedded
logic.

Chapter 2. Background 22

Interestingly both the FTL/λClam and the HOL/Clam interfaces required a significant cor-
respondence between the proof planner and the target proof checking system. This provides
support for our suggested implementation of a proof planner within an interactive theorem
prover, as this would remove the need for such a correspondence.

2.6 Terminology

In order to avoid confusion, we now clarify the terminology used throughout this thesis:

Technique - the informal notion of a common pattern of reasoning.

Encoded technique - some encoding of a technique within a system.

Rule of inference - a logical rule expressed within a formal system. These typically refer to
the axioms used in implemented proof systems.

Tactic - a function that combines a number of rules of inference in an implemented system.

Proof script - a file containing a textual representation of the application of tactics that can
be executed by a theorem prover. Typically this is a sequence of commands that apply
tactics, although it can also be a structured text such as Mizar or Isar proof scripts.

Interpretable - refers to a characterisation that is interpreted in a programming language.
This allows it to be examined and manipulated by programs written in the programming
language. Examples include, datatypes in ML, and lists in Prolog.

Declarative - is used in two senses. Firstly, we use it to refer to an expression that has a
logical interpretation, as is used in the logic programming literature. Secondly, following
the literature on proof languages, it is used to refer to a proof script that is intelligible
without having to examine the steps by re-executing the script. This is typically done by
explicitly representing the intermediate goals in the proof.

Method - a declarative and interpretable description of a tactic.

Proof plan - an interpretable description of a proof script.

Proof planning - the process of constructing a proof plan.

Chapter 3

Observational Proof Planning

In this chapter we examine approaches to the encoding of reasoning techniques. We give an
exposition of our observational style for expressing common patterns of reasoning and intro-
duce a basic set of constructs. Our approach is contrasted to both the functional and interpreted
approaches, as embodied by Isabelle tactics and Clam methods respectively. We also consider
how to encode techniques in a logic-independent fashion, and examine the representation and
generation of proof plans.

Our general goal is to develop a framework that makes it ‘easy’ to encode complex rea-
soning techniques, such as rippling and its proof critics, and that can produce Isar style proof
scripts. While our formulation of proof planning has been implemented for Isabelle, the gen-
eral mechanism described in this chapter is independent and could be transferred to another
system.

3.1 Motivation

Proof planning focuses on providing mechanisms to encode and apply mathematical knowl-
edge. The motivation for such a focus comes from the need for domain specific techniques
and the need for an environment in which one can develop and experiment with new machin-
ery for proof automation. These features have been of use to many existing proof planning
developments including Maclean’s methods for nonstandard analysis [66], those for CCS by
Monroy [76], and those for quantified temporal and modal logics by Castellini [23].

For its part, the development of techniques has motivated new proof planning architectures.
This has led to the development of different systems which essentially embody different tech-

23

Chapter 3. Observational Proof Planning 24

niques. For example, the proof critics machinery implemented by Ireland et al [51, 52] was
in an independent version of the Clam proof planner that lacked compound methods. Simi-
larly, there was another version for the afore-mentioned CCS proof methods, and another for
coinduction [34]. This trend has continued even recently in a separate version of λClam which
supports the automatic derivation of induction schemes [44].

This divergence of systems and architectures makes it difficult to analyse and compare
techniques in a uniform manner. Furthermore, it suggests that the goal of having a single
common machinery for implementing different proof planning techniques has not yet been
achieved.

Closely related to these problems has been the lack of a generic foundation for proof plan-
ning to provide logic-independent machinery while maintaining the ability to execute the gen-
erated proof plans. This lack of machinery has contributed to the divergence of proof planners
and the absence of a unifying framework for executing the proof plans.

These issues in the development of proof planners provide the motivation for the work in
this chapter. In particular, we aim to develop a generic framework for proof planning with
techniques that can clearly specify their dependencies on the underlying logic.

3.2 Introduction and Overview

We describe the foundations for a proof planning framework that has been implemented in Isa-
Planner, a generic proof planner for the Isabelle proof assistant. We present, in section 3.3, the
observational style of encoding techniques, a central theme of our approach and an alternative
to both the functional and interpreted styles. The observational style features an extensible
language for techniques, lazy evaluation of the reasoning process, and a generic mechanism
for techniques to share information.

We present, in section 3.5, a basic language for observational proof planning which pro-
vides a platform for writing techniques. These also provide a basis with which the language
can be further extended.

While the basic language is independent of the both the meta and object logics of Isabelle,
the framework is designed to support the development of domain specific tools. This leads us
to describing a methodology to manage the dependency on the object logic and local theories
in order to support the generic reasoning techniques, in a style similar to Isabelle’s generic
tactics. We examine these issues in section 3.6.

The lazy unfolding of techniques generates the search space of possible ways to tackle a

Chapter 3. Observational Proof Planning 25

problem. Proof planning involves searching this space for a proof plan that solves the goal. We
examine the representation of proof plans and their relation to the underlying theorem prover
in section 3.7.

3.3 Encoding Techniques

In this section, we consider the question of how to encode problem-solving knowledge in a the-
orem prover. We analyse two existing approaches categorised into two general styles, namely
functional and interpreted. We then examine the characteristics and limitations of these ap-
proaches. This forms the basis from which we then develop our observational framework for
proof planning.

3.3.1 The Interpreted Style

In this style, techniques are interpretable objects and their application involves an interpretation
function that is given both an object representing the technique and a proof state. This typically
results in a new proof state with techniques to solve the subgoals. This style of encoding
techniques is commonly used by proof planners such as the Clam systems.

For example, in λClam, techniques are encoded as proof methods which are either:

� compound: they are built from methodicals containing sub-methods. The methodicals
are essentially treated as datatype constructors and as such can be analysed to retrieve
their constituent methods.

� atomic: they are made up of a number of ‘slots’ which contain predicates, such as a
precondition slot containing predicates that must be satisfied in order for the method to
be applicable.

Applying a compound proof method involves its traversal to retrieve and then apply the first
atomic sub-method. Applying an atomic method involves examining and satisfying the various
higher order predicates. Thus the interpretation function can be seen as defining an operational
semantics for the method language. Such a semantics for λClam has has been described by
Richardson et al [90].

The central feature of this approach is that encoded techniques can be analysed. This has
been used in the application of proof critics which analyse the failure to apply an atomic method
and suggest a patch to the proof attempt [52].

Chapter 3. Observational Proof Planning 26

3.3.2 The Functional Style

In this style, techniques are functions on proof states. For example, Edinburgh LCF tactics are
functions that reduce a goal to a list of subgoals. Applying a technique to a problem simply
involves applying the function representing the technique to a proof state that expresses the
problem. We will refer to techniques encoded in the functional style as tactics.

The crucial features of this style are that tactics cannot be examined - they can only be
applied in an opaque way - and that they can be combined using higher order functions called
tacticals. For example, in Isabelle, the tactical THEN can be defined in the following way:

THEN(r1,r2) = flatten o (map r2) o r1

where o is function composition, and map and flatten are defined in the obvious way for
lazy lists. This tactical is given two sub-tactics and applies the second one to each proof state
resulting from the application of the first.

The functional style represents an extreme position in the encoding of techniques where all
the work is done by the tactic implementing the pattern of reasoning. Initially, it may seem that
the technique developer in this approach is at a disadvantage compared with the interpreted
style, where the framework interprets methods thus requiring them to express less. However,
because the functional style supports development of new tacticals and other functions to per-
form common operations, it can arbitrarily lessen the load for a tactic developer. For example,
Isabelle already includes tacticals that perform various kinds of search over tactic applications,
including depth first, breadth first and best first.

3.3.3 Representing Choice

For many techniques, from Ireland’s proof critics to resolution based proof procedures, search
is a key factor. Additionally, it is useful to be able to express techniques that can be applied
in a number of ways. For example, applying the equation

�
Suc a �D� b � Suc

�
a � b � to a goal

P
���

Suc x �D� ��� Suc y �D� z ��� could result in P
�
Suc
�
x � ��� Suc y �D� z ����� or P

���
Suc x �D� � Suc

�
y �

z ����� . A language to encode techniques needs to be able to express such choice.
In the functional style, tactics can be represented by functions that result in a ‘collection’,

such as a list, of new proof states. These capture the different ways the tactic can be applied.
For example, Isabelle uses lazy lists to express the result of a tactic application. Another way
choice occurs in tactic languages is through tacticals. For example, the ORELSE tactical is given

Chapter 3. Observational Proof Planning 27

two tactics and results in a new tactic that tries to apply the first, and if it fails, applies the
second.

Similarly, in the interpreted style, there are two analogous ways of expressing choice.
Firstly, methods can often have their preconditions instantiated in different ways. Each possible
instantiation then corresponds to a possible way the method can be applied. Secondly, there is
an OR methodical which is treated by the interpretation mechanism and can result in the same
behaviour as the equivalent tactical.

3.3.4 Information Sharing

Developing mechanisms to automate proof frequently involves extending existing techniques.
Such extensions often need to make use of information that is not part of the object level
goal. For example, proof critics added to rippling often need the annotation information. Even
within some techniques there is a need to share information between different steps in the proof
attempt. Expressing the technique in a modular extensible fashion then requires some approach
to management of shared information. In particular, we would like to be able to develop proof
critics independently from the technique to which they are applied.

More generally, shared information can be local to a branch of the search space, such as
the annotations for rippling, or globally shared across alternative branches, such as a cache of
proved lemmas. One way to share information locally, and that is frequently employed in the
functional style, is to pass the information as a parameter between techniques. Unfortunately,
a problem with this approach is that applying one technique after another makes it impossible
for the latter technique to access the information used by the former. This inhibits developers
from extending the behaviour of existing techniques.

For example, consider the followings technique encoded in the functional style:

1. An initial technique f � λa ������� , where a is a parameter, such as an initial annotation.

2. A second technique, g �J����� f x ����� , defined in terms of f .

This makes it impossible express a third technique of the form g KMLEN7O h that allows h to use the
value of the parameter given to f by g. We need a richer mechanism for holding information
that results from the application of a technique.

A second way to share information, which solves this problem, is to place it into the object
level term structure of the proof state, in the style of Slind and Norrish [95]. This is sufficiently

Chapter 3. Observational Proof Planning 28

expressive as arbitrary information can be placed in the goal. However, this holds the informa-
tion in an often inefficient and arduous form that ‘pollutes’ the proof state. Furthermore, there
is a danger that proof tools may inadvertently damage the held information.

A third approach that is closely related but arguably ‘cleaner’, has been developed by Hut-
ter [48] and involves using a modified logical calculus that can carry strategic information.
While this provides a powerful way of maintaining meta-logical knowledge attached to terms,
such as the annotations used during rippling, it does not help with storing information that is
not specific to parts of the term, such as previously proved conjectures. Additionally, it does
not provide a way of holding information across branches in the search space.

A fourth approach, employed by the λClam system [32], is to use the notion of context
that comes from their underlying Lambda Prolog. This can provide a form of information that
can be shared across and-branches in the search space. However, upon Prolog backtracking
the information is removed from the context and thus this mechanism is unsuitable for sharing
information between or-branches.

In section 3.4.1, we present a novel solution that extends our notion of proof state in a extra-
logical fashion by including an extensible table to hold contextual information. This provides a
flexible mechanism to share information across both and- and or-branches in the search space.

3.3.5 Expressivity

An initial observation with regard to the expressivity of the language for encoding techniques
is that if this language is sufficiently expressive (for example, Turing-complete), then any tech-
nique can be encoded no matter what style is used. However the language does have a sig-
nificant effect on the clarity, modularity, and reuse of the encoded techniques. Furthermore, it
may be that different constructs are useful within different domains. Thus we believe that the
key features of a language for encoding techniques concern the convenience of expressing the
common patterns of reasoning.

A significant advantage of the interpreted style is that the interpretation function can ‘ob-
serve’ the proof process in terms of the underlying techniques and in particular it can observe
failure in the application of a method. This supports the use of proof critics by providing them
with information that they can use to examine failed proof attempts and propose patches that
might allow proof planning to continue. Thus we see that the interpreted approach benefits
from a richer notion of failure and the ability to introspect on why this failure might have
occurred. The functional approach is unable to express proof critics in this way because tech-

Chapter 3. Observational Proof Planning 29

niques cannot be examined to ascertain why failure occurred. Furthermore, the eager evaluation
(of tactics) obscures where in the tactic the failure occurs.

One way a proof-critic-like mechanism can be implemented in the functional style is
through the raising and handling of exceptions. The information that would normally be pro-
vided to the proof critic must now be passed in the exception, and the critic itself is expressed
as an exception handler. In this approach critics must be provided to catch all exceptions oth-
erwise proof search will be inadvertently stopped by the raising of an unexpected exception.
Similarly, in the interpreted style, failure must be handled by interpretation function. However,
the interpreted approach benefits from having a default way to handle the failure of a method,
which is to backtrack.

3.3.6 Modularity and Reuse

Providing tools for expressing techniques in a modular way is essential to easing their develop-
ment. In the functional style, modularity and reuse is facilitated by the programming language
in which the techniques are expressed. For example, in chapter 9 we describe a flexible mod-
ular implementation of rippling that uses ML functors. Using modular programming facilities
of the language in which techniques are written is also available to interpreted style.

One approach available to the interpreted style, but not the functional style, is to define
new techniques as manipulations of existing ones. However, in our view it is not clear that this
presents a significant benefit when we consider that techniques can also be parameterised. It
might be argued that the advantage of such a interpreted reading of techniques requires less to
be known in advance. In particular, the developer does not have to guess which aspects of a
technique need to be parameterised over. This might then simplify the parameters.

We remark that we were unable to find an encoded technique that uses this approach in a
practical manner. Thus, even though this is an interesting approach to defining modularity, it is
at present unclear whether it is of practical benefit.

A disadvantage of defining techniques in terms of manipulations of other techniques is that
it requires having the ‘right’ language for expressing techniques. Modification of this language
will break existing techniques as well as any functions that modify them. In our view, given
the history of changes to technique languages in systems such as Clam and Omega, it is not
clear which is the ‘right’ language. Thus we would argue that such an approach should not be
considered until there is sufficient evidence that the language will not be further modified.

Chapter 3. Observational Proof Planning 30

3.3.7 Extensibility of the Technique Language

It is hard to know which basic elements will facilitate the convenient expression of a technique,
let alone what the specifics of a technique language should be. The various changes to proof
planning architectures and modifications to the mechanisms for expressing techniques support
this view. Furthermore, it may be that some constructs are useful to only specific domains.
This motivates having an extensible language for encoding techniques.

In the interpreted style, the language for encoding techniques is defined by the interpreta-
tion mechanism. In particular, there are a fixed number of language constructs (methodicals)
that allow new techniques to be created from old ones. While these constructs can be param-
eterised, the language is fixed by what the interpretation function can comprehend. Thus, the
interpreted style limits the extensibility of the reasoning technique language, while the func-
tional style is extensible.

In the functional style, the technique language is simply the programming language used
to write tactics and tacticals. This enables any function of the correct type to be used as part
of the language. Domain specific constructs can then be defined locally and do not need to be
supported where they are inconvenient. This approach also supports experimentation with the
basic constructs used to express techniques that may, in future work, lead to a clear specification
of a technique language for the interpreted approach.

3.3.8 The Construction of Proof Plans

The functional style of encoding techniques has typically been used to write tactics that are
responsible for only the derivation of calculus level proofs. In contrast to this, the interpreted
style has chiefly been used to construct proof plans. However, we believe this distinction
between the use of functional and interpreted styles is only historical. In support of this, we
observe that calculus level operations, including primitive inference rules, are often expressed
in interpreted methods. For example, the imp i method of λClam simply performs implication
introduction. Furthermore, the functional style of encoding techniques can also be used to
construct proof plans by simply using ‘tactics’ that modify a representation of an intermediate
proof plan rather than a proof state. Thus both styles can be used to express either calculus
level proof operations, or proof planning operators.

Viewing both styles as encoding knowledge within a proof planner, there is still a significant
difference in the way these approaches construct proof plans. In the interpreted style, the proof
plan is constructed by the interpretation function. For example, consider a compound method

Chapter 3. Observational Proof Planning 31

in λClam of the form “
�
m1 PGQDR m2 �)K7LDNDO R m3”, where K7LEN7O R and P�QDR are methodicals. If m1

is not applicable, the interpretation function will then try to apply m2 followed by m3. In this
situation, the resulting proof plan would be “m2θ SMT�U�V m3θ”, where “ SMT�U�V ” is an interpreted
description of the tactical with the same name, and θ is an instantiation of the variables in the
methods. In this way, the proof plan is a ‘trace’ of the proof planners successful interpretation
of the method.

In contrast to this, the functional style of proof planning, as suggested above, uses tac-
tics to express modifications to the proof plan. This captures the editing of the proof plan
directly in tactics without the need for an interpretation mechanism. Returning to the above
example, a tactic that has the same behaviour as the above method would be expressed as
“
�
t1 P�QEW t2 �<KMLENDO W t3”, where ti tries to add the interpreted description mi to the proof plan. The

tactical K7LDNDO W simply applies the first tactic followed by the second one, and PGQXW applies the
first tactic, and if it fails, tries to apply the second tactic. In this way, tactics and tacticals in the
functional style capture the behaviour of the interpretation function in the interpreted style.

One of the features of proof planning in λClam is that the proof plans contain goals with
associated methods. This is used to delay a proof attempt but remember the method being
used for that subgoal. This allows a proof plans to function as both an agenda of things to be
done in order to complete the proof, as well as a high level description of the proof attempt.
Because methods have a natural interpreted - and usually declarative - reading, they can easily
be textually described. This presents a problem for a purely functional approach. A solution
to this problem is to pair each open goal with a tactic and an interpreted component, such as a
string, that describes that tactic.

3.3.9 Debugging

Developing techniques for automated theorem proving is an error prone and difficult research
task. One of the reasons for this is that it is hard to analyse a technique’s application. This is
needed when attempting to examine where and why a technique fails. This difficulty motivates
the need for machinery to debug and explore their application. While debuggers exist for some
programming languages and for the underlying machine code which is executed, these do not
provide a suitable level of abstraction for debugging techniques.

Having a mechanism to examine the application of techniques, including failure, is of par-
ticular interest in the development and investigation of new proof critics. Such a mechanism
can provide the user with some initial insight into how a new critic might work.

Chapter 3. Observational Proof Planning 32

Another motivation for such machinery comes from the ACL2 user community, where
significant time is spent analysing failed proof attempts in order to find suitable lemmas that
will help the automatic proof process. Flexible machinery to examine the failed proof attempt
would help in this process.

An advantage of the interpreted style is that a step-by-step interpretation function can be
defined which allows a user to trace through the application of a method. This facilitates
the debugging of encoded reasoning techniques. However, it does require a more complex
interpretation mechanism. Furthermore, it may be difficult to make the step-by-step interpreter
behave in the same way as an automatic version. Any differences in the behaviour would make
debugging difficult.

In the functional style, the problem is more severe, tactics are evaluated in an eager fashion
which makes their debugging more difficult. In particular, for large tactics it can be difficult
to tell at what point failure occurs. Debuggers built into the execution environment can be
used, but these tend to provide much more detail than is useful to the casual user or even the
technique developer and, as such, complicate the process of debugging.

3.4 The Observational Style

Our observational style of proof planning is based on the notion of a reasoning process which
is split into a series of ‘snapshots’ called reasoning states. Techniques are encoded as functions
from a reasoning state to a set of reasoning states, where the resulting set represents the pos-
sible ways of applying the technique. Each reasoning state contains an optional continuation
technique which is either “None” or “Some r” where r is the next reasoning technique to be
applied. This allows each state with a continuation to be unfolded by applying its continua-
tion technique to itself. Thus reasoning is performed by unfolding the search space in a lazy
fashion. The language of techniques, consisting essentially of functions, remains extensible.

Each reasoning state contains a proof plan, which is modified and extended by techniques
as the reasoning process unfolds. In Figure 3.1, we illustrate the application of a reasoning
technique that uses Isabelle’s induction tactic followed by the simplification tactic. This is
encoded as a function that adds the induction tactic to the current partial proof plan and sets
the continuation to be a function that adds the simplification tactic to the proof plan. After this,
there is no continuation and thus no further states in the search space.

In the observational style, the editing of proof plans is done in a similar way to the func-
tional style, namely by modifying of the proof plan within the technique. To facilitate this,

Chapter 3. Observational Proof Planning 33

Figure 3.1: A reasoning technique that creates a proof plan with Isabelle’s induc-
tion tactic followed by the simplification tactic.

common manipulations are provided within the language for writing techniques. However, in
contrast to the interpreted style, the elements of the language can be extended. In this way, the
observational style can be thought of as providing a dynamic extensible interpretation function.

3.4.1 Contextual Information

To facilitate the sharing of information between techniques, each reasoning state also contains a
table of contextual information which can be modified during proof planning. This captures any
knowledge that might be applicable to the current proof process. Examples of such information
include the measure(s) used during rippling and a cache holding the result of proof attempts
on conjectured lemmas. One of the main motivations for contextual information is to facilitate
analysis of failed proof attempts. For example, Ireland’s proof critics attached to rippling make
use of the annotations [52].

Chapter 3. Observational Proof Planning 34

Contextual information can be local to a branch of the search space, such as the annotations
and measures which are attached to the current goal term during rippling. It can also be global -
of importance beyond the local branch of the search space - such as the aforementioned caching
of the result of earlier proof attempts.

Contextual information can also be of different kinds, which can themselves be theory
dependent. For example, information for the conjecture cache would be applicable to any
theory and of a different kind to that used for the rippling annotations which may be restricted
to theories that support rippling. Making contextual information generic is an issue in the
methodology of their development, and is discussed in section 3.6.

To allows new kinds of information to be added is necessary to support modular develop-
ment of techniques. In particular, it should be possible to develop a techniques using a new
kinds of contextual information without having to modify existing techniques. Simply extend-
ing the kind of proof state for each new kind of needed information would, for example, fail to
allow old technique to be applicable to proof states with the new kinds of information.

In the λClam proof planner, local contextual information can be expressed in the post-
conditions of methods [32]. Some global information can be held by means of uninstantiated
meta-variables. However, because search is performed by Lambda Prolog, backtracking re-
moves information from the context, and thus this use of meta variables is not sufficient to
express global information that must be held across branches of the search space.

Note that whilst we have presented our information sharing mechanism as part of the obser-
vational style, it could also be used in the functional and interpreted styles. In the next section,
we describe proof critics, which can make particular use of contextual information.

3.4.2 Proof Critics

The lazy evaluation of techniques supports identification of where failure occurs. To establish
why failure occurred the observational style, like the functional approach, is still unable to
examine a reasoning technique’s definition. We do not believe that this is necessarily a loss:
within a technique there may be many aspects which we do not wish to consider. For example,
when applying a proof critics, efficiency measures (such as the use of memoization) may be of
no interest.

To provide proof critics with the information that they can use, we express the character-
istics of a technique that we want to be able to examine in the contextual information. This
provides a clear separation between the interpreted components which are of use to proof crit-

Chapter 3. Observational Proof Planning 35

ics, and the more functional ones, such as efficiency measures. Such an approach also helps
clarify the logical dependency of a proof critic, as described in section 3.6. We note that a
similar solution is used in λClam, where the computational part of a precondition is written
within a predicate, and the predicate’s arguments provide the interpreted information that can
be used by proof critics.

In interpreted proof planning, the key difference between proof methods and critics is the
ability of the latter to modify the proof plan. Proof critics can change any part of the proof plan,
whereas a method is added to the proof plan in a way defined by the interpretation function. In
λClam, critics are associated with methods and defined by pre-conditions that specify the kind
of failure that triggers the critic.

In the observational style, techniques can modify any part, or all, of a proof plan thus
enabling proof critics to be expressed within the technique language. This provides a unified
framework for encoding mathematical knowledge. The practical result of this unification is
that the language for techniques can be reused for writing proof critic like behaviour which
provides us with a number of advantages over the classic view of critics:

� Proof critics can be attached to non-atomic methods, including other critics. This is not
possible in the Clam family of proof planners, as critics are attached to the preconditions
of a method, and non-atomic methods do not have preconditions.

� The application of proof critics can involve proof planning search. In contrast to this,
λClam style critics which can manipulate the proof plan and agenda, cannot involve
proof planning in the computation of the critic’s effect. This is important if the effect of
a proof critic is dependent on some further theorem proving.

In our approach, proof critics can be expressed as functions on reasoning techniques. They
typically examine the unfolding of the technique they are applied to, and upon failure, by
analysing the contextual information, try to suggest a patch to fix the proof. The process
of suggesting a patch typically involves modifying the continuation of the reasoning state so
that instead of failing the critic is applied. The critic’s application then involves some proof
planning search (possibly with nested critic applications) and typically manipulates the proof
plan and goal agenda.

Chapter 3. Observational Proof Planning 36

3.5 A Basic Language for Observational Proof Planning

The language for techniques in observational proof planning is the language of functions from
a reasoning state to a collection of reasoning states. In our implementation, we use lazy lists as
these allow the direct expression of results from Isabelle’s higher order unification. However, in
this presentation of the language we will describe the result of techniques in terms of sets. This
simplifies the presentation while not straying far from the implementation. The set representing
the result of a technique application expresses the possible ways the technique can be applied.

We note that the technique language, being essentially functions, is extensible. In this
section, we present a number of basic elements that can be used to define reasoning techniques.
These do not require any contextual information, unlike more complex techniques, such as
rippling which we describe in later chapters.

In order to clearly understand the basic elements of the technique language, it is important
to note that a reasoning state with no continuation (None), signifies the successful completion
of the reasoning technique. This is in contrast to a technique that has a continuation which
results in the empty set and signifies that it is not applicable.

3.5.1 The Basic Elements

We now describe the basic elements of the reasoning technique language using the standard
notations for set theory and lambda calculus.

Notation

We will use a triple of the form
�
p � c � i � to denote a reasoning state with proof plan p, continu-

ation c and contextual information i. We will also use s and t denote reasoning states, and use
s � p to represent the current proof plan of a state s, s � c its continuation, and s � i its contextual
information. Thus s abbreviates

�
s � p � s � c � s � i � .

Continuations are either “None”, or “Some r” where r is a reasoning technique. Recall that
a reasoning technique, typically denoted by r, is a function from a reasoning state to a set of
reasoning states, and thus “r s” is the technique r applied to the reasoning state s, which is a set
of reasoning states. A leaf state is a reasoning state with no continuation, that is a state of the
form

�
p � None � i � . We will let the symbol f denote a function from a reasoning state to a new

reasoning state.
We will explicitly describe the types of the elements in the reasoning technique language

Chapter 3. Observational Proof Planning 37

in order to clarify the arguments they are given. Polymorphic type variables will be written as
‘a, ‘b, ‘c and so on. Given a type α and a type β, the type of a function from α to β is expressed
“α Y β”, and their pairing is written “α Z β”. The type for a reasoning state will be written
as []\?S�^�S_U . As reasoning techniques are functions from a reasoning state to a set of reasoning
states, they have type “ []\?S�^�S_U`Y>[<\?S_^�SEUa\GUMS ” which we will sometime abbreviate to [DSEU�bFT7V
for clarity. Proof plans have type cDcedD^?V and contextual information has type b7fFV_gEh .

Techniques will be often written in the following way:

NDi7N7jDNDODK OEk�jEN : argument types Yl[7S_U_bFTDV
NDi7N7jDNDODK OEk�jEN args s � some set description

with the abbreviations: NDi7N7jEN7ODK OEkMjDN is the name of the element; argument types will be
the types of the arguments to the element if there are any; args is the name of the argu-
ments to the element; s is a the reasoning state part of the resulting reasoning technique; and
some set description is the resulting state set, typically defined in terms of s.

NOTHING

We first consider a simple technique that does not affect the proof plan or the contextual infor-
mation, but results in a single state with no continuation. This can be expressed as:

O P K7L<m?OEn : [7S_U_bFTDV
O P K7L<m?OEn s �o� � s � p � None � s � i �5�

FAIL

Another simple technique is the technique that results in no new states. This reflects Prolog’s
fail and is expressed as:

p kem?i : [DSEU�bqTDV
p kem?i s �o�H�

PPLANOP

Basic techniques are often defined using functions that modify the proof plan. We can define a
simple technique r7rDiDk7O P r that uses a function m to modify the proof plan:

rDr7iEkMO P r :
� c7c]d7^GVsYtc7c]dD^?V]�XYu[7S_U�bqTDV

rDr7iEkMO P r m s �o� � m s � p � None � s � i �5�

Chapter 3. Observational Proof Planning 38

This results in a single new state that has a modified proof plan and which does not have a
continuation. The details pertaining to the modification are dependent on the representation of
the proof plan. In chapter 6 we describe a representation of proof plans based on Isar proof
scripts. Using this representation, a commmon application of rDrDiDk7O P r is to add elements
to the proof plan. In particular, we ‘lift’ tactics from the underlying prover to the level of
techniques by considering the ways that they can be applied and adding them to the proof plan
correspondingly.

OR

A simple way to combine technique is using the infix functional OR which takes two reasoning
techniques r1 and r2 and results in a new technique with the union of states from applying r1

and those from applying r2:

P�Q : [DSEU�bqTDVvZv[DSEU�bqTDV=Yu[DSEU�bqTDV�
r1 P�Q r2 s ��� � r1 s ��w � r2 s �

THENF

A useful tool for the definition of further reasoning techniques is the functional K7LDNDO p , illus-
trated in Figure 3.2, which takes a reasoning technique r, a function on reasoning states f and
results in a new technique.

X Y Z Reasoning states with
no continuation (leaf
states) are modified

Intermediate reasoning states
have the same proof plan
and contextual information

Nodes in the search space for:
r s THENF r f s

Nodes in the search space for:

f(X) f(Y) f(Z)

A A

Figure 3.2: An illustration of the K7LEN7O p operation that combines a reasoning tech-
nique r with a function on reasoning states f . The states X, Y, and Z are the final
state (those with a None continuation) in the application of the technique r to the
state s.

The intuition behind the technique KMLENDO p r f is that is performs r then applies the function

Chapter 3. Observational Proof Planning 39

f . More precisely, it has intermediate states that correspond to those the reasoning technique
r. In these states the proof plan and contextual information are identical as is their ordering.
The difference is at the leaf states in the unfolding of r. In K7LDNDO p r f , these have the function
f applied to them. We define K7LDNDO p as follows:
K7LDNDO p r f

K7LDNDO p : [7S_U_bFTDVaY � [<\FS�^�SEU2Yx[]\?S�^�S_UD�<Yl[DS_U_bFT7V
K7LDNDO p r f s �
� snext �=y t � t z r s � ��� t � c � None � snext � f t ��{�

t � c � Some r � �
snext � � t � p � Some

� KMLEN7O p r � f �|� t � i �����5�
Note that this does not involve a direct recursion as the recursive call is lacking an argument.
This approach defines the technique’s continuation in a lazily but recursive manner.

This also shows an interesting feature of the observational style, namely that a technique
can examine another’s unfolding. This is expressed by the first condition of the resulting set
(y t � t z r s �}�����) which we use to define the new techniques behaviour in terms of parameter
technique r. We use this to examine when a reasoning state in the unfolding of r has no
continuation, at which point the function f is applied.

THEN

We define the infix functional K7LDNDO which combines two techniques, unfolding the first until
there is no continuation and then unfolding the second:

K7LDNDO : [DSEU�bqTDVaYl[7S_U_bFTDV~Yl[DSEU�bFT7V
r1 K7LDNDO r2 ��K7LEN7O p r1

�
λ
�
p � c � i �|� � p � Some r2 � i ���

This uses KMLENDO p to unfold r1 until it has no continuation, at which point the continuation is set
to being r2 by the function

�
λ
�
p � c � i �|� � p � Some r2 � i ��� .

MAP

The functional j_k7r takes a reasoning technique r and a function on reasoning states f which it
applies to each intermediate state in the unfolding of r. Figure 3.3 illustrates the idea.

We define jEk7r as:

Chapter 3. Observational Proof Planning 40

X Y Z

All intermediate reasoning
states are modified, as well

as the final states.

Nodes in the search space for:
r s MAP f r s

Nodes in the search space for:

f(X) f(Y) f(Z)

A

B f(B)

f(A)

Figure 3.3: An illustration of the j_kMr operation.

j_kMr : [DS_U_bFT7V�Y � [<\FS�^�S_UHYl[]\?S_^�S_UD�XYu[DSEU�bFT7V
j_kMr r f s �
� snext �=y t � t z r s � ����� f t �|� c � None � snext � f t ��{���

f t �|� c � Some r � � snext � ��� f t �|� p � Some
� j_kMr r � f �|� � f t �|� i �����5�

We note that there is no j_kMr methodical for λClam that provides the same behaviour1 . More
generally, adding new methods, such an j_kMr to λClam, requires a modification to the inter-
pretation function in interpreted approach. Furthermore, it is not even possible to define an
equivalent tactical in the functional style. This is an example of the additional expressivity
gained through the observational style.

FOLD

Another functional that can be defined in the observational style, but which has no equivalent
in the functional styles and has not previously been implemented in the interpreted style, is
p P i7� which behaves in a similar way to the p P iM�Ei list operation.

This operation provides a way for information to be paired with the reasoning state and
used to update the state as a technique is unfolded. We note that, in contrast to the use of
our contextual information, it is impossible for another technique to access the p P iM� ’s paired
information, except by the use of reference variables. This makes the paired information local
to the application of the p P i7� operation. Figure 3.4 graphically shows this behaviour.

We define p P i7� as:
1There is a MAP methodical in λClam but this applies a method to each resulting subgoal

Chapter 3. Observational Proof Planning 41

C

Intermediate states are
modified using the
paired information.

Nodes in the search space for:
r s FOLD f a r s

Nodes in the search space for:

A

B

C’

A’

B’

(A’, a’) = f(A,a)

(B’, b’) = f(A’,a’)

(C’, c’) = f(B’,b’)

"a" is the initial paired
information which is

folded over the
application of the
technique until the

continuation is None.

Figure 3.4: An illustration of the p P i7� operation.

p P i7� :
�
‘ ^�Yu[<\FS�^�S_U2Y � [<\?S_^�SEUaZ ‘ ^D����Y ‘ ^=Yu[DSEU�bFT7V~Yx[7S_U�bqTDV

p P i7� f a r s �
� snext �=y t � t z r s � � t ��� a ����� f a t � ��� t ��� c � None � snext � t ����{�

t �(� c � Some r ��� snext � � t ��� p � Some
� p P i7� f a � r ���|� t ��� i �����5�

In this definition, the parameter a is the initial value of the paired information and the function f
is used to update the paired information and the reasoning state after each step in the unfolding
of the technique r.

This operation can be interpreted as a tool for expressing an ‘online’ analogy to the proof
attempt, where the function f is the function expressing the analogy. For example, we have
used this to define a functional that applies a technique, caching the intermediate goals and
avoiding duplicate proof states. The p P i7� functional provides a convenient means to express
such operations on techniques.

Similarly to j_k7r such an operation can be defined in the interpreted style, but requires
modifying the interpretation function. In the functional style such an operation cannot be
expressed. Again this shows the extra expressivity from the observational style.

REPEAT UNTIL

The Q N7rDNDk7K �EODK<mFi functional is analogous to the commonly used methodical and tactical
named repeat. It takes a boolean function on reasoning states and a technique. It repeatedly un-
folds the technique checking the condition function after each application. When the condition
is true the last reasoning state with no continuation is returned. This can be defined as follows:

Chapter 3. Observational Proof Planning 42

Q N7rDNDk7K �EODK<mFi :
� [<\?S_^�SEU=Yt�eh7hEd7�XYu[DS_U_bFT7V�Yu[DSEU�bqTDV

Q N7rDNDk7K �EODK<mFi f r s �
� snext � � f s � true � snext � s ��{�

f s � f alse �)y t � t z r s � snext � � t � p � Some
�
r K7LDNDO � Q NDrDNDk7K �EODK]m?i f r ���|� t � i ���5�

The Q N7rDNDk7K �_O7K<mFi operation conveniently expresses repeated application of a technique.
For example, rippling can be expressed as the repeated application of measure decreasing ripple
steps where the condition function checks if rippling is blocked.

ENDSPACE

In the functional and interpreted styles, search is separated from the reasoning to the extent that
it is not easy to define behaviour of techniques in terms of the search space. However, in the
observational style, the lazy evaluation of reasoning allows the search process to be monitored
and thus for techniques to be defined in terms of the search space.

A particularly useful application of this is in noting when a technique has failed to solve a
goal. It can be useful to cache the failed goals in order to avoid repeated attempts at their proof.
To implement this in a generic way requires a general notion of when a technique has failed to
solve the goal, and in particular, when the search space of attempts is exhausted.

The basis of such an operation is the NDOM�e��rDkE��N functional, which takes a technique r and
a function f on reasoning states. It applies the function f to the last explored reasoning state in
the search space of r iff there is no unfolding of r that completes successfully. This is done by
maintaining a record (we will use the type counter) that holds the number of unexplored states
in the unfolding of r. Figure 3.5 illustrates the overall behaviour.

The last explored state
with no child-states (Z)
is modified. This can

Introduce further child-states.

Nodes in the search space for:
r s ENDSPACE f r s

Nodes in the search space for:

A

Z

A

f(Z)

Figure 3.5: An illustration of the NDOM�e��rDkE��N operation.

Chapter 3. Observational Proof Planning 43

The N7O7����rEkD�MN functional is defined as follows:

NDOM�e��rEkE��N � P �_O7K : b�h��7V_SEUM[�Y � []\?S_^�S_UHYu[<\FS�^�SEUE�XYu[7S_U�bqTDV~Yu[DSEU�bFT7V
NDOM�e��rEkE��N � P �_O7K c f r s �
� snext � � r s �o����� �

c iszero c �J� snext � f s ��{� y t � t z r s � � t � c � None � snext � c stopcounting c t ��{�
t � c � Some r �7�

snext � c add
�
c � � t � p � Some

�
λ s �?NDOM�e��rEkE��N � P �_O7K � c dec c � f r � s �|� t � i ���������5�

where the functions on the counter have the following behaviour:

1. “c iszero c” is true when the counter c is zero.

2. “c dec c” decreases the count of unexplored reasoning states by one.

3. “c stopcounting c s” notes that counting the number of unexplored state is no longer nec-
essary as a branch that has the None continuation has been found, indicating successful
completion of the technique. After this function has updated c, it returns s.

4. “c inc c s” increments the number of unexplored states and returns s.

We note that in this definition we pass the information regarding the number of unex-
plored states as an argument to the auxiliary function. Furthermore, the information held by
the counter must be stored in such a way that it is shared across alternative branches of the
search space. In terms of implementation, this can be done by using a reference variable. If we
wish to make this information accessible to other techniques then we can place the number of
unexplored nodes in the contextual information.

Using the above auxiliary function, the NDOM�e��rDkE��N element can be defined as:

NDOM�e��rEkE��N :
� [<\FS�^�SEU=Yu[]\?S�^�S_UD�XYu[DS_U_bFT7V�Yu[DSEU�bqTDV

NDOM�e��rEkE��N f r ��NDO7����rDkE�MN � P �_ODK � init counter
� ��� r

where the function init counter constructs an initial counter for use in the NDO7����rDkE�MN � P �_ODK
function described earlier.

ORELSE

We use the N7O7����rEkD�MN function to create an functional that combines two techniques only trying
the second one if the first one fails. The idea is that when the search space of the first technique
has been exhausted we modify the last reasoning state to start performing the second technique.

Chapter 3. Observational Proof Planning 44

If there is a way for the first technique to complete successfully, then the second technique is
never applied. This is expressed as follows:

P�Q NDi_��N : [DSEU�bFT7V~Yl[7S_U_bFTDVaYu[DSEU�bFT7V
r1 P�Q NDi_��N r2 ��N7O7����rEkD�MN � λ � p � c � i �|� � p � r2 � i ��� r1

An interesting feature of our version of PGQ NDi_��N is that it behaves correctly independently
of the search strategy used.

TRY

The try element is analogous to the methodical and tactical of the same name. It is given a
technique r and if r fails (every branch in the application of r fails), then it behaves as if it were
the O P K7L<m?ODn techniques: it simply has no continuation indicating successful completion. The
K QD� functional is defined using N7O7����rEkD�MN as follows:

K QD� : [DS_U_bFT7V�Yu[DSEU�bqTDV
K QD� r ��N7O7����rEkD�MN � λ � p � c � i �|� � p � None � i ��� r

This is useful for writing techniques that behave like the ACL waterfall strategy [11], which can
simply be expressed as a sequence of K7LEN7O~K QD� ’s. We remark that like the P�Q NDi���N functional,
it behaves correctly independently of the search strategy.

3.6 Logical Dependency

A problem arising in both proof planning and theorem proving is that proof techniques are
often dependent on the logic or theory for which they are developed. However, we wish to
make encoded techniques as independent as possible from the underlying logic. In effect, we
want to provide techniques that are parameterised by the logic in which they are to be applied.
Logical dependency, in our approach to proof planning, can arise in either the encoding of a
technique, or in the contextual information.

Logical frameworks, such as Isabelle, provide a meta logic which can express proof rules.
Generic tactics can then be expressed in terms of abstract proof rules. This provides such
theorem provers with a generic foundation for writing tactics. Domain specific tactics can then
be written in a way where the domain data is expressed explicitly. For example, a tradition
in the Isabelle theorem prover is to write tactics as (ML) functors that are given the minimal
logical requirements for the tactic. Such an approach treats the encoding of generic techniques

Chapter 3. Observational Proof Planning 45

as a problem of methodology. This is convenient as techniques can be defined with respect to
theories as well as other existing tools. For example, a technique can be defined dependent on a
generalisation mechanism, as well as on the existence of a specific proof tool such as Isabelle’s
simplifier. Contextual information can be written in the same way, making it a functor that
defines its logical dependency. Techniques can then be defined in a way that is also dependent
on the contextual information they use.

An alternative approach is to provide some fixed data type which can be used to specify the
logical dependency of a technique. For example, by providing a datatype that holds constants
and assumptions that a technique depends on. Such an approach is less flexible, but is more
amenable to automatic installation of proof tools in a new theory. It is less flexible because
new extra-logical tools may need to be specified in a dependency, but we cannot pre-suppose
what may be needed as part of the data type. For example, if at a later point in such a new
theory, a technique is defined in such a way that it is dependent on a characteristic that is not
expressible in the logical dependency datatype, then it is not possible to write the technique in
a generic way. For instance, in our example dependency-datatype, it would be impossible to
express dependency of a technique on the simplifier.

We have adopted the more flexible approach, in keeping with the Isabelle tradition, and
encoded techniques as functors. We can take advantage of ML in the development of our
techniques by ensuring that they can be type checked independently of any logic or theory.
Within a theory, we can provide the needed logical information to create a concrete instance
of the technique. This approach pushes the checking of logical dependency into ML type
checking.

Another salient feature of using a logical framework is that we get a uniform approach to
the execution of proof plans. This means that only a single language is needed to express proof
plans, namely the language for proof scripts used by the logical framework.

3.7 Proof Plans and Proof Scripts

Proof plans are interpreted descriptions of tactics that when executed produce a calculus level
proof. Thus they define the relationship between high level reasoning techniques, such as
‘proof by induction’, and the low level proofs derived by the underlying theorem prover. The
representation of proof plans reflects the theorem prover’s mechanisms to derive proof. In
LCF-style interactive systems, proofs are typically expressed in proof scripts which employ
tactics that reduce a goal to subgoals. These proof scripts are typically procedural (a sequence

Chapter 3. Observational Proof Planning 46

of tactics), or structured such as those of Isar [102] and Mizar [91].
Proof planning involves searching the unfolding of a technique for a reasoning state that

contains a proof plan which, when executed, results in a proof of the initial conjecture. The
encoded techniques construct and modify proof plans. This process focuses on the incremental
derivation of proof plans which distinguishes it from tactic based theorem proving that, in
contrast, focuses on the derivation of calculus level proofs.

A distinguishing feature of our approach, in contrast to other proof planners, is that we
interleave the execution of the proof plan with its construction. This facilitates the use of tactics,
from the underlying theorem prover, as part of the proof planning process. Proof plans can thus
provide a way for techniques to interact with the underlying theorem prover in much the same
way as a proof script facilitates human interaction with the proof assistant. Furthermore, a
proof plan can itself be expressed as a proof script. Thus, we can see that if proof planning
automatically conjectures and proves lemmas, then it can be used to aid interactive theorem
proving by automatically generating proof scripts that provide needed lemmas.

In systems that support large proof developments, some means of storing proved theorems
is needed. It is common for systems to store the proof of a theorem as a procedural proof
script, which is a sequence of instructions that, when run, will reproduce the proofs. If a
theorem is proved by proof planning then it can be stored as either the commands to perform
proof planning, or as the extracted proof script. Re-execution of proof planning commands will
be slower than proof scripts, as the search for the proof plan will be performed again. However,
storing the proof planning commands will be more robust. This is because proof planning may
be able to search for a new solution taking into account changes in definitions and alterations
to the behaviour of tactics.

Starting in 1973, the Mizar project [91] pioneered the declarative style of writing proof
scripts. More recently languages such Isar [102] and SPL [103] have brought a structured
style of writing proof scripts to other systems. In terms of storing the proofs, the methodology
associated with declarative scripts discourages the use of many different tactics as this can
obscure the proofs. Thus it seems natural to try and derive declarative proof scripts from proof
plans as opposed to extending the tactic language with proof planning commands.

The internal representation of proof plans is important both for efficient proof planning
and to enable generation of proof scripts. To express proof plans as a declarative proof script
requires either the representation of the proof plan to mirror the declarative style of proof, or
the use of a mechanism to translate procedural proofs to declarative ones. We further examine

Chapter 3. Observational Proof Planning 47

using proof planning to derive declarative Isar scripts in chapter 6. In terms of efficiency, to
avoid re-execution of the proof plan, it is useful to store the current executed proofstate at each
node in the proof plan. In this way the proof plan can also act as an agenda containing the
remaining subgoals to be solved.

3.8 Conclusions

In this chapter we have introduced the notion of a technique language and described what we
consider to be the important properties of such languages. We used these characteristics to
analyse two common styles of encoding reasoning techniques, namely the functional style, as
used to write tactics in Isabelle, and the interpreted style which is used to express methods
in λClam. We have compared these and used the analysis to motivate our observational style
which forms the foundation of our approach to proof planning. This provides an extensible
language for encoding common patterns of reasoning. We have also introduced a basic lan-
guage for writing techniques in the observational style which forms a platform on which we
can define more complex techniques.

Special attention has been paid to the management of contextual information. In particular,
we have described various ways this can be expressed, and its use in the development of proof
critics. We have also addressed issues of managing logical dependency and outlined the impor-
tance and role of proof plans as an intermediary between the proof planner and the underlying
theorem prover.

Chapter 4

Tracing Technique Applications

In the previous chapter we gave a rather abstract account of observational proof planning. In
this chapter we describe how the application of techniques can be traced which provides a
concrete illustration of our approach. We also motivate our tracing machinery and show how it
can benefit user interaction.

4.1 Introduction

Many theorem proving tools rely on traces to inform the user of the tool’s behaviour, including
first order resolution provers, rewriting systems, inductive theorem provers and proof planners.
Unfortunately such traces are often overly verbose and difficult for the user to understand.
Furthermore, they do not offer the user a way to easily interact with the proof attempt.

Tracing proof attempts is an important aspect of interaction with theorem provers. Some
systems, such as ACL2 [57], use traces as the main means of communication with the user. Ad-
ditionally, another important task to which tracing of techniques contribute, is the development
of proof techniques. For systems which support user-extensions, such as Isabelle’s support for
adding new tactics, this is thus another important interaction to support.

In this chapter, we describe machinery, based on our observational style, for tracing the
behaviour of proof planning techniques. The general motivation is to help the user view the
proof process by providing them with a clear notion of their location in the proof attempt. In
particular, we consider the following issues:

Debugging: How can the internal steps of a proof tool be examined at a suitable level of detail
for debugging?

48

Chapter 4. Tracing Technique Applications 49

Development: How can the interface help developers gain insight into ways that theorem
proving techniques might be extended and improved?

Explanation: How can the effect of powerful proof techniques be made comprehensible to
the user?

Specialised user interaction: How can user interactions be guided to particular points in the
proof process such as those that the proof planner is most likely to get wrong?

We present machinery for tracing techniques in §4.2 and the interactive interface in §4.4.
We examine how it can help the process of debugging techniques and developing them in §4.5
and §4.6 respectively. We consider using the tool for explaining a technique’s behaviour in
§4.7, and how it might provide a specialised user interaction in §4.8. Related work is presented
in §4.9. Finally, we conclude in §4.10.

4.2 Tracing Proof Planning

A trace of a proof planing technique describes the steps that the technique has performed so
far. This captures the path taken through the search space. We make this hierarchical so that
some states in the path may be considered child-states of an earlier state. The interpretation is
that child-states provide specific details about how the parent-state is performed. For example,
a parent state named “rippling” would have child-states that specify the specific rules that are
applied during rippling.

Each reasoning state contains a hierarchical trace which, because it is not logical informa-
tion, is held as contextual information. Traces are represented using a simple tree structure
with ordered child nodes. These nodes hold descriptions of the reasoning states that have been
passed through. Thus we also provide contextual information to describe each reasoning state.
For example, in Figure 4.1, we show a trace for the proof attempt of the step case in a proof of
the commutativity of addition using rippling and fertilisation.

Descriptions and traces are constructed incrementally as techniques are applied. To sim-
plify the process of writing techniques that build traces, we make use of the extensibility of our
technique language to provide an alternative version of the THEN technique combinator:

THEN A B takes two techniques A and B as arguments. It applies the technique A fully, then
creates a new node in the trace structure for B which will then start to be applied.

Chapter 4. Tracing Technique Applications 50

Figure 4.1: An example hierarchical trace showing the descriptions and top goal
of the reasoning states represented in the trace. The dotted arrows indicate child
nodes and the solid arrows show the ordering of the children.

This provides a way to automatically construct sibling nodes in the trace that is transpar-
ent to the technique developer. We also make use of the extensibility to introduce two new
technique combinators which facilitate trace construction:

GIVENAME N R applies technique R once, then names the next state N. This is the basic primi-
tive for providing explicit descriptions of reasoning states. It gives the next state a name
to be used when it is added to the trace structure.

REFINE N R introduces an extra reasoning state in the proof planning attempt which is named
N in the trace. The continuation of this introduced step is the technique R and the names
of the child states unfolding from it are added as children nodes of N in the trace.

For example, these can be used to define the step case technique that produces the trace
shown in Figure 4.1, as follows:

ripplestep = GIVENAME "ripple step" doripplestep

rippling = REFINE "rippling" (REPEAT ripplestep)

stepcase = REFINE "step case" (rippling THEN fertilisation)

Chapter 4. Tracing Technique Applications 51

where we omit the details of doripplestep as they are not relevant to trace construction. Note
that, in Figure 4.1, the trace is constructed as a depth first traversal, which is the order in which
the above techniques are applied. To ensure that the trace is constructed appropriately, other
technique combinators, such as REPEAT, inherit the correct behaviour from the new version of
THEN, or require slight modifications using the above primitives.

We remark that the hierarchical trace does relate proof techniques to open goals. Although
we can show the top most goal, as we did in Figure 4.1 to clarify the technique’s behaviour, in
general, techniques can transform several goals simultaneously. This is needed for deductive
synthesis problems, where an unknown meta-variable can occur in several goals and can be
instantiated in all them during a single step in the application of proof planning techniques.
The separation of the trace structure from the logical structure of the proof also enables the
expression of proof critics. These can manipulate the proof plan rather than just affect an open
goal. However, the lack of a well-defined relationship between the trace structure and the
logical one can also make the trace a confusing representation of the proof. In future work, we
hope to provide a more formal characterisation of this relationship.

4.3 Supporting Efficient Search with Traces

A naive implementation of the traces and descriptions for reasoning states is likely to introduce
two significant inefficiencies for proof planning:

� Constructing a string to describe a reasoning state can involve significant computation,
but is not needed during proof search itself. Such descriptions are only of interest when
presenting a reasoning state to the user. Thus it is more desirable not to compute the
descriptions of reasoning states during proof search.

� We need an efficient mechanism to add nodes to the trace. Using a traditional represen-
tation of trees will use time proportional to the size of the tree. As the trees grow large
this will slow down proof planning increasingly. It is desirable to have a constant time
machinery for adding nodes to the trace.

To avoid unnecessary computation when constructing a state’s description, but maintain the
ability to mix automatic search with user level guidance, we evaluate the description functions
as they are needed for pretty printing. Thus state’s description is actually a function that results

Chapter 4. Tracing Technique Applications 52

in the string describing it. We achieve constant time addition of nodes to the trace by repre-
senting the trace using Huet’s notion of zippers [47] which represent trees from the perspective
of the leaf node.

4.4 The Tracing Interface

The main task for the interactive tracing tool is to allow the user to navigate through the search
space within the application of a technique. This forms a custom search strategy for proof
planning where the user decides which state to examine next.

The hierarchical nature of the trace structure allows the interactive tracing tool to step
through ‘chunks’ of the proof attempt without the user having to examine the intermediate
steps. In particular, it can perform a normal search algorithm, such as depth first search, until
a state is found which has returned to the original trace-depth. For instance, this enables the
tracer to step over the individual rewrites involved in rippling, allowing the user to navigate the
search space at a higher level. For instance, rather than examine each step in the proof of a
lemma, the user can step over the proof as if it were a single step.

In order to give the user a more logic-orientated view of the proof, IsaPlanner’s tracer also
shows the current partial proof plan as an Isar proof script, the current open goals, as well as the
trace structure. This also helps clarify the relationship between the trace and the way it modifies
the proof plan. For example, Figure 4.2 shows the output of the tracer during a proof of the
commutativity of addition. The partial proof plan has proved the base case by simplification
using the lemma b � 0 � b. To make the tree structure more readable, previous subtrees in the
trace are not shown, unless the user can requests to see the full hierarchical trace.

The textual description of the trace shows child-nodes using indentation. A node starting
with “+” indicates that it has child states, where those starting with “-” are leaf nodes in the
hierarchical trace. The numbers in between the square parenthesis show which state was chosen
from the or-choices and the total number of choices that were available. For example, [1/2]
indicates that the first of two possible states was chosen. The trace structure does not show the
search space related to these alternative branches.

The second part of the output from the tracer shows the options available to the user. The
eXit command leaves the interactive tracer and returns the last reasoning state examined to the
underlying ML interpreter. This allows the user to interact directly with the reasoning state, for
example by changing the next technique to apply.

The numbered choices in the user options show the different or-choices in the search space.

Chapter 4. Tracing Technique Applications 53

Partial proof plan: -- � * Proving "a + b = b + a" * �
proof (induct "a")

have "b = b + 0" by (rule sym[OF add 0 right])

thus "0 + b = b + 0" by (simp (no asm))

next

fix N :: "Nat" assume H1: " - b. N + b = b + N"

Hi-Trace:

+[1/1] Induction and rippling...

-[1/2] Induction on "a"

+[1/1] Solve the base case using simplification...

+[1/1] Solve the step case using rippling....

-[1/1] Start Rippling with state:

measure: (out)[2, 0, 0] (in)[0, 0, 0]

annotated goal: [< suc >] N + | b | = | b | + [< suc >] N

Open Goals:

1. suc N + b = b + suc N

Commands: [x] eXit [b] Back [s] Step [g] Go

View: [c] Conjectures [i] Isar Script [v] Full HiTrace

[1] Ripple Step by (subst add suc)

measure: (out)[1, 1, 0] (in)[0, 0, 0]

annotated goal: [< suc >] (N + | b |) = | b | + [< suc >] N

[2] Ripple Step by (subst add suc right)

measure: (out)[1, 1, 0] (in)[0, 0, 0]

annotated goal: [< suc >] N + | b | = [< suc >] (| b | + N)

Figure 4.2: An example of the user interface during an interactive trace of the
proof of the commutativity of addition. The top half presents information about the
reasoning state and the bottom half shows the user’s options.

Chapter 4. Tracing Technique Applications 54

This allows the user to manually select which branch to explore next. There are three other
navigational commands:

� Back returns to the previously examined node,

� Step is given a number and performs a depth first search from the selected or-choice
in the numbered list. It searches for the next state that returns to the same depth in the
hierarchical trace.

� Go performs a depth first search for a reasoning state that solves the initial given conjec-
ture.

There are also three viewing commands. These allow the user to view: the conjectures
made made so far with their state (proved, failed to be proved, or refuted), the full hierarchical
trace, and the full Isar proof script including the automatically proved lemmas.

One of the main differences between this kind of command driven interaction in compar-
ison with the traditional tactic driven approach, employed by interfaces such as Proof Gen-
eral [1], is that our interface shows the different ways in which a technique can be applied.
In contrast to this, other command driven interfaces show only the first result. Such inter-
faces require the user to either modify the parameters to the tactic in order to get a different
behaviour or explicitly enter backtracking commands. Our approach, which allows the user
to see and select desired result, is particularly useful when parameterising the tactic requires
intricate knowledge of its behaviour.

This utility of this can be seen in the following simple example. Consider the proof of
x � 0 � x in Peano arithmetic where addition is defined recursively on the first argument. In
the inductive proof of this theorem, we arrive at the step case goal Suc

�
x � 0 ��� Suc x. To

complete the proof, we can apply the induction hypothesis, x � 0 � x to remove the 0 on the
left or introduce a 0 on the right. However substitution with the hypothesis can be done in
many different ways, each of which results in an alternative subgoal. However, only two of
these help complete the proof. The full list of choices are:

1. Suc
���

x � 0 �D� 0 ��� Suc x

2. Suc
�
x � � 0 � 0 ����� Suc x

3. Suc
���

x � 0 �D� 0 ��� Suc x

4.
�
Suc

�
x � 0 ���D� 0 � Suc x

Chapter 4. Tracing Technique Applications 55

5. Suc
�
x � 0 ��� Suc

�
x � 0 � [*]

6. Suc
�
x � 0 ��� � Suc x �7� 0

7. Suc x � Suc x [*]

but only those marked with a ’*’ lead to a direct proof by reflexivity. The approach often
employed in tactic driven interfaces is to allow the user to select a redex by either partially
instantiating the rule or by giving a number referring to a redex in some ordering of the search
for substitutions. However, such an approach requires the user consider how to apply the tatic
in order to then guide the prover. In the above example, the user must know the ordering in
which the subtiution tactic considers redexes, or provide the instantiation by hand. In contrast,
our approach provides the user with the possible results of the technique’s application and
allows them to select which result they would like to arrive at. This makes the interface do
more of the work and thus removes the need for the user to know the details of the proof tool.

We remark that this does not always work ideally. In some cases a tool can be applied in a
large number of ways which can result in the user being swamped by choices. Such situations
require the developer of the technique to provide further pruning of the search space. However,
because such pruning is not always possible, we do not consider our proposed approach as an
alternative to tactic based theorem proving but as an extension of it. It is still useful to allow
the user to specify a redex or give an instantiation by hand.

4.5 Debugging

One of the chief difficulties in developing proof tools for Isabelle is debugging them. The
black-box evaluation of ML functions makes it difficult to observe which part of the proof tool
fails and why.

A common approach to debugging is to insert print statements into the technique and use
these to observe which part of the code is failing. However, for complex proof tools which
perform many steps, this leads to an excessive amount of output which the developer then has
to examine. Using flags to turn on and off different kinds of printing can help, but tends to
clutter the code with conditional pretty printing statement.

Another traditional approach is to use language-level debugging tools, such as an ML de-
bugger. Such tools provide similar support to our interactive tracer. However, they tend to
provide an overly detailed view of the proof process, showing many internal details. Our trac-

Chapter 4. Tracing Technique Applications 56

ing mechanism provides an interface for debugging in higher level terms, and supports stepping
over parts of the proof in a different way to the underlying function calls.

An example where we found the tool to be particularly useful was in debugging automatic
lemma speculation. Errors we made in the development of this critic resulted in the wrong
lemma being speculated. Running the technique resulted in non-termination. However, there
are many possible errors that could have this result. Our tracing mechanism allowed us to
identify the lemma speculation problem easily.

4.6 Development

The ability to observe the failure of a technique often gives a good indication of how the
technique might be modified to solve the problem. The patching of failed proof attempts is the
central idea behind Ireland’s development of proof critics [52]. We found the tool helpful in
the development of generalisation critics for higher-order logics.

For example, during the proof attempt of a � b � c � � ab
 ac within Peano arithmetic, our initial
technique, having performed induction on b, arrived at the step case subgoal a
 � an
 ac �X� � a

an �E
 ac. Our initial lemma speculation critic conjectured, a
 � g
 ac ��� a
 g
 ac , generalising
only over a single common subterm, rather than suggesting the more general associativity of
multiplication x
 � y
 z ��� � x
 y �_
 z. Stepping through the proof attempt to the location where
the generalisation was made quickly made the problem and its solution apparent. We were then
able to quickly modify the speculation mechanism to further generalise the conjectured lemma.

Another example of the benefit to the development of proof techniques is shown in the proof
attempt of x � 0 � x which we introduced earlier. Techniques which have a high branching
factor can be are apparent during tracing. In the above example, considering the application of
the induction hypothesis brought to light the following heuristic for pruning the search space:
during an inductive proof, only substitutions with the induction hypothesis used from left to
right should be considered in the left hand side of the subgoal. Symetrically, only right to left
subsitutions should be considered in the right hand side. We then observed that this heuristic
also has a theoretical motivation. In particular, only these subtiutions make the left and right
hand sides of an equational subgoal more similar. Thus only these applications are likely
to allow the proof to then be completed by reflexivity. Our weak fertilisation technique is
described further in chapter 9.

Although the tracing tool allows the user to explore the search space and observe specific
points when the proof fails, it gives only a limited indication of which parts of the search space

Chapter 4. Tracing Technique Applications 57

are irrelevant to the proof. In particular, it allows us to observe points with a high branching
factor, but does not show which branches do not lead to success. We suggest that the tracing
tool should be combined with visualisation mechanisms in order to help developers devise
further ways to prune the search space of their techniques.

4.7 Explanation

The converse of understanding why a technique fails is comprehending why it succeeded to
prove a goal. In a sense, we are asking for an explanation of the proof. The motivation for such
proof explanation comes from the increasing use of powerful proof techniques that can perform
steps that are too large to be comprehensible to the user. For example, IsaPlanner can prove,
from only the primitive definitions, the theorem

�
ab � c � ab � c in Peano arithmetic, whereas most

presentations of this involve several lemmas. We note that new users to the theorem prover may
also find proof explanations useful to understand how the underlying proof system behaves.

The tracing structure provides an approach to explaining the application of a technique.
It tells the story of the proof attempt. For example, the trace produced for by proof planning�
ab � c � ab � c is shown in Figure 4.3. At present, these descirptions are text based, but we

believe that a visual presentation, such as that used in the XBarnicle system [54], which uses
nested boxes to show the structure of the proof, could also help understanding of the proof
attempt. A tool for constructing and interacting with such visualisations of traces is further
work. However, we note that the relationship between the trace and the underlying proof would
need to be formalised in order to allow the user to independently guide the proof attempts of
different subgoals.

Unlike approaches that explain proofs at a logical level, examining the hierarchical-trace
explains how the proof was found in terms of its path through the search space. It particular, it
does not necessarily reflect the proof’s structure. Although this can be confusing, it provides
an ability to present the behaviour of proof critics. This makes it a distinct object from the
proof plan, which presents only the final proof. For example, contrast the trace and the proof
plan produced when proof planning the theorem

�
ab � c � ab � c, shown in Figures 4.3 and 4.4

respectively. We note that using the Isar language as the representation of poof plans makes
the logical structure of the proof readable. Furthermore, it allows the proof scripts constructed
by proof planning to be copy and pasted into the theory developments. Providing improved
mechanisms for managing this kind of interaction is another interesting area for further work.

Chapter 4. Tracing Technique Applications 58

+[1/1] Prove the goal using Induction and Rippling...

-[3/3] induction on "c"

-[1/1] Solve the base case by simplification.

+[1/1] Solve the step case using rippling...

-[1/1] Start Rippling with state:

measure: out:[1, 1, 0, 0], in:[0, 0, 0, 0]

aterm: "(aˆb)ˆ[<Suc>] c = aˆ(b*[<Suc>]c)"

-[2/2] Ripple Step by subst mult Suc

measure: out:[0, 2, 0, 0], in:[0, 0, 0, 0]

aterm: "(aˆb)ˆ[<Suc>] c = aˆ([<op +>] (b*c) [])"

-[1/1] Ripple Step by subst exp Suc

measure: out:[0, 1, 1, 0], in:[0, 0, 0, 0]

aterm: "[<op *>] ((aˆb)ˆc) [<aˆb>] = aˆ([<op +>] (b*c) [])"

-[1/1] Weak fertilisation

+[1/1] By proving lemma1: "aˆg*aˆb = aˆ(g+b)"...

Figure 4.3: An example trace produced by proof planning the theorem
�
ab � c � ab � c where

exponentiation is written using the infix operator ˆ. We omit the trace for lemma which involves
conjecturing and proving further lemmas for the sake of brevity.

theorem
�
ab � c � a � b � c �

proof (induct c)
show

�
ab � 0 � a � b � 0 � by simp

next

fix c
assume IH: - a b � � ab � c � a � b � c �
have a � b � c �
 ab � a � b � c � b � by (rule lemma1)

hence
�
ab � c
 ab � a � b � c � b � by (subst IH)

hence
�
ab �5� Suc c � � a � b � c � b � by (subst exp Suc)

thus
�
ab � c � a � b � c � by (subst mult Suc)

qed

Figure 4.4: The Isar proof script produced by proof planning the theorem
�
ab � c � ab � c. For

brevity, the proof script for the lemma named lemma1 is omitted.

Chapter 4. Tracing Technique Applications 59

4.8 Specialised User Interaction

Interactive navigation of proof attempts, rather than using fixed search strategies, allows the
user to avoid unpromising paths in the search space. This provides a novel approach to work-
ing with the theorem prover. IsaPlanner further specialises this user interaction by allowing
techniques to tag a reasoning state. The tracer can then be told to search normally, until a
state containing the requested tag is found. The intuition is that tags will be used to indicate a
particular point in the proof, for example a generalisation step. This would then allow search
to continue until a generalisation is performed. Like the state description, the tag is held in
the contextual information. It is an interpreted piece of information designed to held the au-
tomation of interaction with the prover. The difference between tags and the descriptions of
states is that tags are static, for use by automatic tools, and quick to examine. In contrast,
the descriptions are verbose, consturcted to describe the state to the user, and can be slow to
compute.

In terms of writing techniques in IsaPlanner, we extend the basic language with a tagging
constructor, “TAG N R”, which unfolds the technique R once, and tags the resulting state with
the tag N. This allows the tracer to search for a state in which some action is performed by the
applied technique, indicated by the tag. This can be used to focus the user interaction on points
in the proof where a technique is more likely to make an error, such as lemma speculation.

4.9 Related Work

Many proof tools provide a trace of their behaviour. For example, the λClam system has a step-
by-step mode which allows the user to step through the system’s proof planning attempt [32].
Like many other systems, λClam also provides different levels of printed output, from verbose
messages to none at all. Similarly, Isabelle’s simplifier provides an option to trace its applica-
tion of rewrite rules. As mentioned earlier, such traces of a proof attempt are of even greater
importance in the ACL2 system [57], as they are the main mechanism for the prover to com-
municate with the user. However, the traces provided by these systems are one-dimensional:
the user can view the trace but cannot interact with the proof tool. In contrast, the approach to
tracing that we have presented in this paper provides an interactive mechanism for exploring
the search space and allows the user to modify with the proof attempt.

A few other systems also allow techniques to be applied in a hierarchical fashion. In par-
ticular, the tactics of Nuprl [30] and the methods of the Multi proof planner in the Omega sys-

Chapter 4. Tracing Technique Applications 60

tem [73]. The main difference is that our notion of unfolding a technique can involve choice,
where other systems have a deterministic result. We allow the user to interact with the choices
in the unfolding of the hierarchy and use this as a mechanism for interaction. Another signif-
icant difference is that our hierarchy is not directly related to the structure of the underlying
proof. Some steps can completely change the proof plan where steps in the unfolding of hi-
erarchical techniques in Nuprl and Omega only refine part of the proof related to a particular
subgoal. In this sense, our hierarchy is a generalisation of that used in these systems.

4.10 Conclusions

We have described the part of IsaPlanner’s language for encoding techniques that constructs
hierarchical traces. This is used by the system’s interactive tracing machinery to support flexi-
ble navigation through the search space involved in the application of a technique. We provide
the user with a clear notion of their location in the search space of a proof attempt. We be-
lieve this can help guide the interaction with the prover. We also found this tracing mechanism
particularly beneficial to the development and debugging of proof techniques. The only addi-
tional burden on the technique developer is to use the provided constructs. We found this to
have significantly less damage to the clarity of the code than the use of conditional printing
statements.

The tracer can be used to explain a proof in varying levels of detail, without hiding the ap-
plication of proof critics. Our tracing mechanism is text based and gives an operational, rather
than visual, view of the search space. Providing a visual representation traces and machinery
for interaction is further work. However, a clear relationship between the tracer and the open
goals would be required. In future work we intend to examine ways to include some goal
information in the trace. Further work also includes combining the tracing tool with a visual
presentation of the search space. We believe this could help developers focus their attention
onto portions of the search space that might usefully be pruned.

In order to further evaluate the interactive tracing of techniques we suggest performing an
experiment with new users to Isabelle. The hypothesis would be that examining the trace of a
technique will help users to learn how to prove theorems in an interactive prover. Users would
be split into two groups. One group would be given the choice to use the interactive tracing
machinery and the other would use techniques without being able to further examine their
unfolding. The groups would both be given a large set of proofs to complete and they would
be meaured based on how many proofs they completed. If the tracing tool helps users then

Chapter 4. Tracing Technique Applications 61

we would expect that group to complete more proofs. In such an experiment the same level of
automation should be provided to both groups. Such an experiment would help to identify if
traces are useful for more than just the development of proof techniques.

Chapter 5

Search

In this chapter, we describe the relationship between search and the application of techniques
encoded in our observational style of proof planning. In particular, we present a functional
interpretation of search and consider how different strategies can be combined. We clarify our
approach by providing an algorithm that supports the mixing of search strategies. We then
describe how this abstract view is instantiated in IsaPlanner and introduce derived elements
that allow techniques to specify a search strategy to be used locally.

5.1 Introduction

The separation of the search space from the algorithm used to explore it is fundamental to
the notion of proof planning. The technique developer encodes a pattern of reasoning which
defines the search space of possible proofs. The proof planner interprets and applies these
encoded techniques to search this space for successful proof plans that solve the given problem.

Despite this, most proof planners use only depth first search. However, in recent systems,
the mechanisms for encoding and applying techniques has become increasingly complex. For
example, Multi, the latest in the Omega family of proof planners, includes methods as well as
six additional structures for encoding patterns of reasoning1 , all of which are interpreted by the
proof planner in a different way [73]. However, choice points within the application of these
structures are still treated in a depth first manner. Similarly, the Clam family of systems has
introduced a notion of proof critics in order to patch failed proof attempts [51,52], but still uses
the underlying depth first search of (λ)Prolog.

1These are strategic control rules, backtracking strategies, planning strategies, control rules, methods, tactics,
external systems, and general purpose lisp code written by the technique developer within any of these structures.

62

Chapter 5. Search 63

Both Omega and λClam extended their predecessor systems in order to support new kinds
of techniques. This added complexity blurs the distinction between search space and strategy.
It becomes less clear how much strategy has been encoded in the planner and how much in the
proof methods. The close integration of the search strategy with the planner’s interpretation of
encoded methods also makes it more difficult to change or experiment with the search strategy.
This is exemplified in the development of the Clam family of systems. An experiment with a
modified search strategy for the Clam system is described by Manning et. al. [68]. While they
report on the success of their approach, later version of Clam which used a structured method
hierarchy and included proof critics lost the ability to perform best first search because of the
increased complexity of the proof planning machinery.

Thus, we believe that to restrict theorem proving to a single search strategy is too strong
a limitation on a research tool designed for the experimentation and exploration of common
patterns of reasoning. In support of this view, we note that search is an important aspect of
many techniques, from resolution theorem proving to rippling, and the effect of the search
strategy is still an open issue for many techniques, including rippling. For instance, best first
search has recently been suggested by Bundy et. al. [17] as a promising way to tackle problems
that are normally outwith the reach of rippling. However, in all the existing proof planning
systems that we are aware of, it is not possible to mix search strategies, or for the encoded
“patterns of reasoning” to specify them. Thus such experiments have so far been difficult to
carry out.

The main contribution of this chapter is the development of an approach to search, for our
observational style of proof planning, that provides a flexible environment for experimentation.
In particular, we describe how a technique can specify to a search strategy to be used locally.
Our approach supports the combination of techniques which employ different search strategies
and provides a clear mechanism for the relationship between different search strategies within a
single proof planning attempt. We also describe how our approach supports combining search
strategies and examine how further interaction between techniques and search can be facili-
tated. This provides a richer framework for experimenting with different search strategies than
is available in other proof planning systems.

Overview

In this chapter, we firstly describe the role of search for our observational style of proof plan-
ning (§5.2). We then describe how search strategies can be combined (§5.3) and introduce a

Chapter 5. Search 64

typed functional view of search (§5.4). We then use this representation to provide an algorithm
for combining search strategies (§5.5). The observational technique language is thus extended
to provide constructs that allow techniques to specify a search strategy to be used locally (§5.6).
We then consider other ways in which techniques can interaction with the search process (§5.7)
and finally present our conclusions.

5.2 Search in Observational Proof Planning

In chapter 3, we introduced the observational style of proof planning and motivated it by argu-
ing that it provides a more flexible environment for the encoding of techniques. In particular,
encoded techniques are functions within the state that produce possible new states.

Thus, unlike interpreted style proof planning which implicitly creates the search space as
a result of the choices in the interpretation of methods, in the observational style, the search
space is a direct result of the application of a technique. Choices that can be searched over
in the observational-style are expressed as reasoning states in the lazy list produced by a tech-
nique’s application. Recursively unfolding the continuation technique in these states results in
a lazily evaluated search tree, as illustrated in Figure 5.1. The lack of a continuation indicates
a leaf state that is considered a solution-node in the search space. On the hand, a state with a
continuation technique that produces an empty list represents a non-solution leaf-node which
will be backtracked over.

This lazy unfolding of techniques allows them to be applied in a possibly infinite number of
ways, for instance corresponding to unifiers using Huet’s higher-order unification [46]. While
this is similar to Isabelle’s approach of expressing the possible ways a tactic can be applied as
a lazy list, it differs in that it provides a explicit representation of the search tree. In contrast,
Isabelle’s search space is evaluated eagerly, which results in a flattened view of the search
space.

The explicit nature of the search space makes it easy to employ and experiment with dif-
ferent search strategies. For example, a generic version of depth first search can be defined as
follows:

Chapter 5. Search 65

State: S1
Continuation: R1

State: S2
Continuation: R2

State: S3
Continuation: R3

State: S4
Continuation: R4

State: S5
Continuation: None

State: S6
Continuation: R6

R1(S1)

R2(S2)

R4(S4)

R3(S3)

R6(S6)

Figure 5.1: An illustration of the search space that results from the lazy unfolding of
a reasoning technique. Unfolding state S4 results in the empty sequence indicating
that it is a non-solution leaf node to be backtracked over. In contrast to this, state
S5 has no continuation, indicating that it should be considered as a solution to the
search strategy.

fun depth fs goalf childf state =

let fun dfs aux [] = []

| dfs aux (h :: t) =

if (goalf h) then h :: (dfs aux t)

else dfs aux ((childf h) @ tq)

in dfs aux [state] end;

This takes as arguments a function goalf to identify when a solution is found, a function
childf to produce the child nodes from a parent node, and an initial node to start searching
from. Using this to search an observational proof planning attempt simply involves letting
goalf be true iff there is no continuation of the reasoning state, and childf be the unfolding
function that applies a states continuation to itself. The initial state to search from is passed
as state. We present search algorithms, such as the above depth first search, in a non-lazy
manner for the sake of clarity, although it is a trivial exercise to make them lazy.

Because choice points in a technique are lifted to the resulting lazy list, simple generic
search mechanisms, such as the depth first algorithm presented above, are directly applicable.
The search strategy only has to select the next continuation state to unfold. Proof planning is
then the process of searching over a technique’s application for a proof plan that solves the

Chapter 5. Search 66

goal.

5.3 Combining Search Strategies

One of the most obvious limitations of existing proof planning systems is that techniques can-
not be defined in terms of search strategies. It seems desirable to use different kinds of search
for different parts of the search space. For instance, when performing an inductive proof using
rippling for the step case, rippling can benefit from best first search, whereas a simplification
based technique, used to solve the base case, may not have a clear measure and thus it may
be more appropriate to use depth first search. In particular, it is useful for a technique to be
able to change the current search strategy. Failing to support this limits the expressivity of the
technique language.

We observe that the heuristic in best first search can be manipulated to express any com-
bination of strategies by changing the measure. However, this can easily become an ‘ad-hoc’
solution that makes it difficult to express natural combinations of search strategies and tech-
niques. We believe that best first search should be used when there is a heuristic that can be
expressed conveniently. If heuristics become over complex, they tend to become fragile. Fur-
thermore, it can become unclear exactly what work the heuristic is doing. Complex heuristics
can also slow down search process itself.

We describe two approaches to combining search strategies that maintain a clear notion of
search and avoid such issues. Both mechanisms support a mixing of search in the observational
style. The first approach, nested search, is easily implemented but reduces the flexibility of the
technique language. The second approach, stacked search, is more complicated but preserves
the expected behaviour of techniques and avoids the limitations of nested search.

5.3.1 Nested Search

Mixing search strategies can be supported by nesting a complete proof planning attempt within
the application of a technique as illustrated in Figure 5.2. This is the obvious and naive ap-
proach to combing search strategies and is easily implemented.

In the functional style, nested search is the only way that search strategies can be mixed.
This is because techniques are eagerly evaluated and thus the search has to be embedded within
the evaluation of a technique.

For the observational style, we remark that nested search removes the ability to introspect

Chapter 5. Search 67

Figure 5.2: An illustration of nested search, where the application of a reasoning
technique can simply be a separate proof attempt which in turn can further involve
search.

into a technique’s application. Reasoning states no longer express incremental snapshots of the
proof planning process as a single reasoning step can now involve search over the application
of an arbitrarily large technique. This breaks the ability to step-through the proof planning
process. Instead the user is forced to step over the whole search.

The problem is that the search process is performed eagerly, but the observational style’s
step-by-step notion of application is lazy. Thus a technique’s application that uses nested search
will hide the intermediate search space within its application. A nested search removes the
extra expressivity in the technique language that allows one technique to examine another’s
unfolding, as is used by the MAP and FOLD combinators described in Chapter 3.

5.3.2 Stacked Search

Stacked search provides an approach more suited to the observational style than nested search
by maintaining the lazy nature of applying a technique. It involves using a ‘stack’ of search
strategies with their related agendas and allowing reasoning states to interact with this stack.
The element on the top of the stack is the current search strategy and its current agenda. For
example, Figure 5.3 shows a search tree, using stacked search, where depth first search is used
within the context of a breadth first search.

When a sub-search finds goal node, one that meets the requirements of what was being
searched for, it is returned as the next node to be added to the agenda of the parent search
strategy. In the above example, goal nodes found by depth first search are returned as the next
nodes to be added to the breadth first search agenda.

Stacked search behaves in the same way as nested search but has the advantage that tech-

Chapter 5. Search 68

 BFS:0

 DFS:1
 BFS:2

0

1 2

4

3

5

6

8

 BFS:1

 BFS:4

 BFS:3

 DFS:2,
 BFS:2

 DFS:3,
 BFS:2

 DFS:4
 BFS:2

 (Solution at DFS:5)
 BFS:5

9 BFS:6

BFS = Breadth First Search
DFS = Depth First Search

7

SSS:N = ’N’th node in
 ’SSS’ Search strategy

KEY

The dotted line indicates nodes
in a sub-search. Here a depth
first search within the breadth
first search.

Figure 5.3: An illustration of stacked search, where the search strategy is held in
a stack as part of the state. Note that node 8 is a success node for the depth first
search, thus resulting in a return to the previous search strategy.

niques are still evaluated in a ‘lazy’ fashion which supports introspection over the unfolding of
a technique and interactive step-by-step debugging of its application.

Stacked search is implemented as a top level search strategy that interacts with the nodes
in the space, allowing them to push search strategies onto the stack, and declare themselves to
be solutions. This provides a flexible mechanism for experimenting with search strategies and
their combination.

We develop this approach by first defining a general view of search strategies that expresses
them as an instance of a datatype within a functional setting. We then present the machinery to
combine such search strategies, forming the stacked search strategy.

5.4 A Uniform Functional View of Search

The first step in our development of a flexible tool for experimenting with search is to abstractly
define the notion of a search strategy. We do this in an ML-like functional style, showing how
different search strategies can be treated uniformly. This allows a simple and direct implemen-
tation and also facilitates mechanised reasoning about the search process.

Our account is minimal in the sense that it avoids introducing details specific to only a

Chapter 5. Search 69

single strategy, such as notions of operator, parent nodes, depth, cost, and path. We believe
that such search-specific details should be introduced as needed to specific strategies that uses
them. This is in contrast to presentations such as that given by Russell and Norvig [92]. We
define our functional notion of search strategy only in terms of nodes, for which we will use
the type ’n, and an agenda, which will have type ’a.

Type Definition 5.4.1 (Search strategy):
(’n, ’a) strategy =�

agenda : ’a,

addnodes : ’n list � ’a � ’a,

popnode : ’a � (’n � ’a) option �

This type definition for strategies captures the state of a strategy using the agenda, and char-
acterises the ways that it can be transformed using the addnodes and popnode functions. The
addnodes function allows new nodes in the search space to be added to the agenda, and the
popnodes function supports getting the next state to be explored. When popnodes is applied
to an empty agenda then None is returned, otherwise it returns the next node to be examined
and the agenda with that node removed. For its part, the agenda field initially holds the empty
agenda for the search strategy, but later holds the current agenda for a search strategy.

As is common in the literature, we abstract over the type of the node we are searching for,
and over how to get new nodes from an existing node. As such, it presents the behaviour of a
search strategy only in terms of the way it treats its agenda. This makes an implicit assumption
about the way such search strategies are interacted with, namely that any new nodes added to
the agenda are the children of the last node popped from the agenda.

Using this characterisation of search we can now define specific kinds of search as instances
of the general type (’n, ’a) strategy. We now present the basic search strategies in this
way. We will use the letter a for a variable representing the agenda and nds for one that holds
a list of nodes.

Search Strategy Definition 5.4.2 (Depth First Search):
depth first search =�

agenda = [],

addnodes nds a = nds @ a,

popnode [] = None

| (h::t) = Some(h,t) �

Chapter 5. Search 70

This instantiates the agenda to being of type ’n list and thus gives depth first search strategy
type (’n, ’n list) strategy. Depth first search simply involves adding new nodes to the
start of the agenda.

Search Strategy Definition 5.4.3 (Breadth First Search):
breadth first search =�

agenda = [],

addnodes nds a = a @ nds,

popnode [] = None

| (h::t) = Some(h,t) �
Breadth first search is defined similarly to depth first search, but has a different addnodes
function to place new nodes at the end of the agenda, rather than the start.

Search Strategy Definition 5.4.4 (Best First Search):
We implement best first search by letting the agenda be a list of nodes sorted by the heuristic
measure. This heuristic is itself an argument to the search strategy:

best first search heuristic =�
agenda = [],

addnodes nds a = sortandmerge(heuristic, nds, a),

popnode [] = None

| (h::t) = Some(h,t)

This employs a function sortandmerge to sort the new nodes into the agenda using the heuris-
tic.

While the above search strategies treat the agenda as a list, search strategies can have agen-
das of a different type. For instance, iterative deepening also holds the current depth to search
until.

Search Strategy Definition 5.4.5 (Iterative Deepening Search):
We present a version of iterative deepening search that takes parameters indicating the amount
to increase the search depth by and a list of nodes from which to create the initial agenda.

This strategy uses a richer notion of agenda to keep track of the current maximal depth
(maxd), the depth of the last node popped from the agenda (lastd), the current agenda (nodes)
organised in the same fashion as in depth first search, and the initial agenda to restart searching
from (initnds). Additionally, it internally pairs each node with its depth. In order to keep
track of the search depth, we use the implicit knowledge that added nodes come from the last

Chapter 5. Search 71

popped node.

fun iterative deepening search depth nds =

Strategy�
agenda = let startnds = map (λ n. (0,n)) nds

in
�
maxd = depth, lastd = 0,

initnds = startnds, nodes = startnds � end,

addnodes =

(λ nds
�
maxd, lastd, initnds, nodes � =�

maxd = d, lastd = lastd, initnds = initnds,

nodes = (map (λ n. (lastd + 1,n)) nds) @ nodes �)
popnode =

(λ
�
maxd, lastd, initnds, nodes = [], � . None

|
�
maxd, lastd, initnds, nodes = ((d,n)::t) � .
if maxd < d then

popnode
�
maxd = maxd + d, lastd = lastd,

initnds = initnds, nodes = initnds �
else

Some(n,
�
maxd = maxd, lastd = d,

initnds = initnds, nodes = t �)) �

We remark that requiring multiple solutions from a search can result in a possibly unin-
tended behaviour for search strategies that examine states more than once, such as iterative
deepening. The problem is that goal states examined more than once will be returned each
time they are examined. For iterative deepening search, this will give back all solutions at
depth n, for each search of depth greater than n. Accounts of search in the literature, such as
that presented by Russell and Norvig [92], avoid considering multiple solutions. Recording the
position in the search space can be used to avoid repeated solutions, although it does further
complicate the presentation of the search algorithm.

Abstracting Over the Agenda

One of the motivations for this characterisation of search is that it allows us to ‘wrap up’ the
search strategies into objects of uniform type, abstracting over the agenda. This in turn allows a
functional treatment of different search strategies in a uniform manner, thus providing us with
an ability to combine them. We abstract over the different kinds of agenda by defining a type,
search, in terms of only the functions addnodes and popnode:

Type Definition 5.4.6 (Search):

Chapter 5. Search 72

’n search =
�
add : ’n list � ’n search

pop : unit � (’n � ’n search) option �

This captures a ‘snapshot’ of the strategy’s search process, where add is the continuation func-
tion that gives the next snapshot when nodes are added to the agenda. The pop function gives
the continuation resulting from removing a node from from agenda. This abstracts over the
agenda in the functions addnodes and popnode that define a search strategy.

We now define two helper functions that update a strategy using the addnodes and popnode

functions:
addnodes strategy : (’n, ’a) strategy � ’n list � (’n, ’a) strategy

popnodes strategy : (’n, ’a) strategy � (’n � (’n, ’a) strategy) option

addnodes strategy
�
agenda, addnodes, popnode � nds =�

agenda = addnodes agenda nds, addnodes = addnodes, popnode = popnode �

popnodes strategy
�
agenda, addnodes, popnode � =

case popnode agenda of None � None

| Some(node, newagenda) �
Some(node,

�
agenda = newagenda, addnodes = addnodes,

popnode = popnode �)
To allow the wrapping up of strategies into an object of type ’n search, we use these in the
definition of two mutually recursive functions that have the following type and definition:

addf : (’n, ’a) strategy � ’n list � ’n search

popf : (’n, ’a) strategy � unit � ’n search

addf strategy nds = let newstrategy = addnodes strategy strategy nds in�
add = addf newstrategy, pop = popf newstrategy � end

popf s () =

case popnodes strategy s of None � None

| Some (node,newstrategy) �
Some (node,

�
add = addf newstrategy, pop = popf newstrategy �) end

These hide the type of the agenda used by the search strategy as arguments to function calls.
This allows the following function to create an object of type ’n search from one of type
(’a, ’n) strategy:

Chapter 5. Search 73

mksearch : (’a, ’n) strategy � ’n search

mksearch strategy =
�
addnodes = addf strategy, popnode = popf strategy �

These definitions linearise the process of search to a series of snapshots which forms a lazy list
of nodes arranged in the order that the search strategy will examine them. This allows us to
define a simple function to step through the search process looking for a node. In addition, we
can ask the search process to continue even after we have found a node, for instance in order
to try and find more solutions.

The following function steps through the linearised search process until a solution node is
found, or the search space is exhausted. Solution nodes are returned with the state of the search
strategy in order to allow more solution to be searched for.

Function Definition 5.4.7 (Searching):
dosearch : (’n � bool) � (’n � ’n list) � ’n search

� (’n � ’n search) option

dosearch goalf childf search =

case popf search of None � None

| Some (node,moresearch) � if goalf node then Some (node,moresearch)

else dosearch goalf childf moresearch

The argument goalf is a function that is true when a solution node if found. The function
childf returns the children nodes of the node it is applied to, and search is the object of type
’n search that holds the search strategy being used.

5.5 Combining Search Strategies using Stacked Search

We now consider how we can extend this functional view of search in order to allow different
search strategies to be combined. We provide a stacked search strategy that allows states to
modify the local behaviour of search by adding new kinds of search onto the stack. We also
want to allow states to pop nodes from the stack. In particular, nodes that are solutions to a
child-search-strategy should be given back to the super-search-strategy.

To allow states to indicate that a new search strategy should be started, or that an old
strategy has ended, we introduce a notion of search operator that allows a node to interact with
the search process:

Chapter 5. Search 74

Type Definition 5.5.1 (Search Operator):
’n searchop = addstrategy of ’n search

| endstrategy

The endstrategy operator indicates that the node is a solution to the current search strategy.
To allow the search process to get these operators, we also define a function to pop a search
operator from a node:

Function Definition 5.5.2 (Pop Search Operator):
popsearchop : ’n � (’n searchop � ’n) option

When a node does not affect the search stack, the popsearchop function returns None, other-
wise it returns the next operation to perform on the search stack.

In this view of search, nodes indicate when they represent a solution to the current search
strategy by returning an endstrategy as their plan operator. A state that contains several
endstrategy operators indicates that it is the solution to several of the stacked search strate-
gies.

With this machinery in place, we can now define a function to perform stacked search:

Definition 5.5.3 (Stacked Search):

Chapter 5. Search 75

fun search childf sstrat st =

let

fun subsearch None = []

| subsearch (Some (sstrat, st)) () =

case (popsearchop st) of

None =>

(childf st) |> add states sstrat

|> pop state

|> subsearch

| Some(st’, addstrategy sstrat’) =>

(Some (sstrat’, st’))

|> subsearch

|> add states sstrat

|> pop state

|> subsearch

| Some(st’, endstrategy) =>

st’ :: (subsearch (pop state sstrat))

in subsearch (Some (sstrat, [st])) end;

The first parameter, childf, is a function of type ’n -> ’n list that given a node pro-
duces its child-nodes, and s is the initial state of the search captured as an object of type
’n strategy. The second parameter sstrat is the initial search strategy for stacked search
to start with.

This approach supports the evaluation of search in a lazy manner which is needed in order
to allow a technique to examine another’s unfolding in the observational approach to proof
planning.

5.6 Extending IsaPlanner’s Technique Language

Stacked search is implemented for observational proof planning in IsaPlanner by adding con-
textual information that holds the search operators. We let the function that computes the child
nodes (childf) for stacked search be the unfold operation that applies the continuation tech-
nique of a state, to that state.

To further support the writing of techniques that specify the locally used search strategy,
we add a technique SEARCH that uses a strategy to explore the application of another technique.
This uses two simple functions: the first, startsearch, adds a search strategy to the list of
search operators, and the second endsearch adds an endstrategy operator to the list of search

Chapter 5. Search 76

operators. Using these we define the SEARCH technique as follows:

��NDk Q ��L : [<\FS�^�SEUs\�UD^�[ebFTaYl[7S_U_bFTDV~Yl[DSEU�bFT7V
��NDk Q ��L s r � � K7LEN7O p r UGV��e\�UE^�[]bqTE� o

� \FS�^�[7S<\GUE^�[ebFT s �
This takes a search strategy s and a technique r, resulting in a new technique that first indicates
that s should be added to stacked search, then performs the technique r as normal. Each final
state with no continuation is considered to be a solution to the s by calling endsearch at that
point.

5.7 Further Interaction Between Reasoning and Search

We have already mentioned the need for techniques to be able to modify the search strategy
being used. It is also useful to employ a more general interaction between reasoning and
search. This can be particularly beneficial when conjecturing lemmas as it facilitates encoding
heuristics. For example:

� if a conjecture is proved to be false, then the search space of possible alternative proofs
for the statement should be pruned. Additionally, the search space of any conjecture that
the false one is an instance of, should also be pruned.

� if the search space for the proof of a conjecture is exhausted, then it seems reasonable
(and is useful in practice) to avoid making the same conjecture at a later point in proof
planning.

� when a lemma is successfully proved, but later the proof of the main goal fails, it will
not help to find alternative proofs for the lemma. This suggests that when a lemma is
proved, the search space for other proofs of the lemma (or proofs of an instance of it)
should be pruned.

� when rippling arrives at a goal that it has already seen, the search space can be pruned of
by removing one of the branches. This can result in an exponential decrease in the size
of the search space, which otherwise contains significant redundancy. See section 7.9 for
more details.

We capture these heuristics using the contextual information to store the lemmas trying to be
proved, as well as noting when a search space has been exhausted.

Chapter 5. Search 77

We use reference variables to share information between alternative branches in the search
space. This allows dynamic pruning in the same way as the ENDSPACE element in the technique
language, described in chapter 3, which modifies the last explored state independently of the
search strategy being used. This information derived from the reference variable is employed
to cut away parts of the search space. For example, if we prove a conjecture we can cut away
the rest of the search space if we are not interested in alternative proofs. If we do wish to find
alternative proofs, then we can use a global flag disable such pruning.

We remark that this interaction is fully compatible with stacked search and we use it in
combination to perform dynamic pruning of the search space independently of the search strat-
egy employed.

5.8 Related Work

The Omega family of systems fixes the search strategy to being essentially depth first, although
it provides several layers in which techniques can be encoded. The complex machinery used
to interpret these techniques then provides the ability to produce behaviour that would not nor-
mally be possible using only depth first search. For example, Omega’s backtracking strategies
allow the proof planning to stop a proof attempt and return to an earlier subgoal. The complex
machinery makes it difficult to change the search strategy, and thus makes it hard to experiment
with the effect of different search strategies.

The λClam proof planner also used depth first search. Similarly to Omega its use of proof
critics supports more complex behaviour, but makes the implementation of a different search
strategies difficult. λClam does provide a best first methodical which allows a dynamic ordering
of sub-methods by some heuristic score. However this does not perform best first search. We
are aware of only one experimental, but unavailable, proof planner that supported full best first
search, namely a version of the Clam system described by Manning et. al. [68].

Most tactic based theorem provers such as HOL and NuPRL, do not have an explicit notion
of search space and thus to not provide generic and powerful search facilities. However, the
Isabelle proof assistant does have an explicit notion of the tactics which can be applied in a
number of ways. This is used to provide search tacticals, which repeat the application of a
tactic to create a search tree. The tacticals then search this space. The search space remains
implicit within the tactic’s application. Other systems such as PVS and ACL2 perform search
in a hard-coded manner within individual proof tools. As such they also avoid having a general
notion of search space.

Chapter 5. Search 78

This differs from our approach which supports a lazy evaluation of the search tree rather
than just the results of the search process. We make use of this lazy evaluation to support tech-
niques that could otherwise not be expressed, such as the FOLD technique described in chap-
ter 3, and to provide an interactive tracing tool for technique applications. In other respects,
our approach to search behaves in a similar manner to that used in Isabelle’s tactic language.

5.9 Conclusions

We have argued for a more flexible approach to search in proof planning. In particular, we
have presented an approach that allows encoded techniques to specify the way choice points
within their application are searched over. We have presented and examined two solutions. The
first is the obvious approach to nest a proof planning attempt within a technique application.
The second approach is more sophisticated and maintains the traceability of techniques and the
expressivity of the technique language, while providing the same functionality.

In order to support the proposed approach to search, we defined a general functional notion
of search strategy that allows strategies with different types of agenda to be combined within a
purely functional setting. We then described an algorithm for stacked search and how this can
be used within IsaPlanner by making of use of the extensibility of the technique language.

Lastly, we examined another approach to sharing information across or-branches in the
search space that is compatible with stacked search. In particular this supports techniques that
dynamically prune the search space. The combination of these mechanisms provide a flexible
approach to search that we use to experiment with our inductive theorem proving techniques,
in chapter 10.

Chapter 6

Proof Plans

In this chapter, we describe and motivate our representation of proof plans. This is based on
the Isar language developed by Markus Wenzel [102]. We give a detailed account of our char-
acterisation of Isar and contrast it with the representation used in other proof planning systems.
The contribution of this chapter is thus a representation of proof plans as Isar proof scripts that
supports their automatic generation and manipulation. However, we found problems with this
approach and thus we also outline various issues to guide further work.

6.1 Introduction

In chapter 3, we provided a novel framework for writing and combining proof planning tech-
niques. Our approach abstracts over the representation of the proof plan. Thus it can be seen as
a framework for developing proof planners. This chapter completes the picture by describing
a particular implementation of proof plans that results in a specific proof planner for Isabelle.

Recall that proof plans, the result produced by proof planning, are the high-level interpreted
descriptions of proofs. They are interpreted in the sense that they can be modified by the proof
planner and high level in the sense that they abstract over calculus level operations. They are
often also called declarative because it has been thought that the slots of a method can be
described in a declarative way. This has typically been done by using a logic-programming
language in which to write methods.

We first describe early experiments with a simple representation of proof plans as tactic
lists. This motivates a new representation of proof plans as a characterisation of a declarative
and structured proof language. In particular, we use the Isar language, introduced in chapter 2,

79

Chapter 6. Proof Plans 80

which expresses proofs in Isabelle and is designed to be intelligible to humans as well as
machine checkable.

The main work in this chapter is to provide a representation of Isar proof scripts that sup-
ports their automatic derivation and manipulation. We provide machinery that combines proof
search with the generation the proof plan. In particular, we describe how chains of backward
reasoning can be represented and automatically transformed into the forward style of Isar proof
scripts. We also extend Isar with new commands to support gaps in proof and to express a step
that can involve proof planning.

Although we found our machinery sufficient for expressing techniques, such as rippling,
when meta variables or fixed parameters are introduced a different approach is needed. Our
representation of proof plans also raises questions concerning how much is expressed in proof
scripts. We then contrast our representation with that used in other systems. From this analysis
and from the limitations of our machinery, we summarise the features we believe are needed
for a more flexible representation of proof plans.

6.2 Initial Experiments with Proof Plans as Tactic Lists

We initially implemented proof plans as a list of tactics paired with the proof state resulting
from each one’s successive execution [37]. Although we found that this worked well for our
early proof techniques, the following issues arose when trying to encode more complex ones:

Expressivity: Using Isabelle’s theorem object to represent the proof state means that assump-
tions cannot be referred to unambiguously. We found it particularly useful to be able
to refer to assumptions using variables in the programming environment. Using inte-
gers that refer to the location of an assumption is problematic as tactics can reorder and
introduce assumptions arbitrarily.

Readability: Tactic scripts are difficult to read. To be understood by humans usually requires
re-executing them and examining the intermediate subgoals. Providing more readable
proof plans is beneficial for the debugging of techniques and is also important for their
development. In particular, we would like to support the encoding of common patterns
of interaction with the proof assistant.

Independence of sub-proofs: Lists of tactics do not provide an explicit notion of proof blocks.
This means that to identify the part of a tactic script that prove a specific subgoal can be

Chapter 6. Proof Plans 81

non-trivial. This is particularly important when trying to express techniques that work
on several branches of a proof simultaneously, such those used for deductive synthesis of
induction schemes [18]. Such techniques need to be able to modify part of a proof plan
that affects only a specific goal.

The Isar language solves these problems by providing a readable language for writing
proofs that explicitly names assumptions and has a clear notion of proof blocks. Because it
is the interface to the theorem prover, using it as the language for proof plans also provides a
natural way to mix proof planning and interactive proof development. In particular, the tech-
nique language for proof planning to be used as a macro language for automating common
steps that the user performs.

User interaction with proof planning can also be supported by providing an Isar method that
applies a proof planning technique. A salient feature of this is that the user can also examine
the steps performed in further detail by examining the generated proof plan. These steps will
also be readable as they will be expressed in terms of Isar proof scripts. This is in contrast to
traditional Isar methods which simply apply tactics that cannot be examined in further detail.

Although the issues of expressivity, readability, and proof independence motivate using
Isar as the language for proof plans, the existing Isar machinery is not sufficient. We need a
declarative characterisation that allows manipulation of proofs within the programming envi-
ronment. The existing approach employed by Wenzel executes scripts using a virtual machine
with state transitions [102]. This avoids holding any representation of proof script and thus
gives no support to their manipulation. This motivates the development of new machinery to
maintain a declarative representation of Isar proofs that supports their manipulation, printing
and re-parsing. This is the contribution of the proof plan representation and associated machin-
ery described in the rest of this chapter.

6.3 Proof Plans as Isar Proof Scripts

One of the key difficulties with providing a datatype to describe Isar proof scripts is that the
language is extensible. This means that we cannot have the expected correspondence between
constructors and elements in the language. Thus the proof plans must be an interpreted ob-
ject and tools that manipulate them must be able to act appropriately when a script contains
an element of the language that was not defined when the tool was written. For instance, a
generic proof planning tool for manipulating Isar proof scripts in any logic should still be ap-

Chapter 6. Proof Plans 82

plicable when working in spefic domains. One such example is Isabelle/HOL which adds a
construct, obtains, for reasoning about properties of witnesses to existential variables. Our
basic machinery for manipulating proof scripts must be independent of the obtains command.
However, it should also remain applicable after this element has been added to the language.

To support this behaviour, we provide an abstract description of elements in the Isar lan-
guage using a uniform interface. Proof plans are then lists of these abstract elements. To exam-
ine the parameters used by a language element requires interpretation within the programming
environment.

The language elements that make up our proof scripts correspond directly to the basic
transitions of the Isar state machine, as shown earlier in Figure 2.4 on page 12. The abstract
interface for an element of the Isar language is as follows:

Definition 6.3.1 (Abstract Language Element):

� A unique name.

� An associated datatype that holds the parameters of the language element. This pro-
vides the interpretable information that proof planning techniques can examine in their
manipulation of proof plans.

� An execution function that performs the underlying Isar proof state transition. An in-
stance of the associated datatype is given to the this function in order to perform the Isar
virtual machine step.

� A pretty printing function that can be parsed by Isar

For example, the language element corresponding to the Isar command apply is:

Name: apply.
Datatype: an interpretable description of an Isar method, as described below.
Execution Function: the Isar apply function given the method held by the datatype.
Pretty Printing Function: this prints “apply M” where M is the pretty printed method.

The details of implementing such an interface in ML make use of the ability to hide data
in the exception type. This trick has been used extensively in Isabelle to support the extension
of basic types. To make the provision of such an interface for elements of the language easier
and to help avoid errors in their definition, we provide an ML functor to perform the messier

Chapter 6. Proof Plans 83

details of working with the exception type and provides a uniform interface hiding the specific
datatype. This allows us to provide a general notion of a language element within a proof plan
as a record with the following fields:

Definition 6.3.2 (Instantiated Language Element):

Kind: A unique name for the kind of this object in order to allow a technique to safely extract
the original parameter data.

Hidden Data: The real parameter data hidden within an exception type. This can be extracted
only using the function from the defined language element.

Isar Proof State: The Isar state machine after executing this language element. This allows
the Isar context to be propagated.

Pretty Printing Function: This is a function from unit type that will pretty print this element
of the proof plan. We make it a function rather than a pretty print object (such as a string)
in order to avoid the often computationally expensive task of pretty printing each state
during the search for a proof plan. In this way, the work involved in pretty printing is left
until the point that the user requests the printed proof plan.

The distinction between the abstract and instantiated language elements is analogous to
the uninstantiated tactic slot in Clam methods and the instantiated versions which are used
to construct the proof plan. Abstract language elements are given data to provide a concrete
instantiated versions.

Proof Plans as Proof Scripts with Lemmas

Although our proof plans are essentially Isar proof scripts, at present, we do not include the
ability to define new constants and types, but we do support using separate derived lemmas. In
particular, a proof plan is represented as a proof script for a given problem with a collection of
lemmas.

We remark that the use of named lemmas and named intermediate results allows sections
of a proof to be reused. This feature of the Isar language corresponds to Omega’s use of a
directed acyclic graph for the representation of proof plans. The distinction between trees and
acyclic graphs for proof plans is that results can be reused.

Chapter 6. Proof Plans 84

The Linearity of Isar

One of the characteristics of Isar is that it allows modification to a proof’s context within a
given proof attempt. This includes term syntax as well as the configuration of proof tools.
Such local information is essential in order to write some proofs in a suitably brief manner.
However, it creates additional dependencies within the proof script. For example, adding an
intermediate result to the simplification set can make later calls to the simplifier dependent on
the intermediate result.

In order to make use of the Isar context, the proof plan must be executed as elements
are added. But because we do not know how elements modify the context, it is not possible
to identify parts of the proof that are independent. Furthermore, the linear execution of Isar
scripts makes it impossible to modify an earlier part of a proof without re-executing later steps.
Because of this inherent linearity, our representation of proof plans is just a list of elements.

For example, the proof shown in 2.2 could be broken up into the list of steps shown in
Figure 6.1.

Although execution of Isar is forced to be linear, internally Isar uses a block structure. Cer-
tain commands, such as proof, start new blocks and other commands end them, such as qed.
Another example is the next command which ends one block and starts a new one. However,
Isar does not provide any way to directly work with block structures. For the automatic gen-
eration of Isar proof scripts, an interpretable characterisation of the block related effects for
the language elements could help the management of dependencies. Additionally, having an
interpretable representation of blocks external to Isar would allow proof planning machinery
to make use of this information. However, this requires significant modifications to the Isar
machinery and has thus been left as further work.

The parameters to elements of the Isar language are usually methods and theorems with
attributes. We now describe how we capture these aspects of the language in an interpretable
way.

Interpretable Attributes

Attributes in Isabelle/Isar are functions of type “’a * thm -> ’a * thm” where ’a is a poly-
morphic type variable. They modify a theorem and some other kind of object. In practice, they
tend to do one or the other, but not both. In Isar proofs, local results and assumptions can be
given attributes. For example, the simp attribute adds the given theorem to the simplification
set but does not modify the theorem. On the other hand, the symmetric attribute swaps the left

Chapter 6. Proof Plans 85

1. theorem sum of odds: ∑i 	 n 2
 i � 1 � n2 (is ?sumto n �)

2. proof (induct n)
3. show ?sumto 0 � 02

4. by simp

5. next
6. fix n
7. assume IH: ?sumto n � n2

8. have ?sumto
�
Suc n �}� ?sumto n � Suc

�
2
 n �

9. by simp

10. also
11. have ������� n2 � Suc

�
2
 n �

12. using IH

13. by (simp)

14. also
15. have ������� �

Suc n � 2
16. by (simp add: power2 eq square)

17. finally
18. show ?sumto

�
Suc n ��� �

Suc n � 2
19. by default
20. qed

Figure 6.1: The list of steps expressing the Isar proof shown in Figure refisar-proof1-fig

Chapter 6. Proof Plans 86

and right hand side of an equation.
A criticism of Isabelle/Isar’s approach to attributes is that it mixes those that modify the

context with those that modify the theorem. For the management of dependencies, it is impor-
tant to know when the context is modified. But without any distinction between attributes that
modify the context and those that modify the theorem, it must be assumed that all attributes
modify both. To improve the ability to analyse proof plans, we provide an interpretable notion
of attributes that modify theorems separately from those that modify the context. This also
supports the use of attributes that modify theorems without having to provide context in which
the attribute is applied.

Similarly to Isar commands, we provide an abstract interface for attributes which have:

� A unique name.

� An associated datatype that holds parameters to the attribute.

� An execution function that modifies the context or the theorem.

� A pretty printing function.

For example, the simp attribute mentioned can be characterised as:

Name: simp.
Datatype: This is a constant, either add indicating that the theorem should be added to, or del

removed from, the simplification set.
Execution Function: this adds or deletes rules form the simplification set.
Pretty Printing Function: This prints [simp] when a rule that is added to the simplification

set and [simp del] when it is to be removed from the simp set.

The symmetric attribute is similar:

Name: symmetric.
Datatype: there are no parameters so this is just the unit type.
Execution Function: this applies resolution with the symmetry theorem to change the orien-

tation of the equality.
Pretty Printing Function: because there is no associated data, this always prints as [symmetric].

Other attributes can also be defined similarly. In Isar, attributes can be added in a domain
specific manner by defining them within theories. When this is done, to use them in proof
planning techniques, an interpretable attribute must also be defined.

Chapter 6. Proof Plans 87

Interpretable Theorems

In Isar scripts, theorems can be modified by attributes. As mentioned earlier, many language
elements take these modified theorems as arguments. For instance, the note command allows
a new a given list of theorems with attributes to be bound to a name. For instance, the following
command would create a name for the definitions of addition, where the definitions have been
resolved with the symmetry theorem.

note sym add defs = add Suc[symmetric] add 0[symmetric]

We provide an interpretable notion of theorems with attributes. This is simply an abbrevi-
ation of a theorem and a list of attributes. However, we also store the intermediate modified
theorems so that analysis of the proof plan does not require re-execution of the attribute func-
tions.

Interpretable Methods

Another common parameter to language elements are methods. In Isar, these are functions
that are given a proof context, a list of theorems (the chained results), their normal parameters,
and finally the theorem which represents the proof state. Such methods result in a theorem
sequence with new assumptions for the new subgoals. When the theorem is proved there are
no additional assumptions.

Much like attributes and language elements, we provide an abstract interface for methods:

� A unique name.

� An associated datatype which captures the parameters to the Isar method.

� An execution function that applies the method.

� A pretty printing function that produces a string that Isar can parse.

For example, the equational reasoning method that was described in chapter 8, can be charac-
terised in an interpretable way by the following:

Name: subst.
Datatype: a list of interpretable theorems.
Execution Function: applies the Isar substitution method with one of the given theorems.
Pretty Printing Function: This prints as “subst THMS”, where THMS are the pretty printed

interpretable theorems.

Chapter 6. Proof Plans 88

The Gap Command

As well as providing interpretable versions of the language elements for the existing commands
in the Isar language, we also introduce a new command that corresponds to a gap which can
optionally be annotated by a proof planning technique. Gaps represent goals that still need to
be solved. They are characterised as follows:

Name: gap.
Datatype: an optional proof planning technique.
Execution Function: skips the proof using an oracle.
Pretty Printing Function: This prints as gap when no technique is given and as “gap TECHN”,

where TECHN is the pretty printed technique name.

The annotation acts as a hint to further proof planning. This notion of gap plays a similar
role to unexecuted justification on Omega proof plans, and to goals paired with methodical
expression in λClam. They are all intended to describe how the goal will try to be solved. Thus
the intention is that the technique annotating the gap will be applied to derive a proof script
script that will then replace the gap. When no annotation is given, this simply indicates that no
technique has been suggested to try to fill the gap.

The Proof Planning Command

To allow the user to employ a proof planning technique when writing proof scripts and to allow
a hierarchy of proof plans, we provide a new element to the Isar language that abbreviates the
use of a named proof planning technique. This is characterised as follows:

Name: pp.
Datatype: a proof planning technique.
Execution Function: applies proof planning with the technique to the open goal.
Pretty Printing Function: This prints as “pp TECHN”, where TECHN is the pretty printed in-

terpretable proof planning technique.

These compound proof planning steps indicate a part of the proof which can be unfolded
into a more detailed proof script. They can also be seen as a dual to the gap command. When
a gap has been filled by the technique that annotated it, then a pp command can be used to fold
up the proof planning into a single step. Where gaps express work still to be done by proof
planning, pp steps express work that has already been been done.

Chapter 6. Proof Plans 89

6.4 The Generation of Proof Plans

In the declarative Isar style, intermediate results are stated before they are justified. However,
in proof search, the intermediate results are not known until the proof methods are applied. It
is generally impossible to know how such tactics will behave without applying them. Thus, in
interactive proof, it is common for users to employ a procedural step which applies an tactic
to find out what the generated subgoals are. The procedural step can then be removed and
the intermediate result stated and proved. The original step can then be justified from the
intermediate one by the exploratory tactic that was used to find the new subgoals.

To support this kind of backward search we provide a notion of exploration for proof plans.
This is essentially an abbreviation mechanism for adding steps to the proof plan. An important
feature of this is that it supports the non-determinism of proof methods. In particular, Isar
methods can result in different possible subgoals. Each of these corresponds to a different way
the method can be applied. Our exploration machinery lifts this choice to the level of proof
planning in order to support search over the possible chains of backward reasoning and their
automatic conversion into a forward style Isar proof.

For example, consider the goal P
�����

Suc a �E� b �E� ��� Suc c �E� d ��� and the Isar method that
performs substitution with the theorem

�
Suc x �<� y � Suc

�
x � y � , named add Suc. There

are two possible ways to apply the method which results in two possible subgoals. These
correspond to the following two possible proof scripts that can be generated:

1.
have P #'# Suc # a ! b $($�!l#'# Suc c $�! d $($ gap
thus P #'#'# Suc a $�! b $�!l#'# Suc c $�! d $($ by (subst add Suc)

2.
have P #'#'# Suc a $�! b $�!l# Suc # c ! d $'$($ gap
thus P #'#'# Suc a $�! b $�!l#'# Suc c $�! d $($ by (subst add Suc)

where the “thus...” command is an abbreviation for “from this show...”. This adds the
last result to the list of chained facts in the Isar state which are passed to the show command
and then the subsequent method used to prove the goal. After a proof method is applied, the by
command automatically tries to unify any remaining goals with chained results. This allows
the chained intermediate result to prove the remaining subgoals.

If the by command’s method fails to prove the goal, the by command backtracks over the
other possible applications of the method. This is what allows the same method to be used to
show different results.

Chapter 6. Proof Plans 90

When applying a method that results in multiple subgoals, once these subgoals are proved,
they are given explicit names so that they can be added as chained facts. For example, in a
proof of a goal P using a rule

�
Q; R � ��� P which we will refer to as prule, two subgoals

are introduced. This creates the following proof script to show P from the named proofs of the
subgoals:

have r1: Q &'&(&
have r2: R &'&'&
from r1 and r2 show P by (subst prule)

6.4.1 Chaining Results for Exploration

Although the exploration machinery described above works for many Isar methods, it does not
work for all of them. The problem is that when a method is applied in the procedural style it
does not guarantee that the method can be used to justify the original goal from chained facts
that proved the subgoals.

This is because Isar methods do not treat chaining in a uniform manner and thus such
a transformation is not always valid. For example, Isabelle’s simplifier uses the chained
rules for simplification, which can then cause a goal that was previously provable, to be-
come unprovable. For instance, this occurs in ordinal arithmetic in the proof of 0Lim � λu g ��� 0 �
Lim

�
λn � 0g �_
 00.1 We can simply this to the subgoal

�
λn � 0g ��� � λn � 0 � 0g � . However, when

it comes to expressing this as an Isar script, we cannot prove the main goal from the chained
subgoal because the simplifier uses the intermediate chained result to rewrite the original goal
to
�
λn � 0 � 0g ��� � λn � 0 � � 0 � 0g ��� .
While this behaviour is desired in some cases, it confuses the effect of chaining and breaks

the symmetry between exploring and expressing proofs. In order to clarify this we define what
it means for a method to be stable over chaining:

Definition 6.4.1: A method M is said to be stable over chaining when applied to a goal A if it
transforms it to subgoals B0 ����� Bn and if A can be proved by M when B0 ����� Bn are chained facts
i.e. when the following is a valid Isar proof:

1See section 10.3, page 189 for more details of the formalisation.

Chapter 6. Proof Plans 91

have r0: B0 gap
...

have rn: Bn gap
from r0 &'&'& rn show A by M

We can avoid the issue of stability of methods of chaining by using a different style of
proof. In particular, we can explicitly apply the intermediate results. For example, instead of
the above script, we write:

have r0: B0 gap
...

have rn: Bn gap
show A by (M, rule r0, &(&'& , rule rn)

This ensures that the results r0 ����� rn are not used by the method M. However, results in a larger
justification and what we believe is a less readable style of proof. The advantage of this is that
it is independent of the behaviour of the exploratory method.

6.4.2 Proof Plan construction with Gaps

Gaps in proof plans are particularly interesting because they introduce two possible ways of
working with Isar proof scripts:

� We can incrementally construct unfinished proof plans, passing techniques in that will
continue the proof in the reasoning state continuation, or

� We can construct complete proof scripts with gaps, and then fill in the gaps using the
techniques annotating them.

Unfortunately the existing Isar framework incurs a problem with the use of gaps. In partic-
ular, it is not possible to assume that a gap have been solved and later provide the proof without
re-executing the rest of the proof script. This is because of the lack of type quantification in
Isabelle’s meta-logic, as discussed in chapter 2. A solution to the logical issues has been pro-
posed by Melham [97], but has not been implemented as it requires significant changes to the
logical framework.

Another difficulty with the second approach is the lack of block-level proof script manage-
ment. To solve this, Isar needs a richer notion of modularity at the block level to support block
recombination. The proof plan representation would also need a quick way to access the gaps

Chapter 6. Proof Plans 92

in a proof, for example by using a hash table. Because of these difficulties, we have largely
written techniques in the first style, where techniques to solve the gaps are passed as parameters
rather than placed within the proof script.

Although we did not have any difficulty in using the first approach, we remark that the
second one is still interesting from more than just a logical perspective. In particular, providing
annotated gaps gives an explicit notion of how proof planning will continue in the future. This
gives more information to techniques and thus may be of particular use in the expression of
proof critics such as those developed by Gow [44] which are based on analysing and modifying
a plan containing further proof planning commands.

6.4.3 Nice Fresh Names

A significant issue in the automatic generation of proof scripts is the creation of readable fresh
names for fixed parameters and intermediate results. Isar provides local name spaces and the
execution ensures correctness. However, it is possible to choose names in such a way that a
proof cannot be completed. For example, by clobbering the name of a needed assumption.

In theory, a proof script which makes naming errors could be analysed and then modified
to enable the proof to succeed. However, such analysis is difficult and tedious. Instead, we
manage the names of assumptions and fixed parameters to avoid name clashes. However, to do
this efficiently we would want to store name tables within the Isar proof state. At present we use
an inefficient generate and test approach with a record of the last generated name. In practice
this seems to be sufficient, although it is rather ad-hoc. The provision of a more sophisticated
approach to choosing readable fresh names is left as further work and we suggest is one of the
tools that future proof planning frameworks should provide.

We note that none of the other approaches to proof planning provide machinery for this.
This is perhaps because it is of less importance when automatically generated proof plans are
not looked at directly by the user. However, the lack of such machinery also suggests that the
produced plans from other proof planning system will sometimes have name confusions.

6.5 Basic Tools for Proof Planning Techniques

We now describe some basic proof planning tools to support the construction of proof plans.
In particular, we define functions to aid exploration and to build the context in which a goal is
to be proved.

Chapter 6. Proof Plans 93

6.5.1 Lifting Methods to Techniques

For exploration, we use a function OFMETH which lifts the application of an Isar proof method
to the level of a proof planning technique. This is just an instance of the PPLANOP technique
consturctor introduced in chapter 6 in page 37. It takes an interpretable method as an argument
and explores its application to the last gap in the proof plan. It then results in a new proof
plan for each way the method can be applied. For example, if the reasoning state to which the
technique OFMETH M is applied, contains the proof script:

show P gap

Then a method which solves the goal simply replaces the gap with Isar’s by M command,
resulting in a single new reasoning state that has the proof plan:

show P by M

In contrast to this, when the method M applied to the proof state at the gap results in either
the subgoal G1 or G2, then the technique OFMETH M would produce two reasoning states with
indemediate goals and new gaps. For this example, it would result in states with the following
proof scripts:

1.
have G1 gap
thus P by (M)

2.
have G2 gap
thus P by (M)

This simple lifting of methods provides a practical and useful way to explore the con-
struction of proof scripts. One issue with this lifting concerns termination. If the underlying
Isar methods fails to terminate, then the proof planning technique will do likewise. Ideally, we
would like the processes to be separate in order to allow proof planning to set a time limit on the
underlying tactic. Alternatively, we can modify existing tactics to include an extra parameters
which sets a limit on their activity and thus ensure termination.

6.5.2 Constructing Context

In Isar, the proof of a subgoal with assumptions or fixed parameters is typically written by
building the context of the subgoal before proving it. For example, in an simple one-step

Chapter 6. Proof Plans 94

inductive proof of some property of natural number, - x � P x, the step case goal is � x � P x �3�
P
�
Suc x � . To prove this in Isar, a user would typically write the following:

fix x
assume P x
show P

�
Suc x �¡�����

More generally, the pattern including the preceding proof method that results in the sub-
goals is as follows:

proof (M)

fix ...

assume ...
...

show �����
next
...

next
fix ...

assume ...
...

show �����
qed

In this proof schema, a method M is used as a backward step and the subgoals produced
are then given their appropriate context and solved separately. For automatic proof it is useful
to write a single function to do this work. We define a function prove in context which
takes a proof method, M, and reasoning technique, r, as parameters and produces the following
schematic proof script:

proof (M)

fix �����
assume �����

P1

next
...

Chapter 6. Proof Plans 95

next
fix �����
assume �����

Pn

qed

where the technique r produces the proof script Pi for the ith goal. In effect, r is respon-
sible for filling in the part of the proof for the subgoals within their context. The function
prove in context does the work of constructing this context: it fixes parameters and assumes
premises.

6.6 Exploring Subgoals with Context

Our approach to exploring the generation of Isar proofs is suitable for subgoals which do not
introduce any additional context. However, if a subgoal introduces new assumptions or fixed
parameters, then there is an additional choice as to what style should be used in the proceeding
proof. Furthermore, our exploratory representation as a list of methods cannot express the
building of context.

In particular, there are two obvious approaches which we illustrate with the following ex-
ample. If we are given a goal P which is reduced by method M to the subgoal � x � Q x ��� R x,
then in the proof of R x we can take x to be fixed and assume Q x. To do this in an Isar proof
script, we can either express the method in the exploration style described above which would
produce the following proof script:

have ¢ x & Q x "�� R x gap
thus P by M

If we then add commands to create the context for the intermediate result, this will become:

have ¢ x & Q x "�� R x
proof -

fix x
assume Q x
show R x gap

qed
thus P by M

Alternatively, we can use the method explicitly as a backward step:

Chapter 6. Proof Plans 96

show P
proof (M)

fix x
assume Q x
show R x gap

qed

The second result is briefer, but this is essentially another choice in the style of the produced
proof script.

6.7 Proof Representation for Replay

For a user to make use of the generated proof plans, when they are printed as Isar proof scripts
they must be parse-able by the Isar proof checking machinery. This requires that pretty printed
terms must be parseable. This is also the case for elements of the Isar language, tactics, and
proof planning techniques. At present printing and parsing of terms is not symmetric and thus
errors are sometimes produced. In practice this has not been a serious issue as terms can simply
be printed in a more verbose fashion showing extra type information. A more robust solution
is left as further work.

The ability to present the proofs at different levels of detail for the viewer brings into
question the representation of proof stored in a file for replay: should the user try to minimise
the size of the proofs by expressing them with the fewest number of powerful proof planning
techniques; or should they expand the techniques to fully fleshed-out Isar scripts?

We observe that the more verbose the user makes the proof, by explicitly stating interme-
diate results, the more likely the proofs are to break if the definitions are modified. Being able
to capture a proof using a proof planning technique allows the technique to find a new proof
when definitions are changed. However, many proofs require user interaction in selecting proof
techniques and in the conjecturing appropriate lemmas. Moreover, the purpose of expressing a
proof is often in order to present it. Thus the user may want to modify the derived proof plan.
Thus there is a tradeoff between the robustness of proof and its presentation.

6.8 Meta Variables

Although Isabelle supports meta variables in theorems, the Isar machinery does not support
them in statements. The consequences for proof search in our system are that when exploration

Chapter 6. Proof Plans 97

involves meta variables or when instantiations are searched for, as occcurs in the proof of
existential theorems, these tasks must be performed outside the Isar machinery. The effect of
this is that we lose our ability to name intermediate results and build contexts in the usual way.

However, we note that even lifting Isabelle’s support to the Isar machinery would fall short
of what was needed for synthesis proofs. In particular, synthesis requires being able to re-
fer to meta variables and their instantiation within the programming environment. However,
Isabelle’s support for meta variables does not provide tactics with information about their in-
stantiation. There is also no way to maintain meta variables between different theorem objects.
Thus trying to reuse Isabelle’s existing meta variable machinery would force us to represent
the proof state only within a single theorem object. This makes it awkward to refer to specific
assumptions and fixed parameters.

We note that this level of support for meta variables is partially provided in the Clam and
λClam systems, but not in Omega. The Clam family inherits its support from Prolog and
λProlog’s management of Prolog variables. The Omega system provides some support for ex-
istential variables with constraints which are solved in a lazy fashion. However, we consider
this level of support to be somewhat lacking as manipulations to meta variables and their in-
stantiations are not directly available to techniques encoded in these system. We believe that a
rigorous approach to the management of meta variables outside is an important area of further
work.

6.9 Stylistic Choices in Expressing Proofs

Isar scripts provide the user with choices regarding the presentation of their proofs. Using the
Isar language as the mechanism for exploration then introduces stylistic choices into the proof
scripts generated by proof planning. For instance, when should intermediate results be included
within the main proof and when should they be considered as separate lemmas? Such choices
arise in the encoding of techniques because there is no normal form for proof plans.

Thus techniques may not produce proof scripts in the style that the user wants. In the worst
case, the script may be complex and ugly. It is hence the responsibility of the technique writer
to create techniques that produce proof scripts that the user wants.

However, we note that this approach also supports proof planning machinery that can trans-
form one style of proof into another. This represents a kind of proof by analogy. For the tech-
niques we wrote, we found it fairly easy to make them generate proof scripts that we considered
readable. Examining techniques that construct such analogous proofs is further work.

Chapter 6. Proof Plans 98

6.10 Type Checking for the Correct of Construction of Proof Plans

A common error made by new users of Isabelle/Isar is to try using a command when it is not
applicable. For example, by trying to use a show command for an intermediate result rather the
have command. When writing proof planning techniques similar errors can easily be made.
Unfortunately, because Isar produces an error at execution time, such errors in the writing of
techniques go unnoticed until runtime.

It would be desirable to provide some means of expressing techniques that allows them
to be checked when they are written. However, the success of adding an extra element to
a proof script is generally not decidable, so we would not expect to have full compile-time
checking. One approach to this problem is to express more information about a technique at
the level of types. This idea leads to the approach suggested by Pollack [88] which makes use
of dependent typed language to express techniques so that applicability becomes a check that
avoids the need to actually apply the tactic. To be practical, this approach requires powerful
machinery to prove the correctness of tactics. However, we note that even a lighter-weight
approach would still be able to greatly help in the writing of techniques. In particular it could
avoid many of the errors we got at runtime. In this aspect our course-grained representation of
elements in the Isar language is problematic as it makes it impossible to get type-checking to
verify the correctness of techniques. One approach to to represent more information about Isar
language elements, such as the mode, at the level of ML types and in this way try to make use
of ML’s type-checking to partially verify the correctness of encoded techniques. We believe
this is an interesting area of further work.

6.11 Related Work

The Clam, λClam, and Omega proof planners each use different representations of proof plans.
We introduce these and note their features and the ways in which they differ from our use of
Isar proof scripts.

Clam

The basic elements of a proof plan in the Clam systems are instantiated methods. The proof
plan is simply a tree of these, which can be represented by the following datatype:

datatype proofplan = method | THEN of method * proofplan list;

Chapter 6. Proof Plans 99

where the method type corresponds to an instantiated Clam method. When planning is com-
plete, each of these has a fully instantiated tactic slot. The THEN constructor indicates that the
method resulted in subgoals. These are solved by the given list of proof plans. This represen-
tation is essentially a tactic tree. In Clam, the goals are not explicitly represented in the plan.
Instead, the planner manages this information outside of the proof plan.

Clam allows methods to employ sub-methods. This creates a hierarchy of method appli-
cations. Each method is then responsible for the portion of the proof plan that it constructs.
Clam’s representation of proof plans allows methods to contain arbitrary parameters, including
further proof plans. However, there is not a defined language for this hierarchical structure.
Each method can provide its own ad-hoc data representation. Thus some methods have argu-
ments detailing their parameters and others haves sub-plans and other have both. For example,
see Figure 6.2 which shows the Clam proof plan for the theorem a � � b � c ��� � a � b �7� c.

The ad-hoc nature of the method-submethod structure meant that when proof critics were
later developed, the structured representation of proof had to be abandoned. This is because
the critics needed a representation of the state of proof planning that they can interpret and
modify. This caused a separate branch of the Clam system to be developed for proof critics,
but which lacked a structured method hierarchy. In this version, the representation of proof
plan is simplified by not having a hierarchical structure. Instead it is simply a tree of tactics.
Proof critics can be attached to methods easily as the critic no longer has to examine a complex
hierarchical representation of the proof.

The main branch of the Clam proof planner without critics works directly with the proof
plan by adding methods to leaf goals until every goal has been proved. The proof planner
maintains the proof plan and its representation in the agenda. However, this makes employing
different search strategies somewhat complicated. Each search strategy has to maintain the
close relationship between the agenda and the the proof plan as well as the generated tactic
tree, rather than use a more convenient representation for the agenda. This makes the search
strategies relatively long complicated pieces of code. For instance breadth first search has to
store two kinds of agenda in order to manage backtracking which makes the code 76 lines of
Prolog code (and 100 lines of comments to explain it). In contrast to this, using the traditional
approach with the agenda as a list, results in breadth first search being implemented in 4 lines.

Another disadvantage of this representation is that forward reasoning is poorly supported.
In particular, when reasoning forward, the unchanged assumptions and the goal’s are not dis-
tinct from the modified assumption(s) and there is no clear way to refer to assumptions ex-

Chapter 6. Proof Plans 100

proof plan(/* a !x# b ! c $%"*# a ! b $�! c */

[]==>a:pnat=>b:pnat=>c:pnat=>plus(a,plus(b,c))=plus(plus(a,b),c)

in pnat, assp, 940, ind strat(

induction(lemma(pnat primitive)-[(a:pnat)-s(v0)])

then

[base case(

normalize term([reduction([1,1],[plus1,equ(pnat,left)]),

reduction([1,2,1],[plus1,equ(pnat,left)])])

then [elementary((intro(new[b]) then wfftacs)

then (intro(new[c]) then wfftacs)

then unfold iff

then identity)]),

step case(

ripple(direction out,

wave(direction out,[1,1],[plus2,equ(pnat,left)],[])

then [wave(direction out,[1,2,1],[plus2,equ(pnat,left)],[])

then [wave(direction out,[2,1],[plus2,equ(pnat,left)],[])

then [wave(direction out,[],[cnc s,imp(right)],[])]]])

then [unblock then fertilize(strong,

unblock fertilize lazy([idtac])

then fertilize(strong,

pwf then fertilize(strong,

fertilization strong(v1))))])

]), dplan).

Figure 6.2: A Clam proof plan that proves the theorem a � � b � c �<� � a � b �7� c.

Chapter 6. Proof Plans 101

theorem assoc plus: a � �
b � c �}� �

a � b �£� c
proof (induct’ a)

fix b :: N and c :: N
show 0 � �

b � c �¤� 0 � b � c by (simp)

next
fix a :: N and b :: N and c :: N
assume IH[rule format]: - c2 b2 � a � �

b2 � c2 �¤� a � b2 � c2
have a � �

b � c �¤� a � b � c by (rule IH)

hence Suc
�
a � �

b � c ���}� Suc
�
a � b � c � by (subst nat inj)

hence Suc
�
a � �

b � c ���}� Suc
�
a � b �£� c by (subst add Suc)

hence Suc
�
a � �

b � c ���}� Suc a � b � c by (subst add Suc)

thus Suc a � �
b � c �¤� Suc a � b � c by (subst add Suc)

qed

Figure 6.3: The Isar script version of the proof plan for the theorem
�
a � b �D� c ��

a � b �]� c. This script uses a slight modification to Isabelle’s induction tactic
which is described in chapter 9.

plicitly. However, most proof techniques developed in Clam are backward and so this has had
little effect on the implementation. Another criticism is that the generated proof plans are rather
large and unreadable. For example, contrast that shown in Figure 6.2, with the IsaPlanner proof
plan shown in Figure 6.3.

A salient feature of the Clam systems is that they can make use of the underlying Prolog
language to manage meta variables. These are simply Prolog variables. However, while this is
convenient as much of the work of ensuring freshness and avoiding name conflicts is handled
automatically, we note that it also means that the proof environment lacks direct support for
manipulating meta variable instantiations. In particular, the only way to undo an instantiation
is by backtracking. To undo the first of several instantiations is thus not possible.

In terms of executing the generated proof plasn, Clam uses a separate system, Oyster [21],
to apply the the tactic part of the generated proof plans after proof planning has finished. The
underlying calculus is a version of Martin Lof type theory closely related to that of NuPrl [30].

Chapter 6. Proof Plans 102

λClam

The λClam system also uses a tree of instantiated methods to represent the proof plan. How-
ever, rather than the ad-hoc language used by Clam, it provides a clearly defined type for proof
plans based on its notion of methodicals. The proof plan is still used as an agenda as described
in Richardson’s lazy interpretation of methods [90]. This involves storing a methodical ex-
pression with each open goal. Each time a methodical expression is applied, it is translated
into a single atomic method to be applied first, and a continuation methodical expression to
be considered next. This allows proof planning to proceed incrementally and supports both a
structured method hierarchy and the application of proof critics to atomic methods.

This was used by Gow to develop techniques than manage several proof attempts within
the agenda for the deduction of induction schemes during rippling proofs [44].

Proof plans in the main branch of λClam have not yet been used to drive an object level
proof checker. However, in a branch of it for quantified modal and temporal logics, described
by Castellini [24], a separate tactic based theorem prover was developed and used to verify the
generated proof plans.

Similarly to Clam’s use of Prolog, λClam makes use of λProlog to manage meta-variables.
Like Clam, a problem with this is that the only way to remove an instantiation is by backtrack-
ing.

The Omega Plan Data Structure

The Omega system holds a representation of the proof plan in terms of a structure refereed to
as the Plan Data Structure (PDS) [27]. The PDS is a directed acyclic graph that represents a
single proof attempt. The graph is represented as a table of lines. Each line contains a label
used to index it in the table, a term representing the statement at that line, and an optional
list of justifications. These justifications are either a method, a tactic, or a natural deduction
rule. Each justification contains a list of references to other line numbers. These line numbers
indicate the start of a proof section. In this way justifications are equivalent to proof blocks in
Isabelle/Isar proof scripts.

The PDS does not provide any management of meta-variables. In applications of Omega
to Residue Classes and Permutation groups, meta-variable-like machinery was used to hold
constraints which are solved at the end of the proof attempt [29, 59, 69]. This then provided
concrete initiations in the proof plan. Support for incremental instantiation is largely left to the
developer of the proof technique.

Chapter 6. Proof Plans 103

An advantage of the PDS representation over that used in the Clam systems is that forward
reasoning is supported efficiently. Intermediate results and assumption can be referred to un-
ambiguously by a static line number. Isar offers the same feature by providing explicit names
for assumptions and intermediate results. However, Isar provides no machinery for ensuring
uniqueness of names. This has to be developed outside of Isar, within our proof planning
machinery. Unlike the Clam systems, the PDS does not double as an agenda. Although it
supports nodes with un-executed justifications, the developer of techniques specifies how these
justifications are unfolded. This means that the PDS does not in any way reflect the future state
of the proof planner.

Unlike Isar the Omega representation of proofs does not store any local non-proof related
information. This means that independence between steps in a proof can easily be identified.
This is used by Cheikhrouhou and Serge to support the removal of steps in the proof [27].
However, the lack of the contextual information also means that proofs cannot be as easily
expressed in the PDS as in Isar proof scripts. For instance, assumptions cannot be given to the
simplification machinery as they can in Isabelle/Isar.

6.12 Towards Ideal Machinery for Proof Plans

We now clarify and summarise the various features that we believe should be provided by the
machinery for working with proof plans.

Gaps

Supporting gaps that can be filled in at a later point in time is one way of supporting different
levels of abstraction in a proof. It is important in order to allow the proof planner to peruse
several subgoals simultaneously. Ideally, gaps should be able to be named and referred to by
variables in the language for expressing techniques.

Forward Reasoning and Context Setup

Supporting forward reasoning as well as backward is useful, especially in combination with
modifying the proof context, such as adding rules to the simplifier. Providing explicit names
for intermediate results and allowing variables in the language for encoding techniques makes
the process of writing techniques significantly easier.

Chapter 6. Proof Plans 104

Managing Dependencies

In order to manipulate proof plans internal dependencies must be managed. This includes de-
pendencies in the modification to a proof context as well as between meta variable instantiation
and subgoals.

Meta-variables

Proofs of existential theorems often involve the introduction of a variable which can be in-
crementally instantiated. This approach to proof has been used in many proof developments.
To automate such proofs meta variables must be able to be placed within a proof plan and
manipulated by encoded techniques.

Correctness

If the execution of proof plans fails then it would strongly suggest that proof planning may
also produce proof plans for non-theorems. Thus it is important to be able to verify proof
plans. We have found that providing fully formal proofs is neither particularly difficult, nor
causes a significant slowdown in the proof process. Furthermore, we found it useful to make
use of tactics in the Isabelle. We believe this provides a strong argument for interleaving proof
planning with the verification of the proof plan.

Nice Fresh Names

A common task in the construction of a proof plan is the selection of names for intermediate
results and introduced parameters and meta variables. To provide an effective interface these
must be human-readable. They must also be fresh in certain circumstances. To write proof
planning techniques it is important to provide tools to manage the generation of such readable
fresh names. Because the constraints on the names are essentially within the proof plan, it
makes sense for this machinery to be integrated with the proof plan representation.

6.13 Conclusions

In this chapter we have described machinery for representing proof plans as Isar proof scripts.
This is motivated by initial experiments using tactic lists to represent proof plans. Our repre-
sentation provides a concrete implementation of our observational style of proof planning for

Chapter 6. Proof Plans 105

Isabelle. It can produce human-readable machine-checkable Isar proof scripts.
We also introduce machinery to facilitate using tactics in an exploratory backward fashion

while expressing the constructed proof script in the normal forward manner. We provided some
basic tools to automate common manipulations of proof scripts. This gives a basic framework
for generating and manipulating Isar proof scripts.

In our presentation of this work, we noted several shortcomings of our representation. In
particular, there are difficulties with meta variables, managing dependencies, and ensuring cor-
rectness of techniques at the time of their writing. In addition to these issues, further improve-
ments can be made to the exploration machinery and the modularity of proof script composi-
tion. We contrasted our approach with existing systems and finally summarised the features
that we believe would be needed for a more flexible representation of proof plans.

Chapter 7

Higher Order Rippling

As introduced in chapter 2, rippling is a rewriting technique that employs a difference removal
heuristic to guide the search for proof [17]. Typically it is used to rewrite the step case in a
proof by induction until the inductive hypothesis can be applied. This technique has been used
within the context of proof planning [16] to automate proof in a variety of domains including
hardware verification [22], higher order program synthesis [64], and more recently nonstandard
analysis [67].

In this chapter we introduce and analyse the two main approaches to rippling. In particular,
we look at the static approach which annotates differences at the object level, and then the dy-
namic approach which stores the annotations separately. We also examine Smaill and Green’s
particular approach to dynamic rippling [96] which describe the difference between two terms
using embeddings. We then present a novel version of rippling in the dynamic style which
describes embeddings using a modified term syntax. Our representation provides a closer cor-
respondence with the traditional account of rippling [5], but also maintains enough flexibility
to capture Smaill and Green’s approach.

We also provide an algorithm for annotating terms using our representation of embeddings
and consider various approaches to removing symmetries in the search space. Our approach
forms an expressive framework that facilitates experimenting with many variations of rippling,
as carried out in chapter 10. This leads to an efficient implementation of rippling suitable for a
higher order setting [38], which we describe in chapter 9.

The structure of this chapter is as follows: we first introduce the general principles and ter-
minology for rippling, then we describe the static and dynamic approaches and briefly compare
the speed of rule selection. In section 7.4, we outline Smaill and Green’s version of dynamic

106

Chapter 7. Higher Order Rippling 107

rippling and in section 7.5 we present our version. Following this, section 7.6 describes an
algorithm for finding embeddings using our representation. Section 7.7 describes how an spe-
cialised notion of depth for term trees can be used to improve the efficiency of rippling and
make its behaviour in higher order domains closer to that in first order theories. In section 7.8,
we consider the advantages, in terms of the search space size, that are gained by analysing the-
orems before they are used in rippling. Section 7.9 describes another issue of efficiency arising
from symmetries in the rippling search space and section 7.10 describe how dynamic rippling
can hold multiple annotations with each goal to thereby further prune the search space. We
conclude in section 7.13.

7.1 Static Rippling

We will refer to the rippling mechanism described by Bundy et al. [19], as static rippling. In
this, annotated rewrite rules that decrease the measure, called wave rules, are generated from
axioms and theorems before rippling is performed. These are then applied ‘blindly’ to rewrite
the goal.

In static rippling, annotations are expressed by inserting object level function symbols
(identity functions) for wave fronts and wave holes. For example, the function symbols “wfout”,
“wfin” and “wh” may be used to represent outward wave fronts, inward wave fronts and wave
holes respectively. Using these, the annotated term p

�
g
�
c �
.
� , for instance, can be represented

using p(wfout(g(wh(c)))).
Static rippling terminates because every wave rule decreases the measure. This also makes

it unnecessary to compute the measure after a wave rule is applied. Eventually the annotations
will be removed altogether, moved to the top of the term tree, or pushed into the location of a
sink. This means that the sinks do not need any explicit object level representation.

Many wave rules can be created from a single theorem - in general, an exponential number
with respect to the size of the term. However, once wave rules are generated, fast rule selection
can be performed by using discrimination nets [26], for example.

The need for a modified notion of substitution

A formal account for static rippling in first order logic has been developed by Basin and
Walsh [5]. They observe that if the normal notion of substitution is used, then it is possible
for rewriting to produce strange annotations that do not correspond to the initial skeleton. The

Chapter 7. Higher Order Rippling 108

resulting effect is that rippling may no longer terminate and, even if it does so successfully
then, due to the changed skeleton, fertilisation may not be possible.

For an example of incorrect annotation consider the following:

1. The wave rule: Y � Suc
�
X �
.
� Y � Y � X

.

2. The goal Suc
�
a �
.
� Suc

�
b �
.

, which has the skeleton a � b

3. This goal rewrites to the term Suc
�
a �
.
� a � b

.
, the skeleton of which (a a � b) is not

even a well defined term.

This problem occurs whenever a variable from the skeleton, in the left hand side of a
wave rule, matches an annotated term and also occurs in the right hand side. More generally,
the problem comes from unification introducing new annotations into wave fronts. This can
introduce incorrect annotations into the rewritten term. Furthermore, as remarked by Basin
and Walsh [5], this makes a rewriting based approach to rippling fail to terminate on some
examples.

To avoid these problems, Basin and Walsh present a calculus for rippling with a modified
notion of term replacement, substitution, and matching. Similarly, Hutter and Kohlhase have
presented a ‘coloured’ version of the lambda calculus with a modified notion of unification
and matching [49]. This use of such a modified notion of substitution allows rippling to be
performed independent of any contextual information. Rippling simply involves exhaustively
using the modified rewriting machinery with wave rules on an annotated goal.

Implementation

Unfortunately, static rippling’s use of a modified notion of matching makes existing tools for
rewriting, such as fast term matching algorithms, inapplicable. Furthermore, in a system with a
fixed logical kernel, such as Isabelle, rippling would then be forced to be performed outside the
logic. Once rippling has ended, the steps it took would have to be repeated within the logical
kernel. This gives the developer of such an implementation little reuse of existing tools.

Flexibility and Experimentation

Another important issue for the static approach is its lack of flexibility in experimenting with
modifications to rippling. We are interested in experimenting with alterations to the rippling

Chapter 7. Higher Order Rippling 109

measure and with restrictions commonly added to rippling. Unfortunately such changes are
not easily accommodated by the static approach. For example, the restriction on inward wave
fronts occurring only over subterms which contains a sink needs to be checked as rippling
is performed. Thus to implement such a modification to rippling, we either need to further
change the substitution algorithm, or abandon the static approach and interleave rewriting with
additional checks.

The general reason for the difficulty in experimenting with static rippling is that the measure
is implicit during the rewriting process. This means that only measures which can be used to
pre-compute the set of valid measure decreasing rules can be used. This is more restrictive than
is necessary. For example, consider a measure that sums of the distances between wave fronts
and their nearest sink. This measure is well founded, but cannot be expressed in an algorithm
that pre-computes the set of applicable rules and then simply rewrites using them. The measure
must be computed between each rewrite because it requires examination of the relationship
between the annotations and the goal. This requires abandoning the static approach.

Split Wave fronts

A question left unanswered in the initial description of rippling is the treatment of adjacent
wave fronts. In particular, they can be annotated separately or collected to form a single com-
pound annotation. For example, consider the skeleton P

�
a � and the goal P

�
k
�
h
�
a ����� . This can

be annotated either as P
�

k
�

h
�
a �
.
�
.
� or as P

�
k
�
h
�
a ���

.
� . This difference can lead to differ-

ent measures and thus different behaviours for rippling. For example, consider the following
annotated equations:

1. P
�

k
�
h
�
a ���

.
��� P

�
g
�
a �
.
�

2. P
�

k
�

h
�
a �
.
�
.
��� P

�
g
�
a �
.
�

The first equation uses compound annotations but does not change the value of the measure.
In contrast to this, the second annotated equation splits up the wave fronts which, when the
equation is used from left to right, decreases the measure from

��8
0 � 2 9:� 8 0 � 0 9(� to

��8
0 � 1 9:� 8 0 � 0 9(� .

Thus the second annotated equation could be used as a wave rule but the first cannot. One
solution to this is to make the ripple measure count the height of the term in the wave front.
This makes the measure invariant to the choice in how the wave front is split.

Chapter 7. Higher Order Rippling 110

However, as noted by Bundy et al [17], the treatment of wave fronts in a compound manner
can cause matching to fail unexpectedly. For example, given the goal P

�
Suc
�
Suc
�
x ���

.
� y �

then the wave rule Suc
�
x �
.
� y � Suc

�
x � y �

.
fails to match. There are two solutions

described by Bundy et al, namely to introduce new rules that split compound wave fronts,
or to put all annotations in a maximally split normal form. The latter solution benefits from
decreasing the number of wave rules generated by a theorem, and by decreasing the search
space. This simply eliminates redundancy in the search space by putting all annotations in a
normal form.

7.2 Dynamic Rippling

An alternative approach to annotations for rippling is taken by Smaill and Green [96], extended
by Dennis, Green and Smaill [33], and used by Dennis and Smaill [35] to automate proofs
in the domain of ordinal arithmetic. Their approach avoids the need for a modified notion
of substitution by recomputing the possible annotations each time a rule is applied. We call
this dynamic rippling. The key feature of dynamic rippling is that the annotations are stored
separately from the goal and are recomputed each time it is rewritten.

The central motivation for dynamic rippling given by Smaill and Green arises from prob-
lems with object level annotations when working in the lambda calculus:

� Object level annotations are not stable over beta reduction. For example, consider the
term

�
λx � c � � a � b �

.
which loses the wave hole when beta-reduced to c

.
. Thus, if

wave fronts are expressed at the object level, then it is not possible to use pre-annotated
rules and ‘blind’ and exhaustive rewriting as the rules may not be skeleton preserving
after beta reduction. We note that even in Hutter and Kohlhase’s approach, which uses
a modified calculus, beta-reduction can still change annotations [49]. Thus they still
require a separate skeleton preservation check to be interleaved with rewriting.

� In a context with meta variables, incorrect annotations can accidentally be introduced by
unification. This happens in a similar way to the strange annotations in static rippling,
described in the previous section. Although we are not aware of a fix to this problem in
the higher order setting, we believe that a solution may be possible by modifying higher
order unification, similarly to Basin and Walsh’s alteration to first order substitution.
This would involve removing any annotations that are introduced into the context of a
wave front.

Chapter 7. Higher Order Rippling 111

As well as these motivations, we observe that the dynamic approach also beneficial for imple-
mentation and provides a more flexible framework for experimentation:

� Rippling can take advantage of existing tools and does not require a new implementation
of substitution or unification. For example, term matching and manipulation utilities are
not affected. This allows the use of tools, such as discrimination nets, to provide fast rule
selection, without any extra modification.

� The separation of rewriting from the annotation process simplifies experimenting with
rippling. For example, limiting inward wave fronts to occurring over subterms containing
a sink, can be incorporated naturally either as an additional filter on rewriting or as part
of the annotation process.

� Explicitly calculating and representing measures supports a much larger class of them.
For example, unlike the static approach, we can experiment with a measure that computes
the distance from every wave front to the top of the term tree or the nearest sink. See
section 7.12, for a further analysis of such a measure.

While dynamic rippling simplifies some characteristics of an implementation, it also makes
an additional requirement that the annotations and measures are independent from the goal. By
placing this information outside the object level, a search technique requires tools to hold the
additional information. However, one of the goals of proof planning is to provide tools for the
management of this extra-logical information. Our observational approach provides contextual
information as described in chapter 3.

In terms of search, an interesting feature of dynamic rippling is that multiple annotations
result from some rewrites. This opens up the possibility of storing multiple annotations with
each goal and thus reducing the size of the search space. We discuss this further in section 7.10.

From a theoretical point of view, dynamic rippling is a more direct implementation of the
measure decreasing characteristic of rippling. The measure is represented explicitly and only
steps that are measure decreasing are performed. Thus the termination proof simply reduces
to proving that the measure is a well founded ordering. This avoids any complicated reasoning
about the annotated terms as was needed for Basin and Walsh’s approach [5].

α-β-η-Conversion

In systems using HOAS, α-β-η-convertible terms, while being syntactically different, denote
the same object. As has been observed above, β-reduction can remove a possible embedding.

Chapter 7. Higher Order Rippling 112

However, we note that embeddings are preserved by α-conversion, η-conversion, and also by
β-expansion.

Furthermore, we remark that, for any skeleton and term, it is trivial to construct a β-long
version of that term such that the skeleton embeds into it. Thus it is clearly not just the fact that
an embedding exists that should guide the proof. The idea is that the goal will be rewritten such
that eventually the theorem used as the skeleton can be used in the proof. Thus we suggest that,
unlike some versions of rippling implemented in λClam [35,96], β-reduction is not treated as a
separate rewrite rule. Rather, we propose that the skeleton is β-reduced and then rippling only
consider embeddings into terms in β-short short form. This provides a canonical way to treat
embeddings in HOAS and gives clear heuristic guidance. When rewriting produces a term,
which through β-reduction has no embeddings, then this is counted as a case when there are no
embeddings.

The implicit assumption behind this approach is that parts of the term which disappear
through β-reduction are not of interest for proof heuristics. Finally, we note that this approach
also produces a smaller search space than including β-reduction as a rewrite rule without weak-
ening the strength of rippling. We believe that this provide a natural approach to rippling and
the treatment of β-reduction.

7.3 Analysis of Rule Selection for Dynamic and Static Rippling

We now examine the factors affecting the selection of rules to rippling in both the dynamic and
static setting. Both static and dynamic rippling slow down the process of rewriting. Dynamic
rippling slows down rule selection by requiring that each matching rule is also checked to be
measure decreasing after its application. The separation of matching from measure checking
causes matching but non measure-decreasing rules to slow down the search process. This can
be minimised, as described in section 7.8, by using some filters on the set of rules considered
for rippling. Dynamic rippling is also slowed down by recomputing the possible annotations.

For static rippling, the measure decrease is implicit and never needs to be considered. Be-
cause all rules have been pre-checked to ensure that their application decrease the measure,
static rippling can simply apply these rules. However, the pre-annotation of rules does increase
the number of wave rules, which in turn slows down the selection process. Furthermore, the
matching process is itself more complicated as it must avoid introducing badly formed annota-
tions. At the very least we need to perform an extra check during matching to correct possible
introduction of bad annotations. If we also want to check that wave fronts only occur over

Chapter 7. Higher Order Rippling 113

Figure 7.1: A simple example of Smaill and Green’s embedding of Q λx � � P x � into
Q λy � � P � k y ��� . The grey area corresponds to the part of the term not embedded.
This becomes the wave front.

subterms with a sink, then this time will be larger.
It seems unclear to us if either approach is significantly more efficient that the other. A

more detailed analysis is left as further work. However, we note that the results presented in
chapter 10 show that dynamic rippling is efficient enough for the domains we examined.

7.4 Smaill-Green Embeddings for Annotating Difference

A central issue in the dynamic approach to rippling is the representation of annotations. Smaill
and Green use embedding trees to represent these [96]. Their embeddings are injective maps
between term trees that preserve label names as well as the ‘horizontal’ order. The wave fronts
are the parts of the target term not mapped onto by the embedding. The wave holes are implic-
itly later parts of the term target that are embedded into. Given this correspondence we will
refer to the source term on an embedding as the skeleton and the target term as the erasure.

The embeddings are represented by trees that have the same shape as the skeleton (without
abstractions) but where the leaves are addresses indicating the location where they are embed-
ded into in the erasure. For their part, the addresses are lists of natural numbers that indicate
which sub-branch should be taken.

For an example embedding see Figure 7.1 which shows how the source term “Q λx � � P x � ”
embeds into “Q λy � � P � k y ��� ”. Using the box notation with undirected annotations this embed-

Chapter 7. Higher Order Rippling 114

ding can be viewed as “Q λy � � P � k y ��� ”.

Embedding

Smaill and Green define their version of embedding for the possible cases of the target term as
follows:1

� base case: t embeds into t for all atomic t.

� application: t embeds into App
�
u1 � u2 � iff

1. t � App
�
t1 � t2 � , and t1 embeds into u1, and t2 embeds into u2 or

2. t embeds into u1 or

3. t embeds into u2

� abstraction t embeds into λx � u iff

1. for some fresh constant z, t embeds into the beta reduction of App
�
λx � u � z � such

that the bound variable x is replaced by z, or

2. t � λy � t1, and for some fresh constant z, the beta reduction of App
�
λy � t1 � z � embeds

into the beta reduction of App
�
λx � u � z � , where the beta reductions replace the bound

variables by z.

The different possibilities in the case for application and the case for abstraction result in
terms having multiple embeddings. For rippling, this means that annotations are not uniquely
defined. These can simply be searched over, although we describe a less naive strategy in
section 7.10.

We observe that while the embedding trees do not represent abstraction, the definition of
embeddings does place a strict requirement that every abstraction in the skeleton must occur in
the term that it is embedded into.

Rippling Measures

For embeddings to be used to guide rippling, a function must be defined on the embedding
trees to compute the measure. Although Smaill and Green’s initial measure [96] did not corre-
spond to that used by Basin and Walsh [5], a newer version, described by Dennis, Green and

1Smaill and Green’s presentation includes products and treats them analogously to application.

Chapter 7. Higher Order Rippling 115

Smaill [33], when using a tuple rather than curried representation for functions, does corre-
spond to Basin and Walsh’s calculus.

This measure for embedding trees can be computed in two steps:

1. A difference tree of the same shape as the embedding tree is calculated, where each
node is an integer expressing the size of the wave front at that point. The size can be
calculated by subtracting one plus the length of the parents address from length of the
current address.

2. The rippling measure is a lexicographically ordered list, where the ith element corre-
sponds to sum of the differences at depth i in the difference tree.

For an example, see Figure 7.2 which shows the embedding tree, difference tree, and mea-
sure computed from the embedding shown in Figure 7.1.

Directed Annotations

Directed annotations are implemented by adding to each node in the embedding tree a direction.
This is ignored if the difference at that node is zero. This allows both the outward and inward
measures to be computed and thus for the embedding tree to express similar measures to Basin
and Walsh’s calculus.

One important departure from the static account of rippling, is that adjacent wave fronts
are forced to have the same direction. This might be seen as an advantage because the search
space is smaller. However, it also limits the flexibility of the representation. It remains an
open question as to whether there is a practical need for adjacent wave fronts with differing
directions. In chapter 10 we test this empirically. This provides evidence that in general using
compound wave fronts works well.

Strange Embeddings

We observe that Smaill and Green’s approach has the strange behaviour that the embedding of
a bound variable is not restricted by its associated quantifier. For example, an embedding is
possible from the term y x � P x into y a � - b � R a

�
P b � (See Figure 7.3), where the x is existentially

quantified in the skeleton, but embedded into b which is universally quantified. We believe that
this is due to the lack of a well defined relationship between the annotations for difference and
the underlying semantics. However, in practice this is rarely an issue and we have not found
any domains where this causes a problem.

Chapter 7. Higher Order Rippling 116

Figure 7.2: The embedding tree, difference tree and measure computed from the
embedding shown in Figure 7.1

Nonetheless, if rippling is to be used in a domain with many different quantifiers then it
may be worthwhile to impose further restrictions on embeddings. For example, by requiring,
for each quantified variable being embedded, that the quantifier in the skeleton and the goal
should be identical, or that the quantifier in the skeleton should embed into the one in the goal.
Such constraints would prune the search space and bring a closer semantic relationship between
the embedding of bound variables and their quantifiers.

7.5 Embedding Terms for Annotating Difference

In this section we present an alternative to the embedding trees used by Smaill and Green’s to
represent rippling annotations. This is motivated by the wish to have a more flexible framework
where we can easily experiment with variations of rippling.

Furthermore, we wish to examine empirically the modifications to rippling, including those
made by Smaill and Green. In particular, their approach deviates from the first order account
given by Basin and Walsh in the following ways:

� Annotations with adjacent wave fronts in different directions, such as f
�

g
�
x �
4
�
.

can-

not be expressed with their embedding representation. The reason for this is that the
wave fronts are expressed implicitly by the difference in the length of addresses in the
embedding tree, described in the previous section.

� When curried function representation is used, the measures no longer correspond to the
equivalent first order representations. This results in a different search space and be-
haviour of rippling. In section 7.7, we describe an interpretation of depth for HOAS that
allows the traditional measures to be derived.

Chapter 7. Higher Order Rippling 117

Figure 7.3: An embedding where the quantifiers do not correspond with the bound
variables. The greyed area indicates parts of the term that differ and dotted arrows
correspond to the embedding address.

To examine whether these differences are beneficial or detrimental to proof search, requires
a more flexible representation, capable of reflecting Basin and Walsh’s approach in a higher or-
der setting. Furthermore, if we wish to reason about rippling itself, we find that embedding
trees produce complicated proofs. In particular, we are required to reason about well formed-
ness of embeddings and the result of following addresses through term trees.

We now present a richer representation for embeddings that expresses the annotations and
their contents explicitly. Our approach avoids having to consider badly formed embeddings
which makes it easier to reason about. It also provides a more flexible, efficient and modular
mechanism for expressing annotated terms than embeddings trees.

Embedding Terms

We now define our notion of embedding terms for annotating difference. Like embeddings,
they maintain an independence from the term calculus. In IsaPlanner, we define embedding
terms over Isabelle’s terms although in general it is easy to define them over any term syntax.
To keep the presentation clear but avoid hiding important details, we use de Bruijn indices and
ignore types. With this in mind, we will use the following term syntax:

Chapter 7. Higher Order Rippling 118

term � ¥_h��7V�� nat
� �7h�V�\FS name
� k���\ term
� k�cDc term term
� ¦_^�[name

Note that we include a notion of meta variable (¦�^�[). This behaves like a universally
quantified variables, and can be instantiated to any term of the appropriate type. This allows
sinks in the skeleton term to be expressed using “ ¦_^�[name”, where name is the name of the
variable. We will abbreviate “ k�cDc P

� ¦�^�[x � ” to “P ?x” when writing terms with implicit
abstract syntax, following the style of Isabelle’s pretty printer. In a term syntax without meta
variables, a separate record is needed to record which bound variables are to be universally
quantified. However, the treatment for embeddings remains essentially the same.

Embedding terms are terms where the variable constructor expressing a universally quan-
tified variable has an extra term parameter holding the subterm at the location of the sink. If
the term syntax does not have such a constructor then the embedding term datatype contains an
extra constructor for this purpose. Additionally, all the other constructors of embedding terms
have an additional parameter, upterm, which holds the annotation and its contents at this point
in the term tree. The idea is that the embedding term has the same shape as the skeleton and
the upterms capture the annotations. For the term syntax we introduced above, this gives us the
following datatype for embeddings terms:

eterm � U�¥_h��7V�� upterm nat nat
� UD�DhGV�\FS upterm name
� U7k��X\ upterm eterm
� U7k�c7c upterm eterm eterm
� UM¦�^�[name term

Note that the constructor for an embedded bound variable has two natural numbers. These
correspond to the bound variables in the skeleton and the erasure respectively. Although we do
not need to hold both, as one can be worked out from the other, it is convenient to do so when
reasoning about embedding terms. It also simplifies later definitions.

Informally, one can think of upterms as describing the contents of a wave front from the
perspective of a wave hole. These are essentially a specific instance of Huet’s zippers [47].
For now we will consider upterms that correspond to undirected annotations. This gives us the
following datatype:

Chapter 7. Higher Order Rippling 119

upterm � �_k��X\ upterm
� ��k�cDc_i term upterm
� ��k�cDc Q term upterm
� � Q hDhMS

Upterms can also be thought of as expressing a term context. For example, if we consider
the term “ k�c7c a b” then, from the perspective of b, the context is “ �_k�c7c_i a”. Symmetrically,
from the perspective of a, we get the context “��k�cDc Q b”. The upterm constructor ��k��X\ cor-
responds to being in the context of a lambda abstraction and � Q hDh�S indicates that there is no
further context.

Directions can easily be added to the upterm a datatype by including an additional argument
in the appropriate constructor(s). This provides a flexible solution to describing annotations
which can also express adjacent wave fronts with different directions.

For rippling, this notion of upterm for the embedding term allows the expression terms
where the undirected annotations are expressed in the upterms. For example, consider the
skeleton “- z � P c z” which is expressed as “P c ?z”. This uses a meta variable for the universally
quantified z. In the term syntax, this is written explicitly as follows:

k�c7c � k�cDc� �7h�V�\FS P �� �7h�V�\FS c ���� ¦�^�[z �

Given this as the skeleton, the term P
�
f c � � g y � can be as annotated as P

�
f c �=/ � g y �§1 ,

which corresponds to the embedding shown in Figure 7.4. This is be expressed as the following
embedding term:

U7k�cDc¨� Q h7hMS� U7k�c7cJ� Q hDh�S� U7�DhGV�\?S©� Q hDh�S P �� U7�DhGV�\?S � ��k�cDcEi � �DhGV�\FS f ��� Q h7hMSE� c �� UM¦�^�[� k�cDc � �7h�VX\?S g � � �7h�V�\FS y ��� z ���

Chapter 7. Higher Order Rippling 120

P c ?z
Source (skeleton) termTarget (erasure) term

P (f c) (g y)

P

App

c

App

?z

App

P App

App

f c

App

g y

Figure 7.4: The embedding of “P c ?z” into “P
�
f c � � g y � � � , where ?z is treated as

a sink.

Basic Operations on Embedding Terms

One of the advantages of embedding terms over embedding trees is that the typical operations
on annotated terms can easily be defined without having to interpret term addresses. In par-
ticular, getting the skeleton and erasure of an embedding term are simple recursive functions.
Computing the skeleton of an embedding term involves simply ignoring the upterms and con-
tents of sinks:

\Fª_UEdMUMS_hGV h7g U�S_U�[�« � UM¥Eh��DV_� u n1 n2 � � ¥Eh��DV_� n1
� � UD�7h�V�\FS u m � � �DhGV�\?S m
� � U7k���\ u e � � k��X\ � \Fª_UEdMUMS_hGV hMg U�S_U�[�« e �
� � U7k�cDc u e1 e2 � � k�cDc � \qª�UDd7UMSEh�V h7g UMSEUM[�« e1 �� \Fª_UEd7U�S_hGV h7g U�S_UM[G« e2 �
� � UM¦_^�[m t � � ¦�^�[m

Finding the erasure of an embedding is slightly more involved and requires incorporating
the context represented by the upterm. We do this by first defining a function that, given an
upterm and a term, places the term within the the upterms context:

^GcDced�¬ �7c_S_U�[�« � ��k���\ u � t � ^Gc7c]d�¬ �7c_SEUM[�« u
� k���\ t �

� � ��k�cDcEi l u � t � ^Gc7c]d�¬ �Dc_SEUM[G« u
� k�cDc l t �

� � ��k�cDc Q r u � t � ^Gc7c]d�¬ �Dc_SEUM[G« u
� k�cDc t r �

�*� Q hDh�S t � t

Using this, we can now define a function that is given an embedding term and results in the
erasure:

Chapter 7. Higher Order Rippling 121

U�[�^_\q�_[EU h7g U�S_U�[�« � UM¥_hG�DV_� u n1 n2 � � ^?cDc]d�¬ �DcES_U�[�« u
� ¥Eh��7V�� n2 �

� � UD�DhGV�\FS u m � � ^Gc7c]d�¬ �Dc_SEUM[G« u
� �7h�V�\FS m �

� � U7k��X\ u e � � ^Gc7c]d�¬ �Dc_SEUM[G« u� k���\ � \Fª�UDd7U�S_h�V h7g UMSEUM[G« e ���
� � U7k�c7c u e1 e2 � � ^?cDc]d�¬ �DcES_U�[�« u� k�cDc � \Fª�UDd7U�S_h�V h7g UMSEUM[G« e1 �� \qª�UDd7UMSEh�V hMg UMSEUM[�« e2 ���
� � UM¦�^�[m t � � t

In the following section we present an algorithm for finding the embeddings and represent-
ing them as embedding terms.

7.6 An Algorithm for Finding Embedding Terms

Having introduced a representation for expressing embeddings in the previous section, we now
describe a general algorithm for computing possible embeddings. We present this with respect
to the previously introduced term syntax.

Our embedding algorithm is given a source term (the skeleton) s and a target term t (the
erasure). It results in a list of possible embeddings, expressed as embedding terms. The basic
idea is to traverse the erasure looking for a location where we can embed the next constructor
of the skeleton.

Our embedding algorithm takes two additional arguments, namely the annotation at this
point in the embedding process which is expressed as an upterm, u, and a boolean list, bl, that
relates abstraction in the skeleton term to abstractions in the target term.

Notation

We will use g_^7d�\GU and SD[��eU for their respective boolean values. We will let :: and
8 9 represent

the cons operation and the empty list respectively, although we will also use the common list
abbreviation

8
a � b � c ������� 9 for a :: b :: :: c :: ����� :: 8 9 . The infix append operator will be written as

@. For pattern matching, we will use “ ” to match any constructor not previously described.

Boolean Lists as Abstraction Contexts

An essential part of the embedding process involves managing the local context, namely the
abstractions. We use boolean lists to hold this information. The intended interpretation is that

Chapter 7. Higher Order Rippling 122

the empty list indicates that there are no further abstractions in either the skeleton or the erasure.
A g_^7d�\�U in the list indicates that the target contains an abstraction that has no corresponding
abstraction in the source term. In contrast to this, S7[M�eU indicates that there is an abstraction in
the skeleton that embeds into an abstraction in the erasure. The list is ordered from the current
location to the root.

For example, consider the embedding of the skeleton “ k�cDc P
� k��X\ t � ” into the erasure

k��X\ � k�c7c P
� k��X\ t ��� . The context of the subterm t is

8 SD[��eU��:g_^Dd_\�U�9 . This indicates that the
previous abstraction is in both the skeleton and the erasure, but the abstraction before that is
inside a wave front.

Given such a boolean list and two bound variable indices, we define a function bqTeU_b?ª �7V��]\
to determine if two bound variables correspond to each other with respect to the embedding.
We compute this by moving up along the boolean list that represents the lambda abstractions
correspondence. When both the indices of the bound variables correspond to the current ab-
straction (they are both zero), we simply examine the value at the head of the list which defines
their relationship:

bFTeU_b?ª �7V��e\ � � :: �]dD� 0 0 � b

In this case the skeleton bound embeds into the erasure bound when the the abstractions cor-
respond. Interestingly, this suggests that while the abstractions are not explicitly represented
by the embedding trees of Smaill and Green [96], there must be an implicit correspondence
between abstractions.

The other base case is when boolean list is empty:

bFT�U�b?ª �7V��e\ 8 9 n1 n2 � �
n1 � n2 �

This indicates that there are no more abstractions. If this case is reached then the bound vari-
ables have no corresponding abstractions. We then assume that they are within the same context
and simply check that their indices are equal. Note that if we intend only to work with valid
terms then this case need not be considered as the embedding algorithm will never produce
such a context.

Lastly, we consider the recursive cases where we have at least one abstraction and the
bound variables are nonzero:

bFT�U�b?ª �DV��e\ � S7[M��U :: �ed7� ns nt � bFT�U�bFª �DV_�]\ bl
�
ns 1 � � nt 1 �

� � gE^Dd_\�U :: �]dM� ns nt � bFT�U�bFª �DV_�]\ bl ns
�
nt 1 �

Chapter 7. Higher Order Rippling 123

We update the bound variable by removing the head boolean value from the list. If its value
is true then it indicates that the last abstraction considered was embedded from the skeleton
into the target, and thus removing it will decrease the index of both the skeleton and erasure
variables. On the other hand, if the value removed from the list is false, then it indicates that
the previous abstraction occurs in the wave front, and thus only the erasure bound variable is
decreased.

An Embedding Algorithm

We will now present the various cases for the algorithm to compute embeddings. The algorithm
results in a list of possible embeddings. We first consider the case of embedding a bound
variable:

U?«_��U7�7�efFV_®]\ u bl
� ¥Eh��DV_� ns � � ¥_hG�DV�� nt �¯�

i f
� bFT�U�b?ª �7V��e\ bl ns nt � then

8 UM¥_hG�DV_� u ns nt 9 else
8 9

� u bl
� ¥Eh��DV_� n � � k���\ t �°�

UF«_�eUM�D��fFV�®e\ � ��k��X\ u � � gE^Dd�\GU :: bl � � ¥Eh��7V�� n � t

� u bl
� ¥Eh��DV_� n � � k�cDc t1 t2 �°�� UF«_�eUM�D��fFV�®e\ � ��k�c7c Q t2 u � bl

� ¥_h��7V�� n � t1 �
@
� U?«_��U7�7�efFV_®]\ � ��k�cDcEi t1 u � bl

� ¥_hG�DV�� n � t2 �
� u bl

� ¥Eh��DV_� n � � 8 9
Embedding a bound variable succeeds only when the erasure term is a bound variable and has
the same corresponding abstraction. If the erasure is another kind of leaf then embedding fails.
Upon success the annotation is held in the upterm u.

The recursive calls occur when we try to embed into an abstraction or an application. For
abstraction, we need to update the abstraction correspondence list to note that we have an
abstraction in the erasure without a corresponding one in the skeleton. For application, we
give back the embeddings into the right appended onto those from the left branch. For both
abstraction and application we add the appropriate constructor to the upterm before we recurse.
This notes that we have increased the upterm which expressed the wave front.

The embedding of constants is similar to bound variables:

Chapter 7. Higher Order Rippling 124

U?«_��U7�7�efFV_®]\ u bl
� �7h�V�\FS ms � � �Dh�VX\?S mt �}�

i f
�
ms � mt � then

8 �DhGV�\FS u ms 9 else
8 9

� u bl
� �7h�V�\FS m � � k��X\ t �}�

UF«_�eUM�D��fFV�®e\ � ��k��X\ u � � gE^Dd_\�U :: bl � � �Dh�VX\?S m � t

� u bl
� �7h�V�\FS m � � k�c7c t1 t2 �}�� UF«_�eUM�D��fFV�®e\ � ��k�c7c Q t2 u � bl

� �Dh�VX\?S m � t1 �
@
� U?«_��U7�7�efFV_®]\ � ��k�cDcEi t1 u � bl

� �Dh�VX\?S m � t2 �
� u bl

� �7h�V�\FS m � � 8 9
The only difference is that to check if one constant embeds into another, we only need to check
that they are the same constant.

Embedding of a meta variable, which represents a sink and corresponds to a universally
quantified variable in the skeleton, is even simpler:

UF«_�eUM�D��fFV�®e\ u bl
� ¦�^�[m � t � 8 UM¦�^�[� ^?cDced�¬ �DcES_U�[�« u t � m 9

This indicates that a sink embeds into any term. Furthermore, we place any wave front in the
current upterm into the sink, using the ^?cDced�¬ �7c_S_U�[�« function. As mentioned earlier, in a
logic with polymorphism or type classes, sinks also have wave fronts, in which case we use the
type information to decide what can be placed in the sink. In practice this arises very rarely as
it requires a skeleton of more abstract type that the goal.

The case of embedding an abstraction is:

UF«_��U7�D��fFV_®]\ u bl
� k���\ s � � k���\ t �°�� «X^?c � UMk���\ u � � U?«E�eUM�D�efqV�®e\¡� Q h7hMS � SD[M��U :: bl � s t ���

@
� UF«_��U7�D��fFV_®]\ � ��k���\ u � � gE^Dd�\GU :: bl � � k���\ s � t �

� u bl
� k���\ s � � k�cDc t1 t2 �°�� U?«E�eUM�D�efqV�®e\ � �_k�c7c Q t2 u � bl

� k���\ s � t1 �
@
� UF«_��U7�D��fFV_®]\ � ��k�cDc_i t1 u � bl

� k���\ s � t2 �
� u bl

� k���\ s � � 8 9
The interesting sub-case is that of embedding an abstraction into an abstraction. If the abstrac-
tions correspond to each other then any embedding of the contents on the skeleton abstraction
in the content of the target one produces a valid embedding. On the hand, if abstraction do
not correspond and then we look for embeddings in contents of the target and note that the

Chapter 7. Higher Order Rippling 125

previous abstraction in the target was not embedded into. Both lists of possibilities are found
and appended to give a list of all possible embeddings.

Embedding an application involves a similar combination of sub embeddings:

U?«_��U7�7�efFV_®]\ u bl
� k�cDc s1 s2 � � k��X\ t �°�

UF«_�eUM�D��fFV�®e\ � ��k��X\ u � � gE^Dd_\�U :: bl � � k�cDc s1 s2 � t

� u bl
� k�cDc s1 s2 � � k�c7c t1 t2 �°�� «]UM[E®DU U?«E��\ u

� U?«_��U7�7�efFV_®]\ bl � Q hDh�S s1 t1 �� U?«E�eUM�D�efqV�®e\ bl uRoot s2 t2 ���
@
� U?«_��U7�7�efFV_®]\ � ��k�cDc Q t2 u � bl

� k��X\ s � t1 �
@
� U?«_��U7�7�efFV_®]\ � ��k�cDcEi t1 u � bl

� k��X\ s � t2 �
� u bl

� k�cDc s1 s2 � � 8 9
The «<UM[D®EU UF«_�X\ function simply combines every embedding of the first list with every one of
the second. It uses the current upterm as the annotation for the combination.

We now consider various issues related to the embedding algorithm.

Unification of Sink Variables

Our embedding algorithm makes no requirement that the different subterms at the location of
a sink unify. This facilitates the later application of proof critics that try to fix fertilisation
failure. Producing no embeddings would make it impossible to tell why rippling had failed
without further analysis.

Meta Variables

It is interesting to consider the treatment of meta variables in the erasure. In the above presen-
tation of our algorithm algorithm we only allow meta variables to embed into meta variables.
However, in order to allow fertilisation, it suffices to allow the embedding of any term into a
meta variable. If there are multiple occurrences of the meta variable then fertilisation will re-
quire that they unify. This can be treated in a similarly to sinks, delaying the unification check
and allowing a proof critic to correct such failures.

In order to allow meta variables in the erasure to be represented in the embedding term, we
need an extra constructor, UMK7¦�^�[, similar to UM¦_^�[, but whose interpretation for skeleton and
erasure is reversed:

Chapter 7. Higher Order Rippling 126

\Fª_UEdMUMS_hGV h7g U�S_U�[�« � UMK7¦�^�[m t � � t
U�[�^_\q�_[EU h7g U�S_U�[�« � UMK7¦�^�[m t � � ¦�^�[m

When the embedding algorithm considers a meta variable in the erasure, it then constructs a
single embedding with the U�KD¦_^�[constructor.

In a setting with polymorphism or a type hierarchy, we have to take additional care with
the embedding to or from meta variables. In particular, we observe that meta variables may
need to be provided with an argument to express a wave front. This occurs when the type of a
compound term in the target is not a subtype of the skeleton term. For example, consider:

1. The skeleton “ f ?x” where f has polymorphic type α Y α and ?x has type nat (an
instance of the type α).

2. The erasure “ f
�
g y � ” where g has type nat Y bool.

3. The embedding which produces the annotation “ f / � g y �§1 ”.

In this case fertilisation is not possible because “g y” has type bool, but needs type nat to
match the skeleton. However, the alternative annotation “ f

�
g / y 1?�

.
” reveals that that the

function g requires further rippling.
To incorporate this into our embedding terms, we only need to provide an extra upterm

argument to the constructors expressing meta variables. This then holds the part of the term
that is outside of the appropriate meta variable’s type.

η-normal form

We observe that the target term must be in η-long form before embeddings are calculated. If
this is not the case, then examples such as the embedding of “λx � f x y” into “

�
g f � y” fail. If

the skeleton is η-contracted then additional annotations will sometime be introduced. In order
to avoid these problems we compute the η-long normal form of the skeleton and erasure before
using the embedding algorithm. We can also combine the process checking the η-long normal
form with the embedding algorithm. This is done by storing additional information about the
path to the current location in the target and erasure.

Directed Annotations

This embedding algorithm does not consider directed annotations. These can be incorporated
into the algorithm easily, or expressed separately as a second process. In IsaPlanner, we do the

Chapter 7. Higher Order Rippling 127

latter as this provides us with the ability to implement the measure computation in different
ways and to consider the possibility of using a measure that uses undirected annotations. In
particular, if we separate this process, then we only need a single implementation of embedding.

7.7 A Notion of Depth for Measures and Inward Rippling

Smaill and Green’s presentation of embeddings includes tuples in the term syntax. As men-
tioned earlier, their motivation for this is to minimise the number of embeddings. An additional
effect of this is that the measure is not the same for a function that takes curried arguments as
one that uses tuples. This makes the use of the tuple representation essential for their represen-
tation to produce the same measures as Basin and Walsh’s account.

The measure is defined by the notion of depth. This notion is also needed to express the
restriction that only allows inward wave fronts to being placed above a subterm that contains a
sink. In particular, for a higher order abstract syntax (HOAS) the idea of ‘above’ or ‘below’ is
not immediately obvious as function symbols are leaf nodes in the term tree.

We define a suitable notion of depth which also makes the measures robust over the choice
of tuple or curried argument representation. Additionally, our approach results in the same
measures as the first order account. In chapter 10 we examine experimentally the effect of
using this notion of depth in comparison with that used by Smaill and Green.

The central idea is to treat depth in the following way:

� the root of a term tree has depth 0.

� if λy � u has depth d then u also has depth d.

� if App
�
u � v � had depth d then u has depth d and v has depth d � 1

This ‘uncurries’ the syntax in the way we would expect: no height ordering is given to
different curried arguments of a function. For example, the term Suc

�
a �E� b, expressed in the

HOAS as App
�
App

� �v� App
�
Suc � a ���|� b � , gives a depth of 0 to � , 1 to Suc and b, and 2 to a. In

contrast, the usual notion of depth in HOAS is 1 for b, 2 for � , and 3 for Suc and a.

7.8 Selection of the Wave Rule Set

One of the advantages of rippling over simplification based approaches without an ordering,
is that the annotation process provides a means of ensuring termination and that therefore all

Chapter 7. Higher Order Rippling 128

axioms and proved theorems can be used.
Static rippling facilitates this by first generating only measure decreasing wave rules from

theorems and axioms. While the number of generated rewrites is exponential on the size of
the term, it avoids using equations oriented in a way which has no valid annotation, such as
x � 0 � x and 0 � 0
 x.

In dynamic rippling, theorems are used to transform the goal and then the possible anno-
tations are checked in order to avoid steps which do not decrease the measure. Unfortunately,
this approach can causes equations such as x � 0 � x which are not beneficial but frequently
applicable to significantly slow down search.

One solution to this is to filter the possible ways an equation can be used, removing those
with a left hand side that is identical to a subterm of the right, such as x � x � 0. It is also
beneficial to remove those that would introduce a new variable, such as 1 � x0. This is a simple
and quick approach based on the notion of a valid rewrite rule.

Another approach is to look at every possible skeleton which can embed into the left hand
side. This can then be used to check if a measure decreasing annotation exists for the right hand
side. If so, then the rule can be used during rippling. This corresponds more closely with static
rippling but is more complex and slower. In practice, it seems to result in the same behaviour
as the simpler mechanism.

7.9 Avoiding Symmetries in Rippling Search

A simple observation which can be made during rippling is that it is often possible to ripple
many different parts of a goal independently, and thus it is sometimes redundant to explore
both branches of the search space. For example, in the proof of the commutativity of addition
presented earlier, either the right hand side or the left hand side can be rippled out first, as
shown in Figure 7.5
These are independent choices in the search space. Both lead to the same final fully ripped-out
goal Suc

�
a �
.
� b � Suc

�
b � a �

.
.

One solution is to cache the unannotated goals, so that the same rippling state is not ex-
amined more than once. This removes symmetry in the search space and thus provides an
efficiency improvement. The size of the search space would naturally increase exponentially,
the benefit yielded from caching is also exponential.

While the caching approach provides significant improvement, it still includes some of
redundancy in the search space. In particular, redundant branches are explored and only pruned

Chapter 7. Higher Order Rippling 129

Suc
�
a �
.
� b � b � Suc

�
a �
.

Measure: ([2,0,0], [0,0,0])

Suc
�
a � b �

.
� b � Suc

�
a �
.

Measure: ([1,1,0], [0,0,0])
Suc
�
a �
.
� b � Suc

�
b � a �

.

Measure: ([1,1,0], [0,0,0])

Suc
�
a � b �

.
� Suc

�
b � a �

.

Measure: ([0,2,0], [0,0,0])

Suc
�
b � a �3� Suc

�
b � a �

Fertilised

Figure 7.5: Redundant branching in the search space of the rippling proof of the
commutativity of addition.

when the goal becomes identical to another node in the search space. A more sophisticated
solution is to analyse the rewrites to determine their independence. This avoids the expense of
caching and remove unnecessary branching altogether.

7.10 Storing Multiple Annotations with Each Goal

Whether using Smaill and Green’s embedding mechanism or our annotated terms, one still has
to worry about the direction of wave fronts. Initially, they are always outward but after applying
a rule there is a choice of direction for each wave front.

For example, returning to the proof the commutativity of addition, the initial annotated goal
is Suc

�
a �
.
�£/ b 1±�}/ b 13� Suc

�
a �
.

, but after applying the theorem Suc
�
x �D� y � Suc

�
x � y �

from left to right, there are two possible ways the new goal can be annotated:

Suc
�
a �;/ b 1 �

.
� / b 13� Suc

�
a �
.

(7.1)

Suc
�
a �;/ b 1 �

4
� / b 13� Suc

�
a �
.

(7.2)

Chapter 7. Higher Order Rippling 130

In the λClam system, these annotations are searched over independently examining each
rewrite for each possible annotation of the goal. However, we observe it is possible hold all
possible annotations with a single copy of the goal and only consider rewriting the goal once.
This is an interesting difference between dynamic and static rippling as it can decrease the size
of the search space by a possibly exponential amount. This is not possible for static rippling as
the annotation is part of the goal. Thus static rippling is forced to search over the all possible
annotations of each goal separately.

In order to manage the multitude of annotations, only a single measure needs to be stored.
We call this the threshold measure. Initially, this is the highest measure in the ordering. After
a rule is applied, the new annotations are analysed to yield the highest measure lower than the
current threshold. This becomes the new threshold. If no such measure can be found then
search backtracks over the rules application. This strategy ensures that all possible rippling
solutions are in the search space.

7.11 Redundant Search Over Annotation Directions

While only a single measure is needed to represent all annotations, we observe that the mere
existence of multiple annotations for a goal can result in rippling applying redundant proof
steps. This happens because rewriting can change outward annotations to inward ones even
outside the context of the redex. This can happen because beta reduction after rewriting can
change the term’s structure.

The effect of reconsidering all possible annotation directions after each rewrite then intro-
duces redundant search even for simple examples. Figure 7.6 shows such an example when
trying to prove a � 0 � a in Peano arithmetic, having arrived at the annotated step case of
Suc
�
a �
.
� 0 � Suc

�
a �
.

, which is rewritten with the theorem Suc
�
X �]� Y � Suc

�
X � Y � ,

named add Suc.
This redundancy in rewriting steps is an important inefficiency for a number of reasons:

the search space will be larger, the proofs found will be less readable, the proofs may be
more brittle (have unnecessary dependencies), and when being used for program synthesis [64]
inefficient programs will be created.

While the number of redundant proof steps is smaller if inward wave fronts are restricted
to occurring above a sink, the problem still manifests itself when there are multiple sinks and
wave fronts.

Initially it may seem that the extra steps can be avoided by only recomputing annotations

Chapter 7. Higher Order Rippling 131

Suc
�
a �
.
� 0 � Suc

�
a �
.

Measure :
��8

1 � 1 � 0 9:� 8 0 � 0 � 0 9(�
@@A 1. Ripple using add Suc from left to right

Suc
�
a � 0 �

.
� Suc

�
a �
.

Measure :
��8

0 � 2 � 0 9:� 8 0 � 0 � 0 9(�
@@A 2. Ripple using add Suc from right to left

Suc
�
a �
4
� 0 � Suc

�
a �
.

Measure :
��8

0 � 1 � 0 9:� 8 0 � 0 � 1 9(�
@@A 3. Ripple using add Suc from left to right

Suc
�
a � 0 �

4
� Suc

�
a �
4

Measure :
��8

0 � 0 � 0 9:� 8 0 � 2 � 0 9(�
@@A 4. Fertilise using the inductive hypothesis.

Suc
�
a �²� Suc

�
a �

C 5. Solved by reflexivity

Figure 7.6: An example rippling proof with redundant steps caused by changing
outward annotations to inward ones.

within the redex of the rewrite, however beta reduction can cause a change in term structure
outside of the redex which requires, in general, that all possible annotations are considered.

We propose a similar solution, but which is robust over beta reduction. This involves
reexamining the whole embedding term but only changing the direction of annotations if the
contents of the wave front have changed. This is facilitated by our representation of annotations
using embedding terms where the contents of the wave front are within an upterm. The effect
is to stabilise the direction of annotations and thus reduces the search space, removing all cases
where annotations are changing outside of the effect of rewriting.

7.12 Identifying when Rippling has Finished

A general problem with rippling using the pair of lists measure concerns how to identify when
rippling has finished or is blocked. For example, in Figure 7.6, fertilisation should have been
applied after the second ripple step. While fertilisation could be tried eagerly, the problem of
identifying a final ripple state is still an important issue if we consider applying proof critics to

Chapter 7. Higher Order Rippling 132

blocked states. Considering each rippling state in this way results in an very large branching
rate.

The problem is that the measure of every fully rippled-out goal can be improved by un-
doing the rippling out and introducing inward wave fronts. However, we want to consider the
most rippled-out state as a candidate for applying proof critics.

Initially, we examined alternative measures that avoid giving inward annotations a lower
measure than outward ones. In particular, we considered variations that count the sum of the
distances between wave fronts and either the top of the term or a sink. These avoid redundant
steps and seem to correspond to our intuition of moving the differences outward or into sinks.
Although this makes inward rippling dependent on the distance between a wave front and the
top of the term being larger than the distance to a sink, the experiments detailed in chapter 10
show that it works more effictively than list-based measirs. We leave other experiments with
rippling measures as future work.

A second solution to identify when rippling is blcoked is to provide a separate check that
identifies blocked states. We use this for list-based measures. This approach considers rippling
states to be blocked in two different directions, namely outward and inward. A rippling state
is blocked outward if, when considering all wave fronts to have an outward direction, there
is no rule that will improve the outward measure. This avoids considering states where an
outward wave front is change to an inward one at the same location. A state is blocked inward
if there is no rule that will improve the ordinary rippling measure, as this naturally moves
wave fronts toward sinks. Additionally, we consider a state inward-blocked only if it is not also
outward-blocked. This approach applied to the proof in Figure 7.6 gives the state after step 1 as
outward-blocked, and the state after step 2 as inward-blocked. A problem with this approach is
that if a rippling proof exists which combines outward and inward rippling, then when looking
for the inward proof we may undo the outward rippling.

We believe that a promising and more unified approach would be to develop a measure
that does not provide a different measures based on the direction of the annotations, but instead
considers the distance to possible locations ways in which the goal could be completely rippled,
allowing fertilisation. This is left as future work.

7.13 Conclusions

We have introduced the two main approaches to rippling and analysed Smaill and Green’s
version of dynamic rippling based on embeddings. We then described our notion of embedding

Chapter 7. Higher Order Rippling 133

terms and an algorithm for finding embeddings. We also provide a notion of depth that gives the
same measures for curried and tupled representation of functions. Furthermore, this allows our
annotations for rippling to correspond in the first order case with Basin and Walsh’s account.

We also consider the search space explored by rippling and describe how the dynamic
approach can take advantage of the separation of the measure from the goal to reduce the
redundancy in search. This introduces difficulties in determining when rippling is finished. We
propose an additional check for considering when rippling is blocked. This provides a version
of rippling with a significantly smaller search space.

We have implemented our version of rippling in IsaPlanner for use in the higher order logic
of Isabelle. This provides a framework for comparing and experimenting with extensions to
rippling, such as the addition of proof critics and the use of modified measures. We have carried
out experiments on various varieties of rippling which we discuss further in chapter 10.

A major source of inefficiency in rippling arises from the symmetry in the search space.
In particular, this comes from the and-choices in the possible ripple steps being treated as or-
choices and thus search considering the permutations of and-choices. Further work includes
avoiding this symmetry altogether.

Chapter 8

Generic Equational Reasoning

Equational reasoning is essential for human as well as mechanised proof. Automatic tech-
niques such as simplification and rippling make extensive use of equations, and for interactive
theorem proving fine grained control in the application of equations greatly simplifies the proof
process. This chapter describes the development of the needed support for equational reason-
ing in Isabelle. In particular, we describe a generic algorithm, in terms of Isabelle’s meta logic,
for applying an equation to a goal or previously proved theorem. This involves searching for a
unifying subterm of the goal and then constructing an intermediate equation that allows the it
to be rewritten. We take special care to support meta-variables and conditional equations. This
provides the basic underlying machinery for rewriting techniques such as rippling.

8.1 Introduction

Although Isabelle is a well-established system, its support for fine-grained control of equa-
tional reasoning is limited. In this chapter, we describe a generic equational reasoning tactic
that provides significant improvements over Isabelle’s existing tools. The motivation for de-
veloping this functionality further comes from our desire to provide a generic implementation
of rippling, which is based on equational rewriting. It is also needed in order to apply weak
fertilisation when rippling becomes blocked. We remark that the fine grained control of equa-
tional reasoning is also useful for interactive proof and its absence has been a long standing
annoyance to new users of Isabelle.

The main part of the tactic is an algorithm to perform substitution that is given an equation
as well as unification information that details how to apply it. This is then developed to include

134

Chapter 8. Generic Equational Reasoning 135

searching for the unifiers as well as performing the single step of equational reasoning. The
tactic introduces a rule’s conditions as new subgoals and allows meta-variables to be introduced
and partially instantiated. This provides the user with a tactic that we argue captures the intu-
itive notion of ‘applying an equation’. This improves Isabelle’s support for fine-grained control
of equational reasoning and has been integrated in the distribution of Isabelle 2005. The tactic
is defined in term of Isabelle’s meta-logic and this thus generic. It has been implemented for
several logics in Isabelle including ZF, HOL and CTT.

Motivation

The motivation for a new tactic to perform equational reasoning comes from the lack of flexi-
bility and applicability of Isabelle’s existing tools. Namely, the simplifier and resolution with
substitution theorems are both overly restrictive. Isabelle’s simplifier is limited in the following
ways:

� Applying conditional equations with the simplifier requires that the conditions can be
solved immediately: they cannot be solved later by the user or another tactic.

� It uses higher order matching, but for many cases unification is needed.

� It cannot apply equations that introduces meta variables.

� The simplifier applies equations exhaustively. This means that an equation cannot be
applied to only one redex and those which cause the simplifier to loop cannot be applied
at all.

� The user cannot specify which redex should be used to rewrite a goal.

These limitations are appropriate for simplification based rewriting. However, when a finer
level of control is desired, they become a hindrance to the user. Furthermore, in some appli-
cations of rippling, such as middle out reasoning [45], appropriate treatment of meta variables
during rewriting is essential. This means that the basic machinery implemented in the simpli-
fier is not suitable as the basis for a generic equational reasoning tactic. Extracting this basic
machinery from Isabelle’s simplifier is also non-trivial as the code has been carefully tuned
over many years by many authors and lacks detailed comments.

The other traditional approach to equational reasoning in Isabelle is to use resolution with
substitution theorems. This is essentially higher order paramodulation. Although this can be

Chapter 8. Generic Equational Reasoning 136

carefully controlled and treats meta variables and conditional rules correctly, it fails for a large
class of situations. In particular, it fails when a variable in the equation matches a variable that
is bound outside the redex.

For example, given a goal of the form “P
�
λn � f n c � ”, and an equation “ f ?x c � g ?x c”

which, when resolved with the substitution theorem, gives the lemma “?Q
�
g ?x1 c �±���

?Q
�
f ?x1 c � ”, then the lemma’s conclusion fails to unify with the goal. This behaviour is

too limiting to provide an adequate basis for rippling. For instance, higher order settings such
as ordinal arithmetic, variables that are bound outside the redex need to be rewritten (See chap-
ter 10.3 and the work of Dennis and Smaill [35]).

Overview

We now give a brief overview of how our equational reasoning tactic works. The tactic is
composed of three stages:

1. A subterm that unifies with the left hand side of a given rule is searched for.

2. A specialised version of the equation is created that includes the context in which the
unifying subterm was found.

3. This specialised equation is used to perform the substitution on the desired goal.

Finding an a subterm that unifies with the left hand side of the equation is described in sec-
tion 8.2, using the information returned by this process to perform a substitution is presented in
section 8.3, and combining these to provide an generic equational reasoning tactic is described
in section 8.4.

8.2 Finding Unifying Subterms

The first stage of equational reasoning involves searching the target term for a subterm that
unifies with the rule’s left hand side. Isabelle already provides an implementation of Huet’s
higher order unification algorithm. However, we cannot simply use the obvious approach of
searching through the term based on pattern matching. This is because we need to provide the
redex’s context with the instantiation information.

For instance, given a target term of the form P
�
λx � Q �

L x � y � and a rule’s left hand side,
L ?z, when we find the unifying subterm in the target, we need to know the redex’s context. In

Chapter 8. Generic Equational Reasoning 137

particular, we need to be able to construct a term of the form λl � � P � λx � Q �
l x � y � , where the

bound variable l is the location of the unifying left hand side. We call such a term a context
term as it captures the context of the matching left hand side. This requires knowledge of the
rest of the term as well as the variables bound outside the redex. The context term is a modified
copy of the target term. The matching left hand side is replaced by variable of higher order type
that is bound at the top level. In the above example this is l. The variable takes as parameters
the bound variables that occur within the redex.

To do this, we maintain the redex’s context using an implementation of Huet’s Zippers [47].
This allows us to search through the target term while maintaining the examined subterm’s
context. We abstract this process into two functions:

� A matcher that applies unification or matching to the subterm at the focus of the zipper,
returning the zipper’s path with the unification result.

� A searcher that moves the focus of a zipper around the term applying the matcher to
different locations. The searcher function takes a matcher as an argument and results in
a lazily evaluated list of results from the matcher.

This separation allows us to parameterise substitution in terms of the search algorithm used
to find the redex. This supports specialised search ordering for our equational reasoning tactic.
For example, a bottom-to-top, right-to-left searcher can be defined as follows1:

fun search_up_left matcher initfocusterm =

let

fun searchup focusterm =

case moveup_abs_or_left focusterm of

SOME higherfocusterm =>

(matcher focusterm) @ (searchup higherfocusterm)

| NONE => matcher focusterm

in

flattenmap moveup (rev (leafs_of initfocusterm))

end;

By also abstracting out over the matcher we can easily modify the way applicable rules are
found. For example, we can use rule-nets to perform quick lookup from a large collections of

1We use the eager list operations for clarity. See the IsaPlanner source code for a lazy version of this and other
search algorithms.

Chapter 8. Generic Equational Reasoning 138

rules. Similarly, we can easily perform matching instead of unification. We use the zippers
path, returned by the matcher, to construct a context term which is provided to the substitution
algorithm described in the following section.

8.3 The Substitution Algorithm

We now describe our substitution algorithm, in terms of Isabelle’s meta logic, for applying a
single step of equational reasoning. We assume that a match or unification result has already
been found in the manner described above. This provides instantiation information for meta-
variables in the goal and the rule. These instantiations may also introduce new meta-variables
and new type variables.

We use two additional pieces of information from the process that searches for a match:

The context term: a term of the form λl � P � 8 l y0 ����� yn 9 , where l is the location of the
matched/unified left hand side of the rule and y0 to yn are the variables bound outside
the redex. We use the notation f

8
g 9 to indicate that g is a subterm within f . The allow

the term P � to contain variables that have been affected by the unification process. When
these variables are replaced by their instantiations, we will write P.

Locally bound variables: the list of the bound variables, y0 to yn, which occur in the redex.
Although these can be derived from the context term and unification information, it is
convenient to treat them separately. For brevity we will refer to these bound variables
simply as y.

We allow variables in the rule’s left hand side that also occur in a condition to match bound-
variables whose binder is outside the redex. Such variables become universally quantified in
the introduced subgoal for each condition in which they occur.

We let the (conditional) equation that we will use to rewrite the goal be of the form:

C ?x ?y �3� A ?x ?y ?z � B ?x ?y ?z

where ?y represents variables in this equation that match variables bound outside the redex, ?x
stands for other variables that also occur within the condition, and ?z for variables that do not
occur in the condition. Separating these classes of variables allows us to clearly describe how
they are dealt with. We do not need to make any assumption regarding the possible introduction

Chapter 8. Generic Equational Reasoning 139

Reflexivity of the context term
5

λr� P 8 λy � 8 r y 9�9_� λr� P 8 λy � 8 r y 9�9

The instantiated conditional equality
1

C x � y � � ��� A x � y � � z � � B x � y � � z �

³
y � � C x � y �

2
C x � y � �

3
A x � y � � z � � B x � y � � z �

4
λy � � A x � y z � ��� λy � � B x � y z � �

6�
λr� P 8 λy � 8 r y 9�9(� � λy � � A x � y z � ����� � λr� P 8 λy � 8 r y 9�9(� � λy � � B x � y z � ���

7
P
8
λy � 8 A x � y z � 9�9D� P

8
λy � 8 B x � y z � 9�9

Figure 8.1: A proof schema that illustrates the algorithm for creating a specific
instance of the initial equation within the context that the redex was found.

of new meta variables. This is handled by instantiating introduced meta variables to fresh free
variables which can then be transformed back into meta variables at the end of the proof.

The goal to be rewritten, is thus of the form:

P � 8 λy � 8A � x � y z � 9�9

where A unifies with A � , and y expresses the bound variable(s) outside the redex. We let x � and
z � indicate the instantiation’s for ?x and ?z in the equation. Although these instantiation may
contain additional meta variables, the algorithm places fresh free variables as placeholders for
the introduced meta variables and changes them back to meta variables at the end.

Using this notation, we give a schematic natural-deduction style proof in Figure 8.1 which
expresses the tactic’s behaviour. The rules used are those of Isabelle’s logical kernel. Thus,
following the LCF style, this tactic is a conservative extension of Isabelle that preserves sound-
ness. The steps in the figure correspond with the steps of the algorithm which are as follows:

1. (Instantiation) Initially, the context term and the equation, including its conditions, are
instantiated with the result of the match or unification. In these instantiations, variables
bound outside the redex but occurring within it are replaced by fresh free variables.
Additionally, any meta-variables and type-variables that remain in the conditions are
instantiated to fresh free variables. This allows the condition to be assumed2.

2. (Assume and Instantiate) A term is constructed for each instantiated condition and as-
sumed. Schematic and type variables are replaced with temporary free variables as in

2Isabelle’s kernel disallows a term to be assumed that contains meta-variables

Chapter 8. Generic Equational Reasoning 140

the previous step. Additionally the placeholder variables in the condition that represent
bound variables outside the redex (y � �) are replaced by the fresh meta-level universally-
quantified variables (y).

Each of these terms constructed from a conditional is then assumed. At the end of the
proof these become new subgoals. These assumptions are then instantiated to derive a
version of the condition with the free variables y � � , instead of the meta-level universally-
quantified ones (y).

3. (Implication elimination) The conditions are then discharged from the instantiated rule
using implication elimination. This leaves a version of the equation without any explicit
assumptions, but which depends on a proof of the term constructed in Step 2.

4. (Abstraction) The fresh free variables y � � which represent the location of bound variables
in the redex are abstracted over using the abstraction rule. The side condition of the
abstraction rule is met as the free variables are fresh by construction.

5. (Reflexivity and Instantiation) The context term is instantiated from the unification/matching
result. This term is then used to instantiate the reflexivity rule which creates the trivial
reflexive equation of the context term.

6. (Combination) The abstracted equation and the instantiated theorem constructed from the
context term are combined using the combination rule. This forms a specific instance of
the rule (not yet beta contracted) for the exact context of the goal.

7. (Beta Reduction) The specific rule is beta reduced, producing an equation specifically de-
signed for use with the specific instantiation of the match against the goal.

At this point two further steps can be taken to apply the created special purpose rule to the
goal:

8. (Equality Elimination) The goal-specific rule is applied to the instantiated goal using equal-
ity elimination.

9. (Implication Introduction) Finally, the assumed conditions are introduced as new sub-
goals by implication introduction, and any schematic and type variables that were frozen
are reintroduced as meta-variables and type-variables respectively.

Chapter 8. Generic Equational Reasoning 141

Remarks

This tactic is unsafe in the sense that rewriting a goal that is provable can result in one that is
unprovable. In particular, even if the equation is applicable and the conditions are met in the
goal, applying an equation can result in an unprovable subgoal. This happens because of the
universal quantification of bound variables within the subgoal generated from a condition. For
example, consider the following:

� a function: appzero f � f 0

� a conditional equation: x � 0 ��� gx � hx

� a goal: P
�
appzero

�
λx � f

�
gx �����

Using our equational reasoning tactic will result in the two subgoals:

1. P
�
appzero

�
λx � � f � hx �������

2. - x � x � 0

The first of these is the rewritten version of the initial goal and the second comes from the equa-
tion’s condition. Within the context of the appzero the bound x will be reduced to 0, however
applying the rule at this point results in the unprovable subgoal - x � x � 0. The user must first
rewrite appzero then apply the conditional equation if they wish to avoid the unprovable condi-
tion. The lack of safety makes it the users responsibility to apply the tactic at the right time. Our
motivation for the increased applicability is to gives the user more choice and thereby facilitate
their exploration of proof. Furthermore, for the many cases when the condition’s subgoal is
provable, it avoid them having to prove that the context is independent.

If the equational reasoning tactic was used to make up an automatic rewriting engine then
the safety property might be helpful in order to minimise the search space. A safe version of
this tactic which avoids matching variables bound outside the redex to variables that also occur
in the equation’s conditions is a trivial alteration to the code.

A flexible mechanism that supports extending this tactic to handle cases where bound vari-
ables outside the redex can match equation variables occurring in the conditions, in a safe
manner, is further work.

Chapter 8. Generic Equational Reasoning 142

Initial proof state
� ����� ; � A1; ����� ;An � �3� SGi

8
lhs 9 ; ����� � ��� G

The equation
�
C1; ����� ;Cm � ��� lhs � rhs

�
C �1; ����� ;C �m;SGi

8
rhs � 9 � ��� SGi

8
lhs � 9

� ����� ; � A �1; ����� ;A �n � ��� C �1; ����� � A �1; ����� ;A �n � ��� C �m;�
A �1; ����� ;A �n � ��� SGi

8
rhs � 9 ; ����� � �3� G

Figure 8.2: The proof schema to apply an equation to the conclusion of a subgoal.

8.4 The Interactive Equational Reasoning Tactic

We now describe the top level of the equational reasoning tactic. This provides an interface for
the Isabelle user, and allows us to test it independently of its use within proof planning.

The substitution algorithm we present is in terms of Isabelle’s meta logic equality. In order
to make use of this, any equations defined in an object level equality must be translated into
the meta level. We do this by providing a logical stub for our tactic. We define our tactic as a
functor in terms of its logic dependent characteristics. In particular, it takes a function that is
given an object level equation and produces a meta level one.

Once we have a meta level equation we can employ our substitution algorithm. How-
ever this cannot be done directly to the theorem representing the proof state. This is because
any conditions of the equation will be introduced as subgoals outside the context of existing
assumptions, which can make them impossible to prove. For example, directly using the equa-
tion “Q ��� B � C” to rewrite the subgoal “Q ��� P B � P C” would result in the two new
subgoals “Q” and “Q ��� P C � P C”, rather than “Q �3� Q” and “Q ��� P C � P C”.

In order to carry the assumptions over correctly, we rewrite a separate temporary theorem
and then use resolution to apply it to the one representing the proof state. In particular, we treat
applying an equation to the conclusion of a subgoal in a distinct manner from application to
one of its assumptions. We illustrate these with proof schema for both scenarios in Figure 8.2
and Figure 8.3 respectively.

In order to apply an equation to a subgoal’s conclusion, we construct a theorem for rea-
soning backward by resolution. In particular, one in which the rewritten conclusion implies
the original one. To do this, we pull out the conclusion of the subgoal (SG i) and construct a
trivial theorem from it (SGi �3� SGi). We then rewrite the premise, which results in the theo-
rem

�
C �1; ����� ;C �m;SGi

8
rhs � 9 � ��� SGi

8
lhs � 9 . This can then be used directly by resolution with the

Chapter 8. Generic Equational Reasoning 143

Initial proof state
� ����� ; � A1; ����� ;A j

8
lhs 9 ; ����� ;An � ��� SGi; ����� � ��� G

The equation
�
C1; ����� ;Cm � �3� lhs � rhs

�
A j
8
lhs � 9 ;C �1; ����� ;C �m � ��� A j

8
rhs � 9 ;

� ����� ; � A �1; ����� ;A �n � ��� C �1; ����� ; � A �1; ����� ;A �n � ��� C �m;�
A1; ����� ;A j

8
rhs � 9 ; ����� ;An � ��� SGi; ����� � ��� G

Figure 8.3: The proof schema to apply an equation to an assumption of a subgoal.

current subgoals conclusion.
To apply an equation to an assumption, we construct a theorem for reasoning forward

from the unmodified assumption to the rewritten one. We first construct a trivial form of the
assumption being rewritten (A j ��� A j). We then rewrite this theorem’s conclusion using the
substitution algorithm described in the last section, which results in a theorem of the form�
A j
8
lhs � 9 ;C �1; ����� ;C �m � ��� A j

8
rhs � 9 ;. This can now be applied to the subgoal’s assumptions

using Isabelle’s resolution tactic.

8.5 Flex-Flex Constraints from Higher Order Unification

One of the complexities of working in higher order domains is the possible introduction of
flex-flex constraints in unification. Isabelle’s unification algorithm generates these. Although
trivial solutions can be found, these can result in unprovable goals.

Isabelle’s approach to their management is to store them with each theorem object. This
allows them to be solved lazily, but requires unification to be within the logical kernel. Because
our substitution algorithm is outside the logical kernel and we apply the instantiations directly
to term level objects, we cannot store the flex-flex constraints in the theorem object.

This leaves two possibilities: to either introduce them as explicit subgoals, or to eagerly try
to solve them. Our current implementation eagerly solves them, although in future work we
plan to experiment with the lazier approach.

8.6 Related Work

The development of suitable tools for reasoning with equations is a problem that every inter-
active theorem prover encounters. In first order systems, working with equations is simpler as

Chapter 8. Generic Equational Reasoning 144

goals can be skolemised and thus no special machinery is needed to work with bound variables.
In higher order systems, specialised tools are needed. However, the solutions employed in sys-
tems with a fixed logical kernel are dependent on the underlying logical calculus and thus each
different logical system requires its own machinery. For instance, in the calculus of inductive
constructions, as implemented in the Coq system, applying an equation to a variable bound
outside the redex is not possible due to the intentional nature of equality. Thus the notion of
applying an equation is necessarily different is such a setting.

In the HOL and HOL-Light systems, which use a similar logic to Isabelle meta-logic, equa-
tional reasoning is handled by rewriting machinery that has analogous limitations to Isabelle’s.
The machinery described in this chapter could easily be implemented for these systems to
provide improved and finer level control of equational rewriting.

In other implementations of rippling, such as that in λClam and Clam which did not check
their proofs in an underlying logical kernel, the basic equational machinery was trusted. An
error within this machinery could then render the system unsound. The motivation for writing
the basic equational machinery in terms of the primitive inferences in the logical kernel is that
it provides a conservative extension which avoids increasing the trusted code base.

8.7 Conclusions

We have motivated the need for improved equational reasoning support in Isabelle, showing the
limits of the exiting tools. We then presented a tactic for Isabelle that provides a flexible and
generic approach to reasoning with equations. This is composed of a searching tool based on
an implementation of Zippers for Isabelle, and a tactic that supports substitution in an arbitrary
part of a theorem using a meta level equation.

We combine the basic tactic to provide a useful notion of a single step of equational rea-
soning that is roughly analogous to rewriting in traditional approaches to rippling. It carries
assumptions correctly into new subgoals and treats meta variables in the expected manner al-
lowing their partial instantiation and introduction. This somewhat technical work provides the
foundations for our later implementation of rippling, which requires a rich notion of equational
reasoning.

Chapter 9

An Inductive Theorem Prover

In this chapter we discuss the development of an inductive theorem prover for Isabelle using
our proof planning framework. The purpose of this development is three-fold: it provides
a generic and useful proof tool to users of Isabelle; it clarifies the choices available to an
inductive theorem prover; and it provides a means to evaluate our proof planning framework.

9.1 Introduction

This chapter describes the development of an inductive theorem proving technique within our
observational approach to proof planning. It uses the representation of proof plans as proof
scripts which we described in Chapter 6. The prover is generic in the sense that it can be
applied to any logic in Isabelle that supports induction. This generality comes from employing
the Isabelle methodology to writing tactics for the definition of our techniques: the different
parts of the prover are each defined as functors that explicitly specify their logical dependency.
In particular, our inductive prover is a combination of the following otherwise independent and
generic tools:

� The selection and application induction schemes (§9.4).

� Simplification machinery (§9.5).

� Rippling machinery (§9.6).

� The caching of proof exploration (§9.7).

� Fertilisation (§9.8).

145

Chapter 9. An Inductive Theorem Prover 146

� Lemma conjecturing and generalisation proof critics (§9.9).

� The caching of proof attempts of lemmas (§9.11).

� Machinery based on embeddings to help avoid non-terminating branches of the search
space (§9.11.2).

We first motivate the need for inductive theorem proving and then introduce a simple inductive
proof technique. We develop this into our top level of our induction technique and then describe
the individual components in further detail. This results in a powerful inductive theorem prover
that we compare with λClam in the following chapter.

Throughout the description of the implemented techniques we take care to examine the role
of the observational approach to proof planning. In particular, we note that the MAP and FOLD

functions, which do not exist in other approaches, are useful in the expression of techniques.
In particular, they are used to expressing caching of the search spaces and to describe one
technique as a modification of another one.

9.2 Motivation

Inductive inference is required for reasoning about repetition. This includes proving proper-
ties of mathematical objects, such as the natural numbers, as well as inferring characteristics
of datatypes, recursive functions, and many other objects that involve some kind of iteration
or looping, such as electronic circuits. Inductive proof thus covers a wide variety of applica-
tions. In some general-purpose proof systems, such as ACL2 [57], all properties are essentially
proved by induction. Many other systems also use an inductive theorem strategy as the main
proof tool. These include INKA [50], Quodlibet [2], Clam [40] and λClam [32].

Inductive inference is necessary for many proof but results from Gödel and Kreisel show
that it introduces an infinite branching point in the search space [42, 62]. Furthermore, it im-
possible to build a inductive theorem prover that is complete. This results from Godel’s first
incompleteness theorem which states that for any formal theory that can express arithmetic
there will be a formulae that is true but unprovable. Because any non-trivial inductive theory
can express arithmetic, the power of any automated inductive theorem prover is limited.

An inductive theorem prover should thus provide a practical approach to inference. Induc-
tive inference is a hard but important problem and in practice, many inductive proofs can be
automated. In interactive systems the user chooses and and applies the induction scheme and

Chapter 9. An Inductive Theorem Prover 147

then tries to prove the remaining subgoals. In this chapter we describe machinery to help the
user do this.

9.3 The Top-level Induction Technique

In this section we describe the development of our inductive proof technique. We first introduce
a basic technique describing the components and then introduce features until we arrive at the
full inductive theorem prover which we experiment with in the next chapter.

9.3.1 A Basic Induction Technique

We introduce a simple inductive theorem proving technique in order to illustrate our language
for writing techniques. This simple prover applies induction and simplifies the resulting goals.
If the subgoals are not solved then it introduces gap statements to complete the proof. This
technique, named induct and simp, can be expressed as follows:

induct and simp =

induction (TRY simplify)

(fn IHs => (PPLANOP (add froms IHs))

THEN (TRY simplify))

where the functional induction performs induction and uses its first argument, which is a
technique, to solve the base cases. In the step cases, the technique induction fixes the in-
duction parameters and assume the induction hypothesis. It then applies its second argument,
which is a function that is given the induction hypothesises as a list of theorems, to solve the
step case. After the base and step case techniques are applied successfully the induction

technique adds a qed to solved subgoals and a gap to unsolved subgoals.
For more details of the induction technique see section 9.4. The technique simplify

performs an exploratory step using simplification and is discussed further in section 9.5. We
wrap the simplification technique in a TRY statement so that if the goal cannot be simplified a
proof planing continues and a gap is inserted. This is needed because if simplification is not
applicable, the empty list will be returned and proof planning will backtrack.

Recall from chapter 3 that the PPLANOP functional wraps-up a modification to the proof
plan as a reasoning technique. We used it on the add froms function which inserts a from

statement in the Isar proof. This allow the induction hypothesis to be used in the following
simplification.

Chapter 9. An Inductive Theorem Prover 148

9.3.2 Adding Rippling to the Induction Technique

We now show how the step case use of simplification can be replaced with rippling and fertili-
sation. We do this by writing a step-case technique that performs rippling and then tries strong
fertilisation. If this is not applicable it tries weak fertilisation followed by simplification. This
is expressed as:

ripple and fertilise IHs =

((CACHE (rippling IHs))

THEN (strong fertilse

ORELSE ((TRY weak fertilise)

THEN (TRY simplify))))

The rippling technique is described further in section 9.6. For now it suffices to observe
that it takes the list of induction hypothesises as an argument and uses them as the skeleton(s)
for rippling. The CACHE functional, which we detail further in section 9.7, caches the explo-
ration steps during rippling. This helps avoid symmetries in the search space. When rippling
finishes, we attempt to fertilise the goal. We make use of the ORELSE element of our technique
language which forces the first technique to be tried before considering the second. This al-
lows us to first try strong fertilisation. If it is not applicable the ORELSE functional will try weak
fertilisation and then simplification. We apply simplification after weak fertilisation leaves the
goal in a simpler form and sometimes solves it directly.

We can now create a top level induction and rippling technique using the new step case
technique as follows:

induct and rippling =

induction (TRY simplify)

ripple and fertilise

9.3.3 Adding Lemma Conjecturing to the Induction Technique

We now introduce the conjecturing of lemmas into our technique. The idea is that after simpli-
fication or rippling with weak fertilisation fails to solve the goal, we will conjecture a lemma
using common subterm generalisation to solve it. We do this using a function, conj critic,
that takes two techniques as arguments. It uses the first to solve the conjectured lemma. The
second technique is the one that it tries to patch the failure of. It will apply it as normal un-
til the proof attempt ends without being able to solve the remaining goal. At this point, the
conj critic function suggests a conjecture, starts a new proof attempt, and upon successfully

Chapter 9. An Inductive Theorem Prover 149

proving the conjecture, uses the new lemma to solve the goal. For efficiency, the result of proof
attempts are cached as described in section 9.11

To use the conj critic technique, we simply wrap it around the simplification and step
case techniques as follows:

induct ripple conj =

induction (TRY (conj critic induct ripple conj simplify))

(conj critic induct ripple conj ripple and fertilise)

This combination of techniques is shown graphically in Figure 9.1. We note that, within the
ripple and fertilise technique, simplifying the remaining subgoals not solved by fertilisa-
tion also helps avoid conjecturing many variations of the same lemmas. In effect, it normalises
of the remaining subgoals and thus avoids conjectures that are equivalent modulo simplifica-
tion.

We now present an example to illustrate the application of this technique. Consider prov-
ing the theorem

�
xy � z � x � y ´ z � in ordinal arithmetic. Details of our formalisation are given in

chapter 10 and the full theory file is in appendix B. Our naive selection of induction schemes
will try using the transfinite induction rule for each variable, eventually selecting z. The base
case as well as the limit step case are solved by simplification. The successor step case ripples
to the subgoal to

�
x � y ´ z � ��� xy � x � y ´ z � y � . From this a lemma xv0 � xy � x � v0 � y � is conjectured with

the subterm
�
y � z � generalised to a new variable. The proof of this proceeds in a similar fashion

and succeeds automatically. The lemma is then used to solve the pending goal. This proof
is shown graphically in Figure 9.2. The Isar script generated for this example is presented in
chapter 10, page 190.

In the following section we describe in more detail each of the parts of our inductive prover
and discuss issues they raise.

9.4 The Selection and Application Induction Schemes

The selection of induction schemes is an essential problem to be addressed by inductive provers.
Given a specific induction rule, it is often possible to apply it in several ways. Typically, we
want to examine the goal and select both the induction scheme and the way it to apply it simul-
taneously.

Isabelle already has some basic interactive machinery to select and apply induction schemes.
In this section we describe an extension to it (that universally quantifies non-induction vari-
ables) and present two techniques to automate the selection of variables and induction schemes.

Chapter 9. An Inductive Theorem Prover 150

Goal: G

Apply Induction

Step Cases:
lH -> G1Base Cases: B

Simplify

B’

Generalise and conjecture

Rippling

Rippled Goal:
lH -> G2

Try Strong Fertilisation

Solved!

Try Weak Fertilisation

IH -> G3

Try Simplify

Solved!

IH -> G4

Generalise and conjecture

Solved!

Figure 9.1: An illustration of the technique combining induction, rippling and the
generalisation and conjecturing of lemmas.

Chapter 9. An Inductive Theorem Prover 151

�
xy � z � x � y ´ z �

Induction on z

�
xy � 0 � x � y ´ 0 �

�
xy � z � x � y ´ z � ����
xy � s � z � � x � y ´ s � z ���

�
xy � f � n � � x � y ´ f � n ��� �3��
xy � lim � f � � x � y ´ lim � f ���

Simplification Rippling Simplification

Solved
�
xy � z � x � y ´ z � ������
xy � z �|� xy � x � y ´ z � y � Solved

Weak fertilise

�
xy � z � x � y ´ z � ���

x � y ´ z � � xy � x � y ´ z � y �

Conjecture a lemma

xv0 � xy � x � v0 � y �

Figure 9.2: Proof planning
�
xy � z � x � y ´ z � to the point where the conjecture xv0 � xy � x � v0 � y � is

speculated. This lemma will then be proof planned separately.

One is a naive approach that tries an induction scheme associated with the type of each variable
in the goal. This technique can be applied in as many ways as there are variables of inductive
type. The other approach is based on ripple analysis, which takes advantage of our rippling
machinery to look ahead into the proof and suggest a single induction rule. Finally, we consider
a reasoning technique that constructs part of a proof plan for inductive proofs.

9.4.1 Applying Induction Schemes in Isabelle

In Isabelle, induction schemes are theorems. For example, the theorem expressing the Peano
arithmetic induction is

�
?P 0; � n � ?P n ��� ?P

�
Suc n � � �3� ?P ?x. Isabelle’s datatype package

Chapter 9. An Inductive Theorem Prover 152

automatically derives such induction schemes from the definitions of recursive datatypes. The
user can also derive additional induction schemes manually.

To apply these induction rules, Isabelle provides some basic machinery in the form of an
induction tactic. This takes as parameters the variables on which induction is to be performed
and optionally the name of a specific induction scheme. If no induction scheme is given, it
uses the induction scheme associated with the variables inductive datatype as derived by the
datatype package.

The induction tactic is essentially a guided application of resolution. For example, the
above one-step Peano arithmetic induction rule can be applied directly using resolution to the
goal “a � b � b � a”. However, there are several possible instantiations of ?P, most of which
will not yield a proof. For instance if “?P � λx � x � b � a” then the resolution would leave the
new subgoals “0 � b � a” and “ � n � n � b � a ��� Suc n � b � a”. The first is clearly false and
thus the proof cannot be finished. Isabelle’s induction tactic allows the user to select a variable
on which to apply induction.1 It partially instantiates the induction rule allowing resolution to
then be used.

While Isabelle’s induction tactic is suitable for interactive use, for application within our
automated theorem prover, we require machinery that decides how to apply the induction
scheme automatically. Furthermore, Isabelle’s induction tactic provides a notion of induction
that is too weak. In particular, the variables on which induction is not applied are not uni-
versally quantified in the induction hypothesis. This means that they cannot be used as sinks
during rippling. This is needed for many proofs about tail recursive functions. For instance,
proving that the ‘quick’ tail recursive version of reverse, qrev, has the same effect on lists as the
traditional version, rev, is illustrated in Figure 9.3. For interactive proof, the user can manually
modify the conjecture to universally quantify non-inducted variables. For the automatic induc-
tive theorem proving, we have developed machinery to do this as well as select appropriate
induction schemes. We describe this in the following sections.

9.4.2 An Induction Tactic that Quantifies Non-Induction Variables

We now describe our tactic that automatically generalises the goal before induction is applied
in order to make all non-induction variables universally quantified. Like Isabelle’s existing tac-
tic, it takes as parameters the variable on which to perform induction and an optional induction

1Isabelle’s induction tactic also provides a special treatment of meta level assumptions, although this is redun-
dant when using Isar style of proofs where they are stated separately. The interested reader should consult the
Isabelle/HOL tutorial for further details [78].

Chapter 9. An Inductive Theorem Prover 153

- y � � rev
�

h :: x
.
��� @ / y 1µ� qrev

�
h :: x

.
�=/ y 1@@A forall introduction, we take a fixed y

�
rev

�
h :: x

.
��� @ / y 1µ� qrev

�
h :: x

.
�=/ y 1@@A using rev def

� �
rev x � @ 8 h 9

.
� @ / y 1µ� qrev

�
h :: x

.
�=/ y 1@@A using qrev def

� �
rev x � @ 8 h 9

.
� @ / y 1µ� qrev

�
x � � / h :: y 1G�@@A using assoc append

�
rev x � @ / ��8 h 9 @y �§1¶� qrev

�
x � � / h :: y 1F�@@A strong fertilisation with the induction hypothesis.

Figure 9.3: The step case in the proof of “- x y � � rev x � @y � qrev x y” where in-
duction on x yields the induction hypothesis “- y � � rev x � @y � qrev x y” in which
x is fixed. This example proof shows the need to universally quantify at the object
level the non-induction variables in order to have sinks to push wave front into.
Treating non-induction variables as arbitrary but fixed values results in the weaker
induction hypothesis “

�
rev x � @y � qrev x y” with fixed x and y. This is not suffi-

cient to prove the above goal as the final strong fertilisation step requires y to be
universally quantified. The rippling proof also uses this to guide wave fronts into
sinks.

scheme. Our tactic simply performs some initial steps before employing Isabelle’s existing in-
duction tactic. In particular, it examines the free variables and fixed parameters and transforms
the goal into one where all free parameters on which induction is not applied are universally
quantified. This involves the three steps:

1. The first step for this tactic is to calculate all non-induction variables (ȳ). This is a simple
operation done by comparing the variables in the goal with those on which induction is
being applied.

2. We then use these variable names to create a trivial implication theorem based on the
subgoal where the non-induction variables are universally quantified. In this theorem’s

Chapter 9. An Inductive Theorem Prover 154

Initial proof state
� ����� ;Gs

8
ȳ 9 ; ����� � ��� Gc

Trivial
� ³

ȳ � Gs
8
ȳ 9(�3��� � ³

ȳ � Gs
8
ȳ 9(�

Instantiation� ³
ȳ � Gs

8
ȳ 9(����� Gs

8
ȳ 9

Implication elimination� ����� ; ³ ȳ � Gs
8
ȳ 9 ; ����� � ��� Gc

Figure 9.4: The proof schema to generalise a goal for induction by placing univer-
sal quantifiers over all non-induction variables (ȳ). The term Gc is the main goal
being proved and Gs is the subgoal being considered.

conclusion, the universally quantified variables are then instantiated to their correspond-
ing free variables from the original goal.

3. This is then used to solve the subgoal it was constructed from which leaves as a new
subgoal a version of the original goal where all non-induction variables are universally
quantified.

The tactic that performs these steps is illustrated in Figure 9.4.
Having carried out these steps, we then employ Isabelle’s existing induction tactic. Because

non-induction variables are now universally quantified in the induction hypothesis, they can be
treated as sinks for rippling. For interactive use, this is also convenient as it saves the user from
having to modify the initial conjecture.

To use the induction tactic in proof planning, we provide an interpretable description of
induction following the approach described in Chapter 6. The data that this interpretable Isar
method holds is simply the variable(s) to perform induction on and the optional scheme to
employ.

9.4.3 Naive Selection of Induction Schemes

A simple approach to the selection and application of induction schemes is to invoke the tactic
described in the previous section on every free variable in the goal. This uses the induction
scheme associated with each variable of inductive type. This results in a possible application
for each variable on which induction can be performed. This naive approach is surprisingly
effective as we reported in [37, 38]. More detailed results in comparison with λClam are pre-
sented in Chapter 10.

Chapter 9. An Inductive Theorem Prover 155

9.4.4 Ripple Analysis

While our naive approach works well for many cases, many proofs require the use of induc-
tion schemes more complex than those associated with the inductive types. For example, the
proof shown in Figure 9.5 requires a two step induction rule for Peano Arithmetic. A more
sophisticated approach to the selection of induction schemes is called ripple analysis and was
suggested by Bundy et al [17, 18]. The basic idea is to look ahead into the rippling proof of
each possible induction scheme and select the one that is most promising. This is measured by
the number of wave fronts that can be moved in one step of rippling.

Ripple analysis has many extensions, most notably it was used by Gow in the Dynamis
system to automatically derive suitable induction schemes during the proof attempt [44]. A
simpler approach is to select an induction scheme from a predefined set. This was used in
the PhD project of Kraan [60, 61] and implemented in the Periwinkle system. Implementing
ripple analysis in IsaPlanner has been left as further work. However, we note that given the
well-developed state of the rippling machinery this should be fairly strait foward.

One question which arises from the use of ripple analysis concerns the treatment of the less
favourable induction schemes. In particular, should their application(s) be pruned out of the
search space or just examined later. In the Clam system, the other branches of the search space
were pruned and induction revision critics were employed to later change the chosen induction
scheme. However, it is unclear how well this works in practice. Performing experiments to
answer such questions is left as further work.

9.4.5 Other Approaches to the Selection of Induction Schemes

Perhaps the best known approach to the selection and construction of customised induction
rules is recursion analysis which is due to Boyer and Moore and has been implemented in
Nqthm [11,12] and more recently in ACL2 [57]. This approach involves identifying recursively
defined functions in the conjecture and combining their corresponding induction rules. They
have developed techniques for merging the induction schemes into a single rule that subsumes
the ones its was constructed from. The basic heuristic underlying recursion analysis is to choose
an induction hypothesis that contains the same destructor functions as the recursive definitions.
This increases the chances of being able to apply the induction hypothesis after unfolding the
definitions.

A variation of recursion analysis that uses a different technique for merging induction rules
has been proposed by Walther [100]. As well as approaches based on a finite set of explicit

Chapter 9. An Inductive Theorem Prover 156

induction rules, there are also approaches to the dynamic construction of induction rules dur-
ing proof search. Of most relevance to our work is that of Gow [44] mentioned earlier. His
approach attempts to derive the induction scheme during rippling using the annotations to aid
both rippling and the derivation of the induction scheme. This allows a specific induction rule
to be derived for the conjecture at hand. The interested reader should examine his work for
further details. Another promising approach to the construction of induction rules during proof
search has been proposed by Brotherston [13]. This performs proof search with case analysis
and observes the proof process to identify cycles. However, the strength of the cyclic system he
presents has not yet been proved to be equivalent to the use of an explicit induction schemes.

9.4.6 The Proof Planning Induction Technique

We now describe how the tactic machinery described above can be used to provide a proof
planning technique that constructs part of an Isar proof script for an inductive proof attempt.

Our induction technique does not require any special purpose contextual information to be
held by the proof planner. However, it does make use of the induction rules held by the datatype
package. This information is from the current theory information.

Induction schemes can be applied in both the procedural and declarative styles of writing
Isar proof scripts. Our technique that implements induction for the procedural apply-style is
trivial as the proof plan simply needs to be augmented with a single line:

apply induct rule select rst = PPLANOP (add apply (rule select rst)) rst

This technique takes as a parameter the function that selects which induction scheme to apply.
The rule select function returns an interpretable method that applies the induction scheme.
For instance, this can be naive selection or ripple analysis, described earlier. The proof plan
modification function add apply simply adds the Isar command “apply M” where M is our
Isar method to apply the induction scheme. Recall from chapter 3, that the PPLANOP takes a
function on proof plans and produces a reasoning technique that modifies the proof plan.

When employing the declarative Isar style of proof, we adopt a different approach to proof
plan construction. The Isar style uses the proof construct to perform a backward step. This
also changes from Isar’s proof mode to state mode. We can then construct the appropriate
context and introduce gaps:

induct proof rule select r rst =

(add proof (rule select rst))

Chapter 9. An Inductive Theorem Prover 157

lemma "Even(x + y) · Even (y + z) ¸D¹ Even(x + z)"

proof (induct "x" rule: two_step_induct)

show "Even (0 + y) · Even (y + z) ¸E¹ Even (0 + z)" gap
next

show "Even (Suc 0 + y) · Even (y + z) ¸D¹ Even (Suc 0 + z)" gap
next

fix n

assume "Even (n + y) · Even (y + z) ¸D¹ Even (n + z)"

show "Even (Suc (Suc n) + y) · Even (y + z)

¸7¹ Even (Suc (Suc n) + z)" gap
qed

Figure 9.5: An Isar style proof script for the transitivity of even with respect to
addition. This has gaps for the subgoals after induction is applied. The proof script
uses the induction scheme “

�
?P 0; ?P

�
Suc 0 � ; � n � ?P n ��� ?P

�
Suc
�
Suc n ��� � ���

?P ?x” to perform induction as a backward step using the proof command with
the induction tactic that instantiates “?x” in the induction rule to the free variable
“x”.

|> ((REPEAT UNTIL solved (incontext r))

THEN (add qed NONE))

Again we take as a parameter a function rule select which selects a method to perform in-
duction. The reasoning technique incontext creates the Isar script that builds up the context
by fixing parameters and assuming assumptions. It takes as an argument an a reasoning tech-
nique which it uses to prove the remaining goals. The function solved is true when all goals
in a block have been solved. As introduced in chapter 3, REPEAT UNTIL applies the technique
until the condition function (in this case solved) is true. The technique add qed simply adds
the Isar qed command to the proof script which ends the proof block. For example, Figure 9.5
shows the Isar script generated when proving “Even

�
x � y �]� Even

�
y � z �º�3� Even

�
x � z � ”

using a simple technique that inserts gaps.

9.5 Simplification

We make use of Isabelle’s powerful existing simplification machinery by wrapping-up the tactic
as an IsaPlanner technique. We use the OFMETH function described in Chapter 6 to support

Chapter 9. An Inductive Theorem Prover 158

exploratory backward proof steps. This involves providing an interpretable method to capture
the simplification tactic and its possible arguments. We also provide an interpretable attribute
for locally adding theorems to the simplification set.

The simplifier supports conditional rules and uses higher order matching to apply them. It
is written following the LCF style and thus is a conservative extension of Isabelle. The user
is responsible for configuring the simplifier. This involves providing it with theorems to use
as simplification rules. Some rules, such as recursive definitions, are given to the simplifier
automatically. However, the machinery does not check for possible non-termination in the set
of rules: this is the user’s responsibility.

The simplifier also incorporates decision procedures and can be extended with new ones.
This makes it a very powerful and useful tool. The interested reader should consult the Isabelle
tutorial [78] for further details. We remark that the ability to make use of tactics implemented
in Isabelle, such as the simplifier, comes from the interleaving of the proof plan’s execution
with its construction. This is a salient benefit of our approach-to and representation-of proof
plans.

As well as setting up the set of simplification rules, the user can specify how assumptions
are dealt with. In particular, assumptions can be applied to the conclusion as well as each
other. As mentioned in Chapter 6, the normal application of simplification is not stable over
chained results. In particular, if a goal is reduced to a subgoal by simplification, a proof of the
subgoal cannot safely be chained to solve the goal by simplification, this is because it may use
the chained result as an assumption to rewrite the main goal, which can inadvertently cause
the simplifier to behave differently. For safe usage with chained results, simplification must be
applied with the explicit option to stop it from using assumptions to rewrite the goal.

Simplification is an essential part of our proof machinery and, as shown in the Chapter 10,
can be combined with generalisation and lemma conjecturing to provide a powerful proof tech-
nique without requiring any rippling machinery.

9.6 Rippling in IsaPlanner

The guiding motivation for our development of rippling is to provide a generic implementation
for Isabelle that supports experimentation. In Chapter 7, we introduced a general formalism
that is able to express many varieties of rippling. We also noted various modifications to rip-
pling and choices open to an implementation. In this section, we describe the framework in
IsaPlanner that allows us to implement these choices and experimentally compare them.

Chapter 9. An Inductive Theorem Prover 159

Following the approach we outlined in Chapter 3, we separate rippling into interpretable
information that can be used by proof critics and the functional component that describes the
behaviour of the technique. The idea behind dynamic rippling is independent of underlying
logic. The general strategy is to rewrite the goal in a measure decreasing manner until it is
blocked. The main work that must be done is to manage the annotations and measures. This is
done by the contextual information for rippling which also functions as the interface available
to proof critics.

The rules to be used by rippling are held by the theory data and can thus be defined in a
general, or domain specific manner. We provide Isar attributes to add theorems to the theorem’s
set of wave rules. Following our suggestion in Chapter 7, by default, we filter out any which
are frequently applicable but never helpful to rippling, such as the rewrite x � x � 0. To allow
experimentation with wave rule sets we also allow the user to force the addition of a theorem
to this set, ignoring the filter, as well as remove them. We use Isabelle’s existing indexed term
nets to provide machinery that quickly select rules that match or unify with a given goal.

During rippling, equations are applied using our equational reasoning tactic. We note that
the separation of the search function from the actual rewriting in this tactic allows rewriting
arbitrary redexes without having to re-perform the search. We can simply provide the matching
information directly to the tactic.

Identifying when Rippling is Blocked

We do not enforce the traditional view of rippling as being blocked when no further rules apply.
This is because, as noted earlier, the traditional measure would result in pushing all wave fronts
inwards even if they were previously rippled out maximally. Thus rippling out would rarely be
used to suggest a lemma and as a result many proofs cannot be found.

It might be thought that eagerly checking for fertilisation would easily maintain the tradi-
tional story. However, this increases the size of the search space significantly. Furthermore,
when rippling-out is blocked but fertilisation is not possible, then rippling-in will continue,
despite it usually being desirable to try conjecturing a lemma.

Another approach is to perform two kinds of rippling, one for rippling-outward and another
for rippling outward then inward. However this results in the rippling-out search space being
explored twice.

To allow experimentation with the various approaches, we give the contextual information
for rippling the power to identify when rippling is blocked. An advantage of this is that it allows

Chapter 9. An Inductive Theorem Prover 160

us to parameterise the rippling reasoning technique in terms of only the contextual information.
This makes it easy to experiment with variations to rippling: we only need to modify aspects
of the contextual information. The code for the rippling technique remains unchanged.

Contextual Information for Rippling

We further modularise the rippling contextual information to allow different treatments of the
skeleton and various rippling measures. The contextual information for rippling holds a list of
skeletons. For each skeleton there is list of embeddings and for each embedding there is a list of
possible measures. Additionally, in order to identify when rippling is blocked, the contextual
information holds a list of applicable methods. These represent the possible ways to apply
theorems. Each time a step of rippling is performed the next applicable measure-decreasing
rules are computed.

To implement this modularised version of rippling, we provide a signature for working with
measures of an embedding. This allows many of the choices in an implementation of rippling
to be localised to that module. To manage the possible embeddings of a skeleton we define a
functor in terms of the measure module. This allows choices such as the grouping of multiple
embeddings to be made largely independent of the measure used. The hierarchy of modules is
shown in Figure 9.6. This figure also shows the choices currently available within each module
in our implementation of rippling.

The skeleton/embedding management holds the current annotations associated with each
skeleton. It provides an update function that is given a new goal and computes the valid embed-
dings and corresponding measures. Because each skeleton can potentially be used in several
ways to annotate a goal, the update function results in a list of possible new associations. This
corresponds to a branch in the rippling search space based on different possible annotations.
This allows us to implement both the approach to rippling that holds all embeddings in each
reasoning state, as well as the one that searches over different annotations, as is done in the
traditional implementations of static rippling.

The contextual information manages the possibility of multiple skeletons. Each skeleton
can annotate a goal differently, and thus when there are several skeletons, to model the tra-
ditional approach to rippling, we consider each combination of ways of annotating skeletons.
We also implement a version that uses our proposed approach which holds all annotations
for a skeleton at once. In this case the update function results in a singleton list when some
embedding is possible and in the empty list otherwise.

Chapter 9. An Inductive Theorem Prover 161

Rippling Technique

Contextual Information

Skeleton/Embedding
Management

Measures

b. Weighted sum or sum of distances

a. Directed or undirected list measure

- Separate or grouped embeddings

- Inward sink restriction

1. HO or FO depths and term distances

Figure 9.6: An illustration of the data hierarchy used by the rippling technique.
This shows the available choices to an implementation. See Chapter7 for further
details.

The Rippling Technique

Our version of rippling is written as a reasoning technique which uses the rippling contex-
tual information. The technique is parameterised on a list of theorems which are used as the
skeletons. It then has three stages:

1. Setup: Using the given set of skeletons rippling creates an initial list of embeddings and
measures. These correspond to the possible rippling annotations.

2. Ripple Steps: Theorems in the wave rule set are used to transform the goal. Note that the
order in which the rules are applied is irrelevant as the rewriting process is guided by
the rippling measure. After each successful rule application, a new set of annotations is
created. When several rules can be applied, or even a rule can be applied in different
ways, this creates a branch in the search space.

3. Blocked: The contextual information for rippling identifies each state which it considers

Chapter 9. An Inductive Theorem Prover 162

blocked. These states have no continuation and can thus be viewed as the states resulting
from rippling.

We can express this technique to perform rippling as follows:

ripple step rst = flat (map (update ripple states rst) (ripple methods of rst))

rippling =

setup rippling THEN

(REPEAT UNTIL blocked ripple step)

where the function ripple methods of returns the applicable Isar methods that will be used
for rippling and update ripple states takes a reasoning state and one of these methods
which it uses to rewrite the top goal. The function update ripple states results in the
possible valid reasoning states using the contextual information’s update function. These cor-
respond to the possible ways of annotating the result of applying the method. Conceptually the
ripple step function can be summarised as performing a single step of rewriting and results
in new states which correspond to the possible measure decreasing annotations. Rippling is
then defined as the repeated application of these ripple steps. This repetition stops when a rea-
soning state’s contextual information considers rippling to be blocked. This is identified by the
blocked function.

9.7 Caching Exploration

One of the most significant factors that make modern first order provers efficient is their use of
caching intermediate results. It is thus surprising to find this rarely mentioned or implemented
in the domain of inductive theorem proving. Furthermore, in practice we find that caching
proof attempts makes a significant improvement on the speed of the prover.

In particular, we can provide a generic notion for caching the states explored during ex-
ploration. We do this by providing a technique function cache that takes as an argument a
technique that performs some exploration and results in a technique that performs the same
exploration, but prunes states that result in the same open goals. This is useful for avoiding
symmetries in the search space and also helps avoid some non-terminating branches of the
search space.

This is implemented using the map function over the given technique with an extra param-
eter that is a reference to a term net that holds the cached proof states:

Chapter 9. An Inductive Theorem Prover 163

CACHE r = MAP (cache update (ref empty cache)) r

where the empty cache is an empty term net and ref creates a reference to it. To ensure
that we compare goals in a uniform manner all open goals are composed together using a
canonical ordering on terms. Using a reference variable for the cache allows it to be shared
across branches in the search space. We then map the function cache update which adds the
proof state to the cache. If the goal is already in the cache then the reasoning state is modified
to have no continuation. This effectively prunes the search space. Because caching simply
involves applying the cache functional, it is easy to integrate with existing techniques such as
rippling.

This operation only preserves relative completeness of the technique it is applied to if that
technique behaves in the same way on the same proof state in different or-branches. This is true
for repeated applications of simple techniques. However, for more complex ones like rippling,
we also need to account for the non-logical information, such as the measure. In particular, to
preserve relative completeness we need make sure that search is continued from the reasoning
state with the subsuming constraint. For rippling that is the one with the worst measure.

We note that this caching technique shows a practical application of the MAP function that
is unique to our approach to proof planning. In other systems, such as λClam and Omega,
implementing caching such as this would require modification to the proof planner and even
then it cannot easily be associated to the application of a specific method. This shows that
having a rich language for combining techniques offers flexibility in writing them that can lead
to simple implementations of otherwise complex behaviour.

9.8 Fertilisation

As described in Chapter 7, the term fertilisation describes the application of the inductive
hypothesis. When the goal is an instance of the induction hypothesis it can be solved directly
by resolution using Isabelle/Isar’s rule method. This is called strong fertilisation. When
the induction hypothesis is an equation and strong fertilisation is not applicable, it is often
still possible to perform substitution using the hypothesis. This is called weak fertilisation.
For example, in a proof with induction hypothesis a � b � b � a we arrive at the subgoal
Suc
�
a � b ��� b � Suc a. At this point, we can use the hypothesis to rewrite this to Suc

�
b � a �X�

b � Suc a. As has been remarked by Bundy et al. [17], as well as by many others, such steps
often introduce common subterms that can be generalised to make fruitful conjectures.

Chapter 9. An Inductive Theorem Prover 164

We remark that even when no such common subterm is generalised, it is useful to conjec-
ture the remaining subgoal as a lemma. We can see why this is the case by considering the
heuristic that motivates rippling. Namely to reduce our goal to an instance of the induction
hypothesis. In particular, consider the schematic example of attempting to prove l a � r a.
This gives a step case of the form l

�
c a
.
��� r

�
c a
.
� . After rippling, weak fertilisation can

be possible one of the following ways, where we use l � and l � � to indicate subterms of l, and
similarly r � and r � � for subterms of r:

1. Substitute in the left hand side of the goal:

l � � f
�
l a �

.
��� r � � g

�
r � � a �

.
�

@@A using the hypothesis from left to right

l � � f
�
r a �

.
��� r � � g

�
r � � a �

.
�

2. Substitute in the left hand side of the goal:

l � � f
�
r a �

.
��� r � � g

�
r � � a �

.
�

@@A using the hypothesis from right to left

l � � f
�
l a �

.
��� r � � g

�
r � � a �

.
�

3. Substitute in the right hand side of the goal:

l � � f
�
l � � a �

.
��� r � � g

�
r a �

.
�

@@A using the hypothesis from right to left

l � � f
�
l � � a �

.
��� r � � g

�
l a �

.
�

4. Substitute in the right hand side of the goal:

l � � f
�
l � � a �

.
��� r � � g

�
l a �

.
�

@@A using the hypothesis from left to right

l � � f
�
l � � a �

.
��� r � � g

�
r a �

.
�

We use f and g to indicate some intermediate term structure that blocked rippling.
The third and fourth cases are symmetrical to the first and second, thus it suffices to examine

only the first and second cases. In the first case, if we had the resulting fertilised goal as a wave

Chapter 9. An Inductive Theorem Prover 165

rule, then instead of rippling getting blocked, it would be able to ripple-out the right hand side
as follows:

l � � f
�
l a �

.
�3� r � � g

�
r � � a �

.
�

@@A
l � � f

�
l a �

.
�3� l � � f

�
r a �

.
�

This is clearly a rippling out step as we now have a complete version of the right hand side
within a wave front. Furthermore, if the function λx � l � � f x � is injective, then this goal can be
directly reduced to the induction hypothesis l a � r a, allowing strong fertilisation. Even if it
is not a injective function, because we are working in an extensional framework, we can then
apply weak fertilisation to reduce the subgoal to an instance of reflexivity. In this sense, for the
first case of weak fertilisation, the conjecture can be seen as a suggested ripple rule. We can
see from the rippling heuristic why it is beneficial.

Interestingly, such an argument cannot be made for the second case of weak fertilisation.
We illustrate this using a concrete example from the proof of a � 0 � 0. The step case ripples to
Suc

�
a � 0 ��� 0. At this point three of the four possible weak fertilisations are applicable. The

example corresponding to the second case would be to rewrite the goal to Suc
�
a � � a � 0 ����� 0.

Even if this was given as a wave rule to rippling before hand, it would still not help the proof
attempt. In this way we can see that the second case of weak fertilisation does not have an
interpretation in terms of a benefit to rippling. Furthermore, in practice we have found that
such generalisations do not help the proof attempt. This is the motivation for the heuristic that
weak fertilisation should only be applied in the first way (and by symmetry in the third).

9.9 Conjecturing Lemmas

We now introduce the motivation for, and machinery to manage, the conjecturing of lemmas.
From a logical perspective, the conjecturing of an intermediate lemma, A, can be seen as an
instance of the cut rule:

A � Γ » ∆ Γ » A
Cut

Γ » ∆

In an inductive theory, the failure of cut-elimination [62], means that automatic provers must
sometimes conjecture lemmas. Similarly to the case of choosing an induction scheme, this

Chapter 9. An Inductive Theorem Prover 166

requires the prover to employ heuristics in order to manage the infinite branching in the search
space.

We observe that the process of conjecturing a lemmas is closely related to its subsequent
application. The two need to be closely related. For example, consider the goal as a � � b � c �e�
a � � c � b � which, in an extensional logic such that used by Isabelle, can be generalised to the
commutativity of addition (x � y � y � x). However, this commutativity rule can be applied
in several ways, for instance it could be used to rewrite the original goal to

�
b � c �<� a �

a � � c � b � . However, this would not prove the goal. For this example, the generalisation of
the subgoal follows from the argument congruence rule ?x � ?y ��� ? f ?x � ? f ?y. Because the
generalisation is made using argument congruence, once the generalised lemma is proved, it
should be applied using argument congruence, not substitution.

The conjecturing and application of lemmas can be specific to a logic. Thus the process
needs to be parameterised in terms of the logic-dependent characteristics. We enable this by
defining the process of lemma conjecturing in terms of a logic-independent signature which
contains:

� a type, lemmainfo for holding information regarding how the lemma was conjectured.
This can then be used to apply the lemma in the way that corresponds to the way it was
conjectured.

� a function conjecture which is given a subgoal term and results in a new term to be
conjectured as well as an an object of type lemmainfo.

� a function lemma dmeth which creates an interpretable method to apply a proved lemma
using an object of type lemmainfo.

In practice, the conjecturing of lemmas is frequently needed. Furthermore, this is one
of the hardest aspect of automated inductive theorem proving. Initial approaches have to the
conjecturing of lemmas has been described by Ireland et al. His approach uses proof critics
for rippling that are designed to patch failed proof attempt [52]. In her PhD thesis, Kraan
has examined various forms of generalisation [60]. Maclean has extended this study in his
Masters thesis [65]. An interesting observation from this work is that the employing many
kinds of lemma speculation and generalisation do not necessarily benefit the proof attempt. In
particular, considering many kinds of lemma speculation can significantly increase the size of
the search space. Common subterm generalisation is one of the most successful approaches.
Thus we have focused on implementing this for our inductive prover. We also combine this

Chapter 9. An Inductive Theorem Prover 167

with the argument congruence generalisation described above. Exploring other kinds of lemma
speculation and generalisation is left as further work.

9.10 Common Subterm Generalisation

As mentioned above, one of the simplest kinds of generalisations is to replace common sub-
terms with fresh free variables. It was initially proposed by Boyer and Moore and implemented
in their original prover and more recently in ACL2. We have adapted this for a higher order
setting. We observe that making common subterm generalisations can involve choice and thus
provide machinery to navigate the possibilities. This provides a framework for making such
generalisations.

Higher Order Generalisations

The idea behind common subterm generalisations is to conjecture a lemma that has variables at
the locations where the same subterm occurs in the original goal. In a higher order setting this is
complicated by the existence of bound variables and by terms which are syntactically different
but which can be normalised to become identical. Thus, searching for common subterms needs
to respect term-convertibility. The inter-convertibility of HOAS terms can be addressed by not-
ing that convertible terms denote the same object. Thus terms can be kept in β-η-contracted
form to arrive at a canonical representation. In particular, this allows us to ignore subterms that
will be removed or modified by β-contraction. We can then use α-conversion as our equiva-
lence check. When considering bound variables that are bound outside of the subterm we are
examining, we simply require them to correspond to the same binder.

The motivation behind this adaptation is simply that we want to replace common subterms
with variables and result in a generalised term. A proof of the generalised result should be
able to be instantiated to prove the original goal. This motivates us to consider generalisa-
tions that are syntactically identical to our original term after the appropriate instantiation, i.e
which do not require any further β-η-conversion. Without this restriction the set of possible
generalisations is significantly larger as it would consider terms which contain subterms that
would be removed by β-reduction. Our restriction is basically to conjecture generalisations in
β-η-normal form.

Chapter 9. An Inductive Theorem Prover 168

Choice in Subterm Selection

Given this simple adaptation of the notion of a common subterm generalisation which makes it
suitable for higher order settings, we can consider the choices available during generalisation.
In particular, we have to consider how much to generalise. An over-generalisation will result in
a conjecture that is not true. However, making an under-generalisation will result in a conjec-
ture that cannot be proved without further generalisation and can lead to significant increases
in the size of the search space.

Furthermore, there are often exclusive choices in generalisation. In particular, there are
tradeoffs between the number of occurrences of a subterm and the size of the subterm. For
example, consider the term R

�
f
�
g x �|� h � g x �|� f � g x ��� . The subterm g x occurs three times,

but the larger subterm f
�
g x � occurs twice. We must also decide on how many of the common

subterms should be generalised.
We were unable to think of theoretical reasons why one approach would be better than an-

other. Thus we developed a general framework for experimenting so that we could empirically
examine the result of different approaches.

The basic algorithm behind our machinery is to start off by considering all the leaves of the
term tree and grouping them into those that are identical. We then move up the term tree and
create the set of new α-equivalent groups. These correspond to common subterms. We use an
implementation of Huet’s zippers [47] to provide a practical way to move around terms while
preserving information about the context. This is needed in order to be able to move up the
term tree incrementally. In this way we can traverse the space of possible common subterms.
We then introduce filters to remove those that we are not interested in.

One theoretically motivated heuristic that we add to this process is to filter out generali-
sations of higher-order type. Such subterms would be generalised to functions. However, a
function does not offer new variables for induction. Thus we restrict the introduced generali-
sations to be of an inductive type. One remark that can be made of this is that introducing new
function symbols might still be useful as it will introduce new sinks. However, in practice it
tends to result in over generalisation.

A motivating example for common subterm generalisation is the proof of the distributivity
of addition over multiplication, which results in the following subgoal after weak fertilisation:

�
c � b
 c �D� a
 c � c � � b
 c � a
 c �

The correct lemma to generalise is the associativity of addition (
�
x � y �D� z � x � � y � z �),

Chapter 9. An Inductive Theorem Prover 169

where the subterms b � c and a
 c are generalised.
We found that making the maximal generalisation which has at more than one occurrence

was generally the best strategy. Furthermore, we found that making the most possible gen-
eralisations at once was also beneficial. At present we do not take care which order these
are performed in as conflicting possible generalisations occur rarely. A more refined heuristic
might be found by considering a domain where this happens more frequently. This is further
work. We note that in the examples we examined, making the maximal number of smallest gen-
eralisations would have resulted in the same behaviour. Investigating which strategy is better
requires examining other domains and is also left as further work.

9.11 Caching Conjectures

As well as caching proof states during exploration, we cache the result of proof attempts to
support the following efficiency heuristics:

1. If a conjecture is proved to be false, then the prover should not consider making this
conjecture again. Additionally, the any conjecture, of which the false one is an instance
of, should also be avoided.

2. If the search space for the proof of a conjecture is exhausted, then it seems reasonable
(and is useful in practice) to avoid making the same conjecture at a later point in proof
planning.

3. Once a lemma is successfully proved, if an instance of it is later conjectured, we should
re-use the found proof rather than re-proving it.

The cache of proof attempts is stored as contextual information. To allow this to be shared
between or-branches in the search space, we follow the approach set out in Chapter 3. In
particular, the contextual information holds a reference which allows different branches in the
search space to share the cache.

These heuristics are integrated with the lemma speculation and generalisation critic. In
particular, whenever a conjecture is made we perform a lookup in the cache. If it has previously
been proved, we reuse the existing proof. If it has previously been shown to be false or failed
to be proved, then we avoid making this conjecture. Whenever a conjecture is successfully
proved we add it to the cache. Similarly, whenever a conjecture fails to be proved, or when a
counter example is found, we also note this in the cache. We remark that using a global cache of

Chapter 9. An Inductive Theorem Prover 170

proved lemmas is difficult in systems such as λClam where backtracking removes such derived
information.

9.11.1 Subspaces for Efficient Lemma Search

In Chapter 3, we introduced the ENDSPACE function for techniques. This applies a function
when a particular part of the search space is exhausted. We now extend this notion to allow
the search space to also be affected as it is being explored. The motivation comes from the
following additional heuristics for the conjecturing of lemmas:

� if a conjecture is proved to be false, then the search space of possible alternative proofs
should be pruned.

� when a lemma is successfully proved, we do not search for alternative proofs.

This can be seen as another special case of the MAP function on techniques. In particular,
like the caching technique, it is a map operation over the search space where some information
is shared across or-branches. The information we share is about the the conjecture that has
been made. In particular, if it has been proved or shown to be false. In either of these cases, the
map function modifies alternative branches in the search space to prune further search.

9.11.2 Avoiding Loops

A common problem in many inductive theorem provers, such as ACL2, Clam and Lambda
Clam among many others, is that they fail to terminate for many proof attempts. This is prob-
lematic is the prover requires to backtrack in order to find the proof. Furthermore, from the
perspective of an interactive user this can make the systems extremely painful to use.

We found it essential for the behaviour and robustness of our proof technique to avoid non-
terminating branches of the search space. We do this by employing the embedding machinery
described in Chapter 7 also used for rippling to check if a previous goal of which the current
state is a subgoal of, embeds into the current subgoal. We slightly broaden this notion by
adding the proviso that the current subgoal also does not contain any constants that do not
occur in the main goal. From a theoretical point of view, Kruskal’s theorem shows that using
the embedding check to prune the search space will make it finite [63]. In particular, it states
that there is no infinite sequence of trees without an earlier tree embedding into a latter one.

This is implemented by providing a collection of goals that we have seen so far, and each
time a new goal should be considered, we check if one of the previous goals embeds into the

Chapter 9. An Inductive Theorem Prover 171

new goal and that the new goal contains no new constants. At present we hold the previous
goals as a list which makes the loop-checking become increasingly slow as the number of seen
goals increases. Further work includes the development of an embedding net to simultaneously
check against all the previously examined goals.

We note that we can also provide a version of this check for proof exploration such as
rippling. This can be implemented easily using the FOLD function of our reasoning technique
language. In particular, we fold the cache checking function over each path in the search space.
The cache checking function holds the goals we have seen so far and is used to check that a
new goal is not embedded into by an earlier one. This provides a much more effective way of
avoiding non-termination for exploration than using the caching described earlier. However,
because of the lack of a way to check against several goals simultaneously, it also incurs a
much higher cost in time as the proof depth increases.

Within our inductive prover we use the loop-checking to avoid loops in conjectures. This
simple mechanism is the essential tool that allows our inductive prover to terminate when
applied to non-theorems. It is also what allows false conjectures, or unsafe branches of the
search space to be backtracked over instead of falling into an infinite loop of conjecturing.

9.12 Related Work

We now related this inductive theorem proving technique to other systems.

The Boyer-Moore Prover and ACL2

Perhaps the best known prover is the Boyer-Moore prover [12], the latest version of which is
ACL2 [57]. These systems use recursion analysis for the selection of induction schemes and
then employ a carefully designed simplification tool followed by a version common subterm
generalisation. ACL2 also incorporates various decision procedures and many other heuristics
for unfolding definitions.

Recursion analysis enables it to prove theorems which require more complex induction
schemes. We note that incorporating a more powerful system to select induction schemes in
IsaPlanner is a simple extension of our technique and might significantly improve its perfor-
mance on these examples.

Another key difference in the strategies employed is that ACL2 and the Boyer-Moore
prover simplify the step cases of inductive proofs where we employ rippling. Rippling sup-

Chapter 9. An Inductive Theorem Prover 172

ports the incorporation of specialised proof critics. However, we have not implemented these,
so we cannot yet analyse the importance of these in practice. However, rippling does allow
rules to be used in both directions while ensuring termination. In terms of underlying logic,
our system is generic, where ACL2 is closely tied to their less expressive logic.

Perhaps the most notable difference in using ACL2 is that it rarely terminates for non-
theorems or for problems which it cannot prove. The machinery to avoid loops in IsaPlanner
allows it to behave more robustly. Another difference is that ACL2 avoids any explicit notion
of backtracking or representation of the search space. Modifying the proof machinery in ACL2
is difficult as it is large and complex. In contrast, the inductive theorem proving technique in
IsaPlanner is relatively simple to modify and very modular in design. An interesting difference
in the generalisation and conjecturing of lemmas is that ACL2 makes generalisation inline,
where IsaPlanner separates them as distinct results that can be reused.

Boyer-Moore Automation for HOL

Boulton has re-implemented the heuristics from the original Boyer-Moore prover within the
HOL system [10]. However, these are still only applicable to the first-order problems. The
implementation follows the design of the Boyer-Moore prover whcih uses a waterfall structure
and provides a single top level tactic that combines induction and simplification. The main
feature of this re-implementation is that, like our system, the steps are justified in terms of the
underlying proof system.

Clam and λClam

The inductive prover we have developed is based on that implemented in the Clam and λClam
systems. An important difference is within rippling, where we use a more expressive mecha-
nism for annotation and provide a number of efficiency measures. Additionally, we make use
of Isabelle’s induction and simplification tactics as well as provide caching for lemma specula-
tion.

Boulton and Slind [9] developed an interface between Clam and HOL. Unlike our approach
which tries to take advantage of the tactics in Isabelle, their interface did not use the tactics
developed in HOL as part of proof planning. Additionally, problems were limited to being first
order, whereas our approach is able to derive proof plans for higher order theorems.

Chapter 9. An Inductive Theorem Prover 173

INKA and NuPrl

A general notion of annotated rewriting has been developed by Hutter [48] and extended to
the setting of a higher order logic by Hutter and Kohlhase [49]. They develop a novel calculus
which contains annotations. This is a mixture between dynamic and static rippling as after each
rewrite skeleton preservation still needs to be checked, but the wave rules can be generated
beforehand.

A proof method that combines logical proof search and static rippling has been imple-
mented for the NuPrl system by Pietntka and Kreitz [87]. Their implementation is as a tactic
without proof critics and focuses on the incremental instantiation of meta variables. They em-
ploy a different measure based on the sum of the distances between wave fronts and sinks.

In Summary

A general salient feature of the technique presented in this chapter is that the proof plan’s
execution is interleaved with the proof planning attempt. This makes the final derived theorem
sound with respect to only Isabelle’s logical kernel.

This is in contrast to the implementation in λClam which does not have any object level
verification of the proof plans. The logical kernel is also significantly smaller than the trusted
code in ACL2. As such, the guarantee of soundness is closer to that provided by the NuPrl, the
HOL/Clam combination and the Boyer-Moore perover’s reimplementation in HOL. With re-
spect to these systems, as well as λClam our tactic provides a much more expressive framework
for experimentation proof planning techniques such as rippling. The implemented efficiency
measures also make it more significantly efficient than the Clam and λClam systems, as de-
tailed in Chapter 10

9.13 Evaluation and Further Work

We now present a brief sketch of the kinds of problems that our inductive strategy works well
for, and those for which it usually fails. This gives a direction for further work.

Success

As shown in chapter 10, our inductive proof techniques out perform λClam in terms of speed
and are roughly equivalent in terms of power. In particular, our techniques work well on prob-
lems that are equational, concern recursive functions, and contain recursively defined variables.

Chapter 9. An Inductive Theorem Prover 174

Failure

We have observed a number of situations when our inductive proof strategy fails:

Conjecturing the wrong lemma:

This typically happens when an over generalisation is made. One of the reasons for such
over generalisations is that we separate the induction hypothesis from the goal and thus when
conjecture is made before weak fertilisation, it does not include the induction hypothesis as
an assumption. This results in conjecturing a lemma that is too general. In many situations,
the conjecture is true only in the context of the assumption. Furthermore, in some situations
a common subterm generalisation needs to be made that includes a subterm in the induction
hypothesis.

Further work thus includes developing machinery to treat assumptions more effectively
during inductive proof. Another area of further work would be to use counter example finding
tools to prune the space of possible conjectures. As well as over generalisation, it is also
common for theorems to need more sophisticated generalisations. Developing such machinery
and investigating how to use it without blowing up the search space is also an interesting area
for further work.

Missing the right induction scheme:

Our machinery for selecting induction schemes only considers those that come from the recur-
sive types of variables in the conjecture. Whenever another induction scheme is needed, it must
be supplied by the user. Developments such as Gow’s [44] offer the possibility of proving a
custom induction scheme during the proof attempt. However, further work is needed to clarify
what effect they have on the search space.

Needing further case analysis:

When functions are defined using if-statements or case-statements, it is common for a case
split to be needed in proofs concerning them. However, at present the only time case analysis
is performed is by using induction. When induction does not split a variable in the appropriate
way then further case analysis is needed. However naively introducing case analysis creates a
huge blow-up in the search space. Ways to include selected case splitting would be a useful
area of further research.

Chapter 9. An Inductive Theorem Prover 175

Too large a search space:

The main branches points in the search space of our proof technique are within rippling and
during the selection and application of an induction scheme. The primary reason for rippling to
cause branches is that and-choices in rippling, such as the possibility to rippling the left hand
side and the right hand side of an equation, are currently considered as or-choices. Improving
the way rippling examines rewriting could significantly improve its behaviour. Using more
sophisticated mechanisms for the selection of induction schemes could also improve the size
of the search space. Another approach would be to experiment with other search strategies,
such as best first search. This would allow the use of heuristic approaches to the exploration of
the search space and could avoid getting stuck on a bad path which sometimes happens during
depth first search.

9.14 Conclusions

We have presented a technique to prove theorems by induction. It employs rippling, simpli-
fication and the conjecturing of lemmas. We also incorporate various caching and efficiency
measures as well as several heuristics. We note that these techniques make profitable use of the
FOLD and MAP functions in our technique language. This shows that the extra expressivity of
our technique language is useful in practice. More generally we find that writing techniques in
terms of operations on the search space is convenient. We see in Chapter 10 that these are also
empirically important for the efficiency of our inductive prover.

The contextual information is held in one store. This means that each kind of contextual
information must have a default value. Similarly to the construction of proof plans, a problem
with this is that it does not allow us to make use of ML’s type checking to ensure that contextual
information exists. Thus we cannot detect many errors at type-checking time. Trying to make
more use of type-checking for the writing techniques is left as further work.

The induction technique selects and applies an induction scheme based on the inductively
defined variables in the goal. Although there are various ways to select the variable for in-
duction, such as ripple analysis [17], we found that search backtracks quickly enough for the
choice of variable to be largely insignificant in the domains we examined. This is partially due
to the caching mechanism that allow proof planning to use a significant portion of the failed
proof attempt. For example, when proving i � j � k � � i j � ik in Peano arithmetic, wrongly trying
induction on i results in the proof of 3 of the 4 needed lemmas, and the only additional lemma

Chapter 9. An Inductive Theorem Prover 176

to prove is the trivial theorem x � 0 � x.

Chapter 10

Experiments with Rippling and our
Inductive Prover

In this chapter we perform experiments with our rippling machinery and techniques for induc-
tive theorem proving. These highlight the more effective varieties of rippling. The experiments
also show the importance of the representation of definitions on the ability to prove theorems.
We also compare our techniques with the λClam system to get a more general assessment of
our inductive prover’s utility. This shows that our work provides a powerful and efficient induc-
tive theorem prover and more generally that our proof planning framework provides a practical
tool for experimental research.

10.1 Introduction

In this chapter, we describe experiments with our inductive theorem prover and the rippling
machinery used within it. The general aim is to illustrate the utility of our proof planning
framework as a tool for performing experiments with proof planning techniques. Our evalua-
tion also provides empirical evidence as to which variety of rippling works best in practice. It
also highlights the importance of the representation when experimenting with techniques for
inductive proof.

Firstly, we evaluate the choices for an implementation of rippling within the context of our
inductive theorem prover. In particular, we consider various measures for rippling. We examine
the efficiency and power over different formalisations of Peano arithmetic that contain no extra
configuration or proved lemmas. This reflects the situation when a user starts a fresh theory

177

Chapter 10. Experiments with Rippling and our Inductive Prover 178

development with new definitions and recursive types. These experiments are used to select the
version of rippling that is the most effective, which we then examine further in the following
evaluations.

Our second evaluation is a comparison with the λClam system in the domain of ordinal
arithmetic. This gives a comparative study to analyse the relative efficiency of our prover. We
take care to use the same definitions in both systems.

10.2 Theories of Peano Arithmetic and Varieties of Rippling

We now describe an experiment which compares different versions of rippling on problems
in a variety of formalisations of Peano arithmetic. The goal is to ascertain which version of
rippling performs most effectively in terms of the number of theorems proved and how quickly
it terminates.

We first introduce the methodology, background theories and problem set. We then describe
the variations of rippling which we experiment with. Finally, we present the results and analyse
them.

10.2.1 Methodology

The goal of these experiments is to find which version of rippling is best for the automation of
inductive proof. We carry out our experiments in the domain of Peano arithmetic, although the
methodology could easily be employed for other domains. A secondary goal of this experiment
is to examine the effect of the formalisation on the ease of automation.

Non-theorems

We consider the performance on non-theorems to be important because it is common for users
to make errors in definitions or conjectures which can cause them to spend significant effort
trying to prove non-theorems.

To create a test set of non-theorems we analysed errors, including copy and paste errors, that
we made in theory development. We observed that these can be reproduced by systematically
transforming theorems into non-theorems. In particular, we can modify variables and constants
to create terms that are similar to existing theorems but which not true in the theory. For
example, from the theorem a � 0 � a in Peano arithmetic, we get the non-theorems a � 0 � 0
and a
 0 � a. We also perform variable renaming, thus from the distributivity of addition

Chapter 10. Experiments with Rippling and our Inductive Prover 179

over multiplication, we get non-theorems such as a
 � b � c ��� c
 b � c
 a and a
 � b � c ���
c
 b � c
 a.

This provides us with a large set of non-theorems many of which occurred in practice and
many of which we believe could feasibly be made in interactive developments. However, we
note that these may be biased due to the kinds of errors we make within the domains examined.
A more systematic and wider study of non-theorems would be of interest and could help guide
the development of proof techniques.

Measures

To measure the quality of a version of rippling, on a problem in a given theory, we consider
the time taken and whether or not the conjecture was proved. We also distinguish non-theorem
from theorems which gives us one of the following measurements for each problem:

� the time to prove a theorem, or

� the time to give up when a theorem cannot be proved, or

� the time taken to give up on a non-theorem.

We put an upper limit of five seconds on the time. This is in order to get a concrete value for
cases when the proof technique fails to terminate. This also reflects the behaviour of users in
an interactive setting. They are likely to cancel proof attempts that take too long. The timings
are obtained from a standard 2GHz Intel PC with 512MB of RAM, using the development
snapshot of Isabelle from the August 15 2005 with PolyML 4.1.3.

Techniques will often give-up when trying to prove a theorem, or non-theorem, before the
time-limit when the search space is exhausted. The speed of termination for cases when proofs
are not found is important as quick failure is a better result for the user than non-termination.
This motivates the measurement of time for failure.

The separation of timings for failed proof attempts between theorem and non-theorems is
because we expect counter-example finding tools to benefit the identification of non-theorems.
However such tools would not help when considering a theorem. Thus, from this separation,
we also get an idea of which timings could be improved by employing counter example finding
tools.

Chapter 10. Experiments with Rippling and our Inductive Prover 180

Background Theory and the Setup of Proof Tools

In this experiment we do not provide any background lemmas. This reflects the initial state of
a proof development and is thus a good indication of the level of automation that is provided
in a new theory. In many evaluations in the literature, techniques have only been evaluated
on a single formalisation of the domain. However, because formalisation offers the user many
choices in the way they define functions, which can affect the ease of automatic proof, we
believe that a more systematic study is needed. For this reason we consider many formalisations
of the same theory. In particular, we investigate the hypothesis that the formalisation has an
important effect on the ease of automation.

Closely related to the provision of lemmas is the setup of the existing proof tools. When
such machinery has a complex configuration, it poses a problem for evaluation: which setup
should be considered? To clarify the evaluation of our inductive theorem prover, we evaluate
it in theories with only Isabelle’s default setup of other proof tools which gives all recursive
definitions to the simplifier. Similarly, these definitions are also given to the rippling machinery.

This setup of background theories, with no lemmas and with the default setup of proof
tools, is common in theory development. It is exactly the configuration when a user starts a new
theory in Isabelle. This approach allows us to gauge the effectiveness of our rippling machinery
and inductive theorem prover on a new theory. Thus the results we get are indicative of using
our inductive prover in real formalisations.

10.2.2 Primitive Recursive Theories of Peano Arithmetic

Peano arithmetic describes the natural numbers in terms of a zero constant and a successor
function, which we characterise using the following datatype:

nat � 0

� Suc nat

We then define functions for addition, multiplication and exponentiation. However, in the
definition of these functions we are faced with choices. For now we only consider primitive
recursive definitions as this is the easiest way to define such functions in Isabelle. Even just
considering this definitional mechanism addition can be defined in four ways:

Chapter 10. Experiments with Rippling and our Inductive Prover 181

Definition 10.2.1:

0 � y � y
�
Suc x �7� y � Suc

�
x � y �

Definition 10.2.2:

x � 0 � y

x � � Suc y ��� Suc
�
x � y �

Definition 10.2.3:

0 � y � y
�
Suc x �7� y � x � � Suc y �

Definition 10.2.4:

x � 0 � y

x � � Suc y ��� � Suc x �7� y

Although these definitions can all be proved to be equivalent they do not provide the same be-
haviour for the automation of proof. For example, using definitions 10.2.1 and 10.2.2, the com-
mutativity of addition can be proved using only rippling-out, however using definitions 10.2.3
and 10.2.4 requires rippling-in. These differences in the success of a proof technique within
different formalisations of the same theory highlight the importance of evaluating techniques
over a variety of formalisations.

Multiplication can also be defined in four ways, given in appendix A. Exponentiation can
also be defined in different ways, although they are not all equivalent. In particular, the treat-
ment of 00 as either 0 or 1 is an exclusive choice which results in different theories. Following
the formalisation used in Isabelle, we consider only the case when x0 � 1. The exact definition
is given in appendix A.

10.2.3 The Problem Set

Even just considering the above choices for definitions, we have 32 formalisations of Peano
arithmetic. Within each of these, we consider theorems from the literature and those that have
been proved in Isabelle’s existing formalisation of Peano arithmetic, such as:

Chapter 10. Experiments with Rippling and our Inductive Prover 182

a � b � b � a

b � c � a � b � � c � a �
k
 � m � n ��� � k
 m �D� � k
 n �
�
m
 n �_
 k � m
 � n
 k �
x
 � y
 z ��� y
 � x
 z �

i � j � k � � i j
 ik

i � j � k � � � i j � k

For these theorems, we consider both left and right hand side cases of distributivity rules.
For instance, we examine both k
 � m � n �X� � k
 m �M� � k
 n � and

�
m � n �7
 k � � m
 k ��� � n
 k � .

This is to avoid biasing the problem set towards one theory, which may find one version easier
to prove than another. Thus, when we consider the effect of the formalisation, we initially only
exmaine results from this set of problems.

When testing techniques, we also consider various specialised versions of the above theo-
rems, such as:

0 � 0 � a � a
�
m � Suc 0 � n � Suc 0 ��� � m � n �

a � 0 � a � a � a
�
m
 Suc b �E
 k � m
 k � � m
 b �E
 k

i � j � k � l � � i j
 ik
 il

It is interesting to test such special cases of theorems because they can be more difficult
to solve as they require the correct generalisation to be made automatically. In practice, such
theorems can also arise as subgoals of other lemmas.

As mentioned earlier, we also test non-theorems, such as:

0 � a � 0

m
 n � m
 m
�
m � n �_
 k � � m � k �_
 � n � k �

Chapter 10. Experiments with Rippling and our Inductive Prover 183

The full list of theorems and non-theorems is given in appendix A.
Each version of Peano arithmetic provides a different context for the proof attempt, thereby

making each conjecture a different problem for each version of the theory. This results in a total
of 2944 problems to be tried with each technique. Although this may sound like a large problem
set, we note that these are all within the domain of equational theorems without premises. In
effect, this is still a relatively small domain. In order to provide a wider picture of the behaviour
of our techniques we suggest experimentation with other definitions, constants, and conjectures
as future work.

10.2.4 The Varieties of Rippling

We consider the following choices, introduced in chapter 7, for an implementation of rippling:

� Whether inward wave-fronts are restricted to occurring over sinks. The technique name
starts with R when the restriction on sinks is enforced, and with U when inward wave-
fronts are unrestricted.

� Whether a higher-order or first-order measure of depth is used. The second letter of the
technique name will be H and F respectively.

� Whether adjacent wave fronts are allows to have different directions. Technique names
will end with C, indicating that only compound wave fronts are allows, and S when wave-
fronts are split to allow different directions.

In addition to the 8 varieties of rippling that arise from these choices, we also consider a
measure, introduced in chapter 7, that counts the sum of the distances between wave fronts and
the top of the term tree or nearest sink. We will call this version of rippling dsum. The versions
that use the traditional list measure and which have the above choices are written with three
letters indicating the exact variation.

10.2.5 Results and Analysis of the Techniques

A summary table showing the results for each technique in terms of the timings and number of
theorem proved is given in Figure 10.1. This graph shows the average timing for the different
varieties of rippling on theorems and non-theorems. The number of theorems proved is shown
underneath the name of the technique. The techniques are ordered from left to right by the

Chapter 10. Experiments with Rippling and our Inductive Prover 184

Figure 10.1: The number of theorems proved and timings for the tested varieties of
rippling showing results on theorems and non-theorems.

number of theorem proved then by the average timing. We now consider different aspects of
these results in more detail.

We do not separate the timings for proofs of specialised-case theorems from the general
ones as the they are have approximately the same relationship.

The Best Variety of Rippling

A surprising result is that the simple heuristic measure, introduced in chapter 7, that counts
the distance from each wave front to the nearest sink, outperforms all the varieties of rippling
that use the list measure. In terms of power, it performs equally best with the RFS variety but
in terms of timing, it outperforms all other approaches. The reason for this is that the dsum

version of rippling has a smaller search space. What is surprising is that this search space does
not exclude any proofs that are within the varieties based on the list measure. This is a strong
indication that further work on the measure may lead to significant improvements in inductive
theorem proving.

Chapter 10. Experiments with Rippling and our Inductive Prover 185

The Inward Sink Restriction

We observe from the results that when the restriction on inward wave fronts occuring over sinks
is enforced, indicated by the technique name starting with “R” instead of “U”, the number of
theorems proved increases and the timing for proof attempts decreases. This shows that the
sink restriction provides an effective means to decrease the search space without losing proofs.
All techniques using the unrestricted version were slower and found fewer proofs.

From analysing the specific cases when techniques were able to prove results we note that
the unrestricted versions did not find any proofs that were missed by the restricted versions.
Part of the reason for this is that if the a technique is too slow, then the timeout will be reached
more frequently causing the technique to be considered to have failed. However, part of the
reason is also that different conjectures are made, which combined with depth first search can
lead to non-terminating branches in the search space. This causes the unrestricted version of
the technique to find fewer solutions.

This highlights an interesting feature of search space pruning: when the search strategy
will not cover the whole of the search space, either because of a timeout or incompleteness,
pruning the search space can result in introducing proofs. In the above experiments we used
depth first search, which is incomplete as well as a relatively short timeout. This motivates
experimentation with other search strategies, and further approaches to search space pruning,
which is left as an interesting avenue for further work.

First-order and Higher-order Measures of Depth

To view the effect of the different measurements of term depth, we re-order the entries in
the results bar chart so that each version with a first-order measure is next to the otherwise
equivalent variety with higher-order measure. This is shown in Figure 10.2.

This bar chart shows that our proposed measure for height in the term tree improves the
effectiveness of rippling: the varieties that use our first-order height measure are consistently
more powerful and quicker than those which use the higher-order measure. The speed improve-
ment is because the first order measure offers fewer ways to annotate a goal, and thus gives a
smaller search space. Because no proofs are lost, we conclude that using the first-order height
measure is a useful pruning of the search space.

Chapter 10. Experiments with Rippling and our Inductive Prover 186

Figure 10.2: The number of theorems proved and timings for list based techniques
grouped into pairs where the only difference is the use of first-order and higher-
order measures for depth in the term tree.

Compound and Split Wave Fronts

We present a view of the effect of the compound wave front restriction in Figure 10.3. In the
bar chart, the techniques have been reordered so that each variety with the restriction is next to
the otherwise equivalent version without it.

Interestingly, these results show that although the compound wave front restriction im-
proves the timings in all cases, there is a proof that is lost through disallowing adjacent wave
fronts to have different direction. In particular, this happens when proving i � j � k � � i j
 ik. With
the technique RFC, the proof attempt times out, but with RFS the problem is proved within 4
seconds. This shows that there are some proofs that with a limited time can be found by using
split wave fronts but which using compound wave fronts prunes. However, we note that given
more time, the technique RFC does find a proof.

Hierarchy of Technique Power

The charts presented earlier do not show if there are any proofs found by dsum not found by RFS

and visa-versa. It could be that the techniques solve different classes of problems. However,
examining the specific results in more detail showed that no such cases arise. Thus, the set of

Chapter 10. Experiments with Rippling and our Inductive Prover 187

Figure 10.3: The number of theorems proved and timings for list based techniques
grouped into pairs where the only difference is the use of the restriction to com-
pound wave fronts.

proofs found by dsum is identical to RFS. Furthermore, we examined the results to determine if
any weaker technique ever found a proof for a theorem that was not found by a more powerful
technique. This revealed that the power of the techniques shown in Figure 10.1 is strict in the
sense that the more powerful techniques can prove everything than the weaker ones can. There
was one one exception to this. The theorem x
 y
 z � x
 z
 y can be solved by RHS within
the time limit, but not by RHC. This is another example of where the the compound wave front
restriction prunes a proof from the search space. However, like the earlier example, the RHC

technique does find a proof if given more time. Apart from this special case, the results show
that the weaker varieties of rippling do not solve problems that more powerful one cannot.

Timings for Non-theorems

We note that average time for a proof attempt of a theorem is not significantly different to that
for a non-theorem. For the less restricted varieties of rippling the average time to tackle a non-
theorem is worse than a theorem, but for the more restricted varieties the inverse is the case.
However, this is likely to be a result of the problem set as both many non-theorems as well
as theorems reach the timeout. Thus the averages are reflective of the proportion of easy to
difficult cases. However, we can observe that the inward-sink restriction improves the time for

Chapter 10. Experiments with Rippling and our Inductive Prover 188

tackling non-theorems more than theorems. This is because for non-theorems the whole of the
search space must be exhausted before the technique will give up, but when a proof is found
the rest of the search space is not explored. Thus any modification to the proof technique that
exponentially cuts down the size of the search space will on average speed up the timing for
proof attempts of non-theorems more than theorems.

10.2.6 Results and Analysis of the Formalisation

The second variable which we examine is the effect of the formalisation on the difficulty of
the problem set. As mentioned earlier, for this analysis we only consider the set of general
theorems that were picked to be fair to the different formalisations. If we do not do this, then
the evaluation is of the problem set rather than the formalisation.

We consider the difficulty of a formalisation with respect to the number of theorems proved
within it and the time taken. We note that the formalisations that were more difficult for one
technique were also more difficult for the others. In this sense we found that the formalisations
were fair to all theories. This was expected as the techniques are fairly similar. This allows us
to define the difficulty of a formalisation in terms of the average number of techniques that can
solve a problem and the average time taken.

The difference in difficulty between formalisations

Given this measure of difficulty, the different formalisations of Peano arithmetic had significant
differences in difficulty. In terms of the number of theorems proved, problems in the easiest
formalisation were solved by an average of 84% of techniques. In contrast to this, within the
most difficult formalisation problems were solved by an average of 54% of techniques. The
best average time was 0.76 seconds per problem compared to a worst case of 1.5 seconds.
From these statistics we conclude that the formalisation has a significant effect of the difficulty
of proving theorems. Thus it is important for evaluating techniques to consider this issue.

Effective formalisations

We remark that our techniques were generally more effective, in terms of power and speed
when addition is defined so that the successor moves outwards rather than changing argument:
definitions 10.2.1 and 10.2.2 produce more proofs and generally result in smaller search spaces
than definitions 10.2.3 and 10.2.4.

Chapter 10. Experiments with Rippling and our Inductive Prover 189

The realtionship between ease of proof and speed of proof

Interestingly, the worst case for timings was not the theory in which least theorems could be
proved. This shows that there is a difference between some theories which are difficult, with
respect to our proof techniques, and others which are easier but require more work in the proof.
This is because, in some more difficult theories, techniques will give up on theorems more
quickly than they can prove them in the easier theories. The result of this is that we cannot
consider just measuring the time for proof attempts as this does not reflect the ability of a
technique to prove theorems within the domain.

10.3 A Brief Study in Ordinal Arithmetic and Comparison with
λClam

In this section we compare our inductive proof technique, using the dsum variety of rippling
which was found to be more effective, with λClam system. We perform this evaluation on the
domain of ordinal arithmetic as this was the case study for higher order rippling in λClam. This
involves a development of some ordinal arithmetic in Isabelle which also shows the utility of
our inductive prover for formalisation.

Following the methodology we introduced earlier, to distinguish the automation provided
by our techniques from that gained by working in the well-developed theories, the tests were
carried out in a formalisation without any auxiliary lemmas. All needed lemmas must be
conjectured and proved automatically. Also like the previous experiment, we used the default
setup of proof tools in Isabelle. The same approach is taken in the formalisation of ordinal
arithmetic in λClam.

10.3.1 A Theory of Ordinal Arithmetic

We now briefly describe our formalisation of ordinal arithmetic in Isabelle which follows that
implemented in λClam by Dennis and Smaill [35]. Ordinal notation is defined using the fol-
lowing datatype:

ordinal � 0

� Suc ordinal

� Lim
�
nat Y ordinal �

Chapter 10. Experiments with Rippling and our Inductive Prover 190

A feature of Isabelle is that the transfinite induction scheme for the ordinal notation is
automatically generated by the datatype package [93]. This is then automatically used by the
induction technique in IsaPlanner. The injectivity rule for ordinal notion is also automatically
proved and is thus be given directly to the rippling machinery.

The arithmetic operations on ordinals are defined using Isabelle’s primitive recursive pack-
age. For example, addition is defined as follows:

primrec
ord_add_0 : "(x + 0) = (x :: Ord)"

ord_add_Suc : "x + (Suc y) = Suc (x + y)"

ord_add_Lim : "x + (Lim f) = Lim (λn. x + (f n))"

The other arithmetic operations are defined and named similarly. See appendix B for com-
plete proof script. Using these definitions, the induction and rippling technique is able to derive
and produce Isabelle/Isar proof scripts for all the theorems proved in the work of Dennis and
Smaill. The theorem that takes longest to prove is the following:

theorem "x ˆ (y * z) = (x ˆ y) ˆ z"

proof (induct "z")

show "x ˆ (y * 0) = (x ˆ y) ˆ 0" by (simp)

next
fix Ord :: "Ord"

assume ind_hyp1: "x ˆ (y * Ord) = (x ˆ y) ˆ Ord"

have "x ˆ (y * Ord + y) = x ˆ (y * Ord) * x ˆ y" by (rule auto_lemma_0)

hence "x ˆ (y * Ord + y) = (x ˆ y) ˆ Ord * x ˆ y" by (subst sym[OF ind_hyp1])

hence "x ˆ (y * Ord + y) = (x ˆ y) ˆ Suc Ord" by (subst ord_exp_Suc)

thus "x ˆ (y * Suc Ord) = (x ˆ y) ˆ Suc Ord" by (subst ord_mul_Suc)

next
fix f :: "nat => Ord"

assume ind_hyp1: "!!xa. x ˆ (y * f xa) = (x ˆ y) ˆ f xa"

have "Lim (λn. (x ˆ y) ˆ f n) = Lim (λn. (x ˆ y) ˆ f n)" by (simp)

hence "Lim (λn. x ˆ (y * f n)) = Lim (λn. (x ˆ y) ˆ f n)" by (subst ind_hyp1)

hence "Lim (λn. x ˆ (y * f n)) = (x ˆ y) ˆ Lim f" by (subst ord_exp_Lim)

hence "x ˆ Lim (λn. y * f n) = (x ˆ y) ˆ Lim f" by (subst ord_exp_Lim)

thus "x ˆ (y * Lim f) = (x ˆ y) ˆ Lim f" by (subst ord_mul_Lim)

qed

In this proof script, the subst steps refer to the use of our fine grained equational reasoning tactic

Chapter 10. Experiments with Rippling and our Inductive Prover 191

described in chapter 8. The names ord exp Suc, ord exp Lim, ord mul Suc and ord mul Lim

are of the defining equations in the recursive definitions for exponentiation and multiplication.
Note that, for the above proof, the following needed lemmas are all automatically conjectured
and proved:

lemma auto_lemma_5: "g0 + (g2 + g1) = g0 + g2 + g1"

lemma auto_lemma_4: "g1 * g2 + g1 * g0 = g1 * (g2 + g0)"

lemma auto_lemma_3: "g1 * g0 * x = g1 * (g0 * x)"

lemma auto_lemma_1: "0 + g1 = g1"

lemma auto_lemma_0: "x ˆ (g0 + y) = x ˆ g0 * x ˆ y"

In these lemmas the variable names starting with g indicate that they were created from a
common-subterm generalisation. Proofs such as this one show the utility of using Isar as the
language for proof plans. It allows the proof plans to be presented and examined. Furthermore,
the Isar script representation of the plans can be copy-and-pasted directly into theory devel-
opments. The main difference between the proofs automatically generated by IsaPlanner and
the user-generated ones is that user’s scripts tends to prove the lemmas and add them to the
simplification machinery. This typical approach results in a series of proofs which just apply
induction then simplification. For example, the hand written proof script for the above theorem
is as follows:

lemma assoc add: "x � �
y � z �¤� �

x � y �;� z"
by (induct z, simp all)

lemma distr: "x
 y � x
 z � x
 � y � z � "
by (induct z, simp all add: assoc add)

lemma assoc mult: "
�
x
 y �¼
 � z :: Ord �}� x
 � y
 z � "

by (induct z, simp all add: distr)

lemma add zero2[simp]: "0 � x � x"
by (induct x, simp all)

lemma exp add: "x ˆ
�
y � z �¤� �

x ˆ y �¼
 � x ˆ z � "
by (induct z, simp all add: assoc mult)

Chapter 10. Experiments with Rippling and our Inductive Prover 192

theorem exp mult exp: "x ˆ
�
y
 z �¤� �

x ˆ y � ˆ z"
by (induct z, simp all add: exp add)

In comparison, the automatic rippling-based proof scripts are more verbose and explicitly
show where lemmas are used. They also require the user to provide some lemmas to the
simplification machinery by hand. For example, users usually do not provide associativity or
commutativity rules to the default simplification set. However, when re-ordering arguments
in an associative-commutative operator is needed they must then explicitly give the simplifier
the needed rule(s). When theorems can be proved by our inductive prover, such interaction
is not needed because the rules are conjectured and proved as they are needed. Furthermore,
our caching of proof attempts also frequently allows the prover to avoid the need to reprove
lemmas within the same proof attempt.

The proof planning machinery gives the user the choice of copying the generated proof
plans into their proof script to get more verbose scripts, or hiding the details within a single
command. Either way, the automation is significantly greater than that already present in Is-
abelle as the user is can directly prove the more difficult theorems without first configuring the
simplifier.

10.3.2 Comparison with λClam

As a comparison with λClam we observe that:

� λClam has specialised methods for various domains, such as non-standard analysis [67],
which provide it with the ability to prove some theorems not provable by IsaPlanner’s
default rippling machinery.

� IsaPlanner makes use of Isabelle’s tactics such as the simplifier which is user config-
urable and can be used to provide conditional rewriting for the base cases of inductive
proofs. This provides IsaPlanner with automation not implemented in λClam.

� IsaPlanner executes the proof plan, ensuring soundness of the result, where λClam is
currently not interfaced to an object level theorem prover.

� Higher order rippling in IsaPlanner appears to be significantly faster than in λClam. Sim-
ple theorems are solved in almost equivalent time but those with more complex proofs
involving lemmas are much quicker to plan and prove in IsaPlanner. For example, the

Chapter 10. Experiments with Rippling and our Inductive Prover 193

ordinal theorem x � y ´ z � � � xy � z takes over five minutes in λClam compared to 2 seconds in
IsaPlanner. We believe that this is largely due to our caching of intermediate results.

� The resulting proof plans from IsaPlanner are readable and clear whereas those produced
by λClam are difficult to read. For example, at present the proof plan generated by λClam
for the associativity of addition in Peano arithmetic is 12 pages long (without any line
breaks). The proof script generated by IsaPlanner is one page long and in the Isar style.

� Upon failure to prove a theorem, λClam does not give any helpful results, whereas Isa-
Planner is able to provide the user with proofs for useful auxiliary lemmas. For example,
upon trying to prove x � y ´ z � � � xy � z in Peano arithmetic, IsaPlanner conjectures and proves
13 lemmas, including the associativity and distributivity rules for multiplication.

We remark that some of the automatically conjectured and proved lemmas can be obtained
by simplification from previously generated ones. This shows a certain amount of redundancy
in the generated lemmas. In future work, we intend to prune these and identify those which are
of obvious use to the simplifier.

10.4 Conclusions

We have performed a novel study into the effectiveness of varieties of rippling. This has high-
lighted that an alternative measure, introduced in chapter 7, outperforms all traditional varieties
based on list-measures. We performed this study over a range of formalisations of Peano arith-
metic. This has shown the significant effect of the exact definitions used on the difficulty of
proof for our inductive techniques.

We have also compared our inductive theorem proving technique with the λClam system.
This has shown them to be roughly equivalent in terms of proving power if enough time is
provided. However, it has also shown that our system is significantly quicker than λClam.
These experiments were relatively straightforward to carry out. This shows that our framework
can provide a useful tool for proof planning research.

There are many more experiments that can be performed. Of particular interest would be
a more detailed examination of other choices in the implementation of rippling. For instance a
case study into the effect of search strategies, which would be difficult in other systems, would
be relatively easy in our framework. This is due to the flexible approach to search that we
introduced in chapter 5. These are left as further work and we describe some of them in more
detail in the following chapter.

Chapter 11

Conclusions and Further Work

We now summarise the work in this thesis, highlighting the main contributions and areas of
further work.

11.1 Concluding Remarks

In this thesis we have introduced a new approach to proof planning that represents choices in
the search space explicitly. This allows the language for writing techniques to be extensible,
where traditional approaches to proof planning have had a fixed language. Another important
characteristic of our approach is that it allows technique constructors to be defined in terms
of manipulations on the search space. This enables a concise expression of search strategies
and techniques that locally specify which search strategy should be used. We have used these
features to support efficiency measures which are expressed as simple manipulations of existing
techniques.

Our approach to writing techniques is sufficiently expressive to encode proof critics that
manipulate the proof plan. Thus it provides a unified language for expressing different kinds of
patterns of reasoning. In this respect it provides both a more expressive and simpler language
for writing techniques than that used in other proof planning systems.

To show that these features are useful in practice, we provide an implementation of our
proof planning framework for the Isabelle proof assistant. We do this by representing proof
plans as Isar proof scripts. This allows techniques written in our system to produce human
readable as well as fully formal proofs. The success obtained in using this representation
shows that it is feasible to write proof planning techniques that produce fully formal proofs.

194

Chapter 11. Conclusions and Further Work 195

Because this formality is obtained by executing the proof plan as it is constructed, it allows
proof tools in Isabelle to be used during proof planning in an exploratory way. For example,
we have made particular use of Isabelle’s simplifier, induction tactics, as well as the extended
support for fine grained control of equational reasoning

The second branch of work in this thesis is the development of a rich framework for rippling
that is suitable for higher order logics. This provides a unified view of various approaches to
the technique and makes the proof of its termination a trivial property of its measure. This is
in contrast to the rather complex proofs presented by Basin and Walsh [5]. Our analysis also
exposes many choices available to the implementation of rippling and shows how they can be
examined within our framework.

Within our proof planning machinery, we develop an inductive theorem prover based on
our approach to rippling. This allows us to simultaneously evaluate the variations to rippling as
well as the suitability of our proof planning framework for encoding complex proof techniques.
All the work was done following the Isabelle methodology to implementing generic proof tools.
We found this approach to writing generic proof planning tools satisfactory.

To empirically answer the questions raised about the implementation of rippling and to
examine the effectiveness of our inductive theorem prover, we carried out experiments in the
domains of Peano arithmetic and ordinal arithmetic. These experiments identify the more
effective versions of rippling for inductive theorem proving. By comparing our prover with the
λClam system we are able to show that it results in a powerful and efficient inductive proof tool.
This also improves the level of automation in Isabelle. The ability to develop effective proof
machinery and perform novel experiments shows that our framework provides a practically
useful environment for research in proof planning. This work has also allowed us to draw
observations to guide further research in proof planning and rippling.

11.2 Further Work

Throughout the thesis we have pointed our various areas of further work. We now summarise
the ones we consider particularly important.

Proof Plans

Although the representation of proof plans as Isar proof scripts provides benefits in terms of
the intelligibility of the generated proofs and supports the manipulation of the proof plans, we

Chapter 11. Conclusions and Further Work 196

found the representation lacked support for managing meta variables. The inter-proof-script
dependencies are implicit which makes a general mechanism for the manipulation of such
scripts impossible. Making proof script dependencies explicit be an important step towards the
provision of general purpose proof plan transformations. Additionally, incorporation of tools
to manage names of parameters and intermediate results would greatly improve the readability
of the generated proof scripts.

Improvement for Writing Techniques

We note that the coarse level encapsulation of Isar commands and of contextual information
meant that many errors only become apparent at runtime. It would be interesting and practi-
cally useful if we could make better use of type checking to catch such errors during the writing
of techniques. One such avenue for example, would be to make use of record types to hold con-
textual information. This would force techniques to declare explicitly the kinds of contextual
information they use at the time of writing. It would thus remove the need for a default value
for each kind of contextual information and allow type checking to ensure that technique which
uses a kind of contextual information cannot be used in a context where it does not exist.

Rippling

The framework we have developed for experimenting with rippling opens up wide array of
possible experiments. Of particular interest would be a comparison of simplification with rip-
pling for inductive proof. Such an experiment should be done within the context of a theory
development to enable a real analysis of its effectiveness for actually task of formalisation.

We believe that the main way to further improve the efficiency of rippling would be to
improve the underlying rewriting machinery to enable to identify when applications of rules
are independent. This would allow it to avoid symmetries in the search space which are the
main source of inefficiency in our current implementation.

Further Proof Planning Techniques

Many other proof planning techniques have been proposed in the literature and implemented
in different systems, such as the derivation of induction schemes during rippling suggested
by Gow [44]. Adapting these various techniques to our framework would help identify the
relative merits of our proposed approach. It would also require the development of improved

Chapter 11. Conclusions and Further Work 197

machinery. The work of Gow for example, would require support for meta variables in proof
plans.

Techniques in the Omega system would be particularly interesting, as we have already
shown that the inductive proof techniques can effectively be ported from λClam. This would
help clarify the relationship between encoding techniques in IsaPlanner with Omega.

Additionally, further proof critics could be developed for new domains. For example, it
would be interesting to see if proof planning technique can be written to improve the automa-
tion in the verification of security protocols. These proof exhibit significant common structure
and thus it looks like a fruitful area of research.

Comparing Rippling with Simplification

It seems natural to compare rippling and simplification as both can be used to automate the step
case of inductive proofs. However, simply employing simplification instead of rippling and
repeating the experiments detailed in this chapter would give misleading results. In particular,
it would ignore the simplicity of configuring rippling. Furthermore, at present, only the lemma
speculation and generalisation proof critic have been implemented. One of the salient features
of rippling its that the annotations can be used to provide a middle out reasoning approach to
lemma conjecturing, as suggested by Ireland [52]. As such to get an informative comparison,
we would argue that a case study in formalising a new theory should be performed in which
proofs are performed using both rippling and simplification. This would give the developer
a clear insight into their relative utility. Furthermore, we would also suggest that additional
proof critics should be developed for our version(s) of rippling. At present this cannot be done
because of the inability of Isar to use meta-variables.

Comparison Inductive Theorem Provers

To compare our inductive theorem prover with other systems would require developing equiv-
alent formalisations in the various systems. In particular, it would be interesting to compare
ACL2, Quodlibet [2], Clam, λClam, INKA, Otter-λ [6, 7], and IsaPlanner. Performing such a
comparison would require careful analysis of how each system was setup. When a theory can
be more naturally expressed within one system, for example by making use of the more ex-
pressive logic, then both formalisations should be examined. Such a comparison would reflect
the efficiency of the implementations and thus may obscure the effectiveness of the underlying
approaches. However, it would still help to contrast the current state of the art in inductive

Chapter 11. Conclusions and Further Work 198

theorem proving. To survey different theoretical approaches in a fair way, we would suggest
comparing them within a similar framework, for example by implementing them within Isa-
Planner.

Appendix A

Formalisations of Peano Arithmetic

theory N imports Main IsaP begin
datatype N = zero ("0")

| suc N ("Suc _" [100] 100)

declare N.inject[wrule]

consts "plus" :: "[N, N] => N" (infixl "+" 65)

consts "mult" :: "[N, N] => N" (infixl "*" 70)

consts "exp" :: "[N, N] => N" (infixr "ˆ" 80)

end

theory a1 imports N begin
primrec

add_0[wrule] : "0 + y = y"

add_suc[wrule] : "Suc x + y = Suc (x + y)"

end

theory a2 imports N begin
primrec

add_0[wrule] : "x + 0 = x"

add_suc[wrule] : "x + (Suc y) = Suc (x + y)"

end

theory a3 imports N begin
primrec

add_0[wrule] : "0 + y = y"

199

Appendix A. Formalisations of Peano Arithmetic 200

add_suc[wrule] : "Suc x + y = x + (Suc y)"

end

theory a4 imports N begin
primrec

add_0[wrule] : "x + 0 = (x :: N)"

add_suc[wrule] : "x + (Suc y) = (Suc x) + y"

end

theory m1 imports N begin
primrec

mult_0[wrule] : "(x * 0) = (0 :: N)"

mult_suc[wrule] : "x * (Suc y) = x + (x * y)"

end

theory m2 imports N begin
primrec

mult_0[wrule] : "(x * 0) = (0 :: N)"

mult_suc[wrule] : "x * (Suc y) = (x * y) + x"

end

theory m3 imports N begin
primrec

mult_0[wrule] : "(0 * y) = (0 :: N)"

mult_suc[wrule] : "(Suc x) * y = y + (x * y)"

end

theory m4 imports N begin
primrec

mult_0[wrule] : "(0 * y) = (0 :: N)"

mult_suc[wrule] : "(Suc x) * y = (x * y) + y"

end

theory e1 imports N begin
primrec

exp_0[wrule] : "x ˆ 0 = Suc 0"

exp_suc[wrule] : "x ˆ (Suc y) = x * (x ˆ y)"

end

Appendix A. Formalisations of Peano Arithmetic 201

theory e2 imports N begin
primrec

exp_0[wrule] : "x ˆ 0 = Suc 0"

exp_suc[wrule] : "x ˆ (Suc y) = (x ˆ y) * x"

end

General theorems:

theorem add_0_left: "0 + a = a"

theorem add_0_right: "a + 0 = a"

theorem add_Suc_right_left: "a + (Suc b) = (Suc a) + b"

theorem add_Suc_left_right: "(Suc a) + b = a + (Suc b)"

theorem add_Suc_right: "a + (Suc b) = Suc (a + b)"

theorem add_Suc_left: "(Suc a) + b = Suc (a + b)"

theorem add_commute: "a + b = b + a"

theorem add_assoc: "b + c + a = b + (c + a)"

theorem add_left_commute: "a + (b + c) = b + (a + c)"

theorem add_right_commute: "(a + b) + c = (a + c) + b"

theorem add_left_cancel: "(k + m = k + n) = (m = n)"

theorem add_right_cancel: "(m + k = n + k) = (m = n)"

theorem mult_0_left: "0 * m = 0"

theorem mult_0_right: "m * 0 = 0"

theorem mult_suc_left: "Suc m * b = b + (m * b)"

theorem mult_suc_right: "m * Suc b = m + (m * b)"

theorem mult_suc_left2: "Suc m * b = (m * b)+ b"

theorem mult_suc_right2: "m * Suc b = (m * b) + m"

theorem mult_1_left: "(Suc 0) * n = n"

theorem mult_1_right: "n * (Suc 0) = n"

theorem mult_commute: "m * n = n * m"

theorem add_mult_dist_right: "(m + n) * k = (m * k) + (n * k)"

theorem add_mult_dist_left: "k * (m + n) = (k * m) + (k * n)"

theorem mult_assoc: "(m * n) * k = m * (n * k)"

theorem mult_left_commute: "x * (y * z) = y * (x * z)"

theorem mult_right_commute: "(x * y) * z = (x * z) * y"

Appendix A. Formalisations of Peano Arithmetic 202

theorem power_squared: "x ˆ (Suc (Suc 0)) = x * x"

theorem power_1: "x ˆ (Suc 0) = x"

theorem power_add: "i ˆ (j + k) = i ˆ j * i ˆ k"

theorem power_mult: "i ˆ (j * k) = (i ˆ j) ˆ k"

Special case theorems:

theorem "0 + 0 + a = a"

theorem "a + 0 + a = a + a"

theorem "Suc a + (Suc b) = Suc (Suc (a + b))"

theorem "a + a + b = b + (a + a)"

theorem "d + b + c + a = b + (c + (a + d))"

theorem "(Suc 0 + m = Suc 0 + n) = (m = n)"

theorem "(m + Suc 0 = n + Suc 0) = (m = n)"

theorem "0 * (n + m)= 0"

theorem "0 * m * k = 0"

theorem "(n + m) * 0 = 0"

theorem "(m * Suc b) * k = m * k + (m * b) * k"

theorem "i ˆ (j + k + l) = i ˆ j * i ˆ k * i ˆ l"

Non-theorems:

theorem "0 + a = 0" oops
theorem "a + 0 = 0" oops
theorem "a + b = a + a" oops
theorem "a + (Suc b) = Suc (Suc a + b)" oops
theorem "b + c + a = b + (c + c)" oops
theorem "b + c + a = b + (c + b)" oops
theorem "b + c + a = c + (c + a)" oops
theorem "(k + m = k + n) = (k = n)" oops
theorem "(m + k = n + k) = (k = n)" oops
theorem "0 * m = m" oops
theorem "m * 0 = m" oops
theorem "m * suc b = b + (m * b)" oops
theorem "m * suc b = m * (m + b)" oops
theorem "m * suc b = b * (m + b)" oops

Appendix A. Formalisations of Peano Arithmetic 203

theorem "(Suc 0) * n = Suc 0" oops
theorem "(Suc 0) * n = 0" oops
theorem "(Suc 0) * n = n + n" oops
theorem "n * (Suc 0) = Suc 0" oops
theorem "n * (Suc 0) = 0" oops
theorem "n * (Suc 0) = n + n" oops
theorem "m * n = m * m" oops
theorem "m * n = n + m" oops
theorem "(m + n) * k = (m * k) * (n * k)" oops
theorem "(m + n) * k = (m + k) + (n * k)" oops
theorem "(m + n) * k = (m * k) + (n + k)" oops
theorem "(m + n) * k = (m * n) + (n * k)" oops
theorem "(m + n) * k = (m + k) * (n + k)" oops
theorem "k * (m + n) = (k * m) * (k * n)" oops
theorem "k * (m + n) = (k + m) + (k * n)" oops
theorem "k * (m + n) = (k * m) + (k + n)" oops
theorem "k * (m + n) = (k * n) + (k * n)" oops
theorem "k * (m + n) = (k + m) * (k + n)" oops
theorem "(m * n) * k = m + (n + k)" oops
theorem "(m * n) * k = m * (m * k)" oops
theorem "(m * n) * k = m + (n * k)" oops
theorem "x * (y * z) = y * (y * z)" oops
theorem "x * (y * z) = z * (x * z)" oops
theorem "(x * y) * z = (x * y) * y" oops
theorem "(x * y) * z = (y * z) * y" oops
theorem "x ˆ (Suc 0) = x * x" oops
theorem "x ˆ (Suc (Suc 0)) = x + x" oops
theorem "x ˆ (Suc (Suc 0)) = x * (Suc x)" oops
theorem "x ˆ (Suc 0) = 0" oops
theorem "x ˆ (Suc 0) = Suc 0" oops
theorem "x ˆ 0 = x" oops
theorem "i ˆ (j + k) = i ˆ j + i ˆ k" oops
theorem "i ˆ (j + k) = i ˆ (j ˆ k)" oops
theorem "i ˆ (j + k) = i ˆ j * j ˆ k" oops
theorem "i ˆ (j + k) = j ˆ k * i ˆ k" oops
theorem "i ˆ (j + k) = (i ˆ j) ˆ k" oops
theorem "i ˆ (j * k) = (i * j) ˆ k" oops
theorem "i ˆ (j * k) = (i ˆ j) * k" oops

Appendix A. Formalisations of Peano Arithmetic 204

theorem "i ˆ (j * k) = (i + j) ˆ k" oops
theorem "i ˆ (j * k) = (i + j) * k" oops

Appendix B

A Formalisation of Ordinal Arithmetic

datatype Ord =

Zero_Ord ("0")

| Suc_Ord Ord ("Suc _" [90] 90)

| Lim_Ord "nat ½ Ord" ("Lim _" [90] 90)

declare Ord.inject[wrule]

consts "plus" :: "[Ord, Ord] => Ord" (infixl "+" 65)

consts "mult" :: "[Ord, Ord] => Ord" (infixl "*" 70)

consts "exp" :: "[Ord, Ord] => Ord" (infixr "ˆ" 80)

primrec
ord_add_0 [wrule]: "(x + 0) = x"

ord_add_Sc [wrule]: "x + (Suc y) = Suc (x + y)"

ord_add_Lim [wrule]: "x + (Lim f) = Lim (λn. x + (f n))"

primrec
ord_mul_0 [wrule]: "x * 0 = 0"

ord_mul_Sc [wrule]: "x * (Suc y) = (x * y) + x"

ord_mul_Lim [wrule]: "x * (Lim f) = Lim (λn. x * (f n))"

primrec
ord_exp_0 [wrule]: "x ˆ 0 = Suc 0"

ord_exp_Sc [wrule]: "x ˆ (Suc y) = (x ˆ y) * x"

ord_exp_Lim [wrule]: "x ˆ (Lim f) = Lim (λn. x ˆ (f n))"

205

Bibliography

[1] D. Aspinall and T. Kleymann. Proof General Manual. University of Edinburgh,
proofgeneral-3.5 edition, 2004.

[2] J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C. P. Wirth. How to prove inductive
theorems? QuodLibet! In Franz Baader, editor, Proceedings of the 19th International
Conference on Automated Deduction (CADE-19), number 2741 in Lecture Notes in Ar-
tificial Intelligence, pages 328–333. Springer, 2003.

[3] C. Ballarin. Locales and locale expressions in Isabelle/Isar. In TYPES, pages 34–50,
2003.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez, H. Herbelin,
G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Saı̈bi, and B. Werner. The
Coq Proof Assistant Reference Manual – Version 7.2. Technical Report 0255, Institut
National de Recherche en Informatique et en Automatique, February 2002.

[5] D. A. Basin and T. Walsh. A calculus for and termination of rippling. Journal of Auto-
mated Reasoning, 16(1-2):147–180, 1996.

[6] M. Beeson. A second-order theorem prover applied to circumscription. In R. Goré,
A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of Lecture Notes in Computer
Science, pages 318–324. Springer, 2001.

[7] M. Beeson. Lambda logic. In D. A. Basin and M. Rusinowitch, editors, IJCAR, volume
3097 of Lecture Notes in Computer Science, pages 460–474. Springer, 2004.

[8] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
K. Kohlhase, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann, and V. Sorge. Ωmega:
Towards a mathematical assistant. In W. McCune, editor, 14th International Conference
on Automated Deduction, pages 252–255. Springer-Verlag, 1997.

206

Bibliography 207

[9] R. Boulton, K. Slind, A. Bundy, and M. Gordon. An interface between CLAM and
HOL. In TPHOLs’98, volume 1479 of LNAI, pages 87–104, 1998.

[10] R. J. Boulton. Boyer-Moore automation for the HOL system. In L. J. M. Claesen and
M. J. C. Gordon, editors, Higher Order Logic Theorem Proving and its Applications:
Proceedings of the IFIP TC10/WG10.2 Workshop, volume A-20 of IFIP Transactions,
pages 133–142, Leuven, Belgium, September 1992. North-Holland/Elsevier.

[11] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979. ACM
monograph series.

[12] R. S. Boyer and J. S. Moore. A Computational Logic Handbook, (Perspectives in Com-
puting, Vol 23). Academic Press Inc, 1988.

[13] J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Proceed-
ings of TABLEAUX 2005, Lecture Notes in Artificial Intelligence, page 15. Springer,
2005. To appear.

[14] A. Bundy. The use of explicit plans to guide inductive proofs. In Conference on Auto-
mated Deduction, pages 111–120, 1988.

[15] A. Bundy. A science of reasoning. In Computational Logic - Essays in Honor of Alan
Robinson, pages 178–198, 1991.

[16] A. Bundy. Proof planning. In B. Drabble, editor, Proceedings of the 3rd International
Conference on AI Planning Systems, (AIPS) 1996, pages 261–267, 1996.

[17] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Springer-Verlag, 2005.

[18] A. Bundy, J. Gow, J. Fleuriot, and L. Dixon. Constructing induction rules for deductive
synthesis proofs. In S. Allen, J. Crossley, K.K. Lau, and I Poernomo, editors, Proceed-
ings of the ETAPS-05 Workshop on Constructive Logic for Automated Software Engi-
neering (CLASE-05), Edinburgh, pages 4–18. LFCS University of Edinburgh, 2005.

[19] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic
for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.

[20] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans
for induction. Journal of Automated Reasoning, 7:303–324, 1991.

Bibliography 208

[21] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In 10th
International Conference on Automated Deduction, pages 647–648, 1990.

[22] F. Cantu, A. Bundy, A. Smaill, and D. Basin. Experiments in automating hardware
verification using inductive proof planning. In FMCAD96, volume 1166 of LNCS, pages
94–108, 1996.

[23] C. Castellini. Automated Reasoning in Quantified Modal and Temporal Logics. PhD
thesis, School of Informatics, University of Edinburgh, 2004.

[24] C. Castellini. Automated Reasoning in Quantified Modal and Temporal Logics. PhD
thesis, University of Edinburgh, 2005.

[25] C. Castellini and A. Smaill. Tactic-based theorem proving in first-order modal and tem-
poral logics. In Workshop on Issues in the Design and Experimental Evaluation of
Systems for Modal and Temporal Logics in proceedings of IJCAR Workshop 10, Inter-
national Joint Conference on Automated Reasoning, page 10, 2001.

[26] E. Charniak, C. K. Riesbeck, and D. V. McDermott. Artificial Intelligence Programming.
Lawrence Erlbaum Associates, 1980.

[27] L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for Proof
Plans. In Proceedings of the International Conference on Artificial and Computational
Intelligence for Decision, Control and Automation in Engineering and Industrial Appli-
cations (ACIDCA’2000), page 6, Monastir, Tunisia, 22–24 March 2000.

[28] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68, 1940.

[29] A. Cohen, S. H. Murray, M. Pollet, and V. Sorge. Certifying solutions to permutation
group problems. In F. Baader, editor, Proceedings of the 19th International Conference
on Automated Deduction (CADE–19), volume 2741 of LNAI, pages 258–273, Miami,
FL, USA, Jul 28–Aug 2 2003. Springer Verlag, Berlin, Germany.

[30] R. L. Constable, F. A. Stuart, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, NJ, 1986.

Bibliography 209

[31] N. G. de Bruijn. AUTOMATH, a Language for Mathematics. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on Computational
Logic 1967-1970, pages 159–200. Springer, Berlin, Heidelberg, 1983.

[32] L. Dennis and J. Brotherston. User/Programmer Manual for the λClam proof planner.
Division of Informatics, University of Edinburgh, Edinburgh, v3.2.0 edition, 2002.

[33] L. Dennis, I. Green, and A. Smaill. Embeddings as a higher-order representation of
annotations for rippling. Submitted to JAR, 2005.

[34] L. A. Dennis. Proof Planning Coinduction. PhD thesis, Dept. of Artificial Intelligence,
University of Edinburgh, 1999.

[35] L. A. Dennis and A. Smaill. Ordinal arithmetic: A case study for rippling in a higher
order domain. In TPHOLs’01, volume 2152 of LNCS, pages 185–200, 2001.

[36] L. Dixon. Interactive and hierarchical tracing of techniques in IsaPlanner. Workshop on
User Interfaces For Theorem Provers, 2005, to be published as a volume of ENTCS.

[37] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
Conference on Automated Deduction, volume 2741 of LNCS, pages 279–283, 2003.

[38] L. Dixon and J. D. Fleuriot. Higher order rippling in IsaPlanner. In Theorem Proving in
Higher Order Logics, volume 3223 of LNCS, pages 83–98, 2004.

[39] L. Dixon and J. D. Fleuriot. A proof-centric approach to mathematical assistants. Jour-
nal of Applied Logic: Special Issue on Mathematics Assistance Systems, 2005. To be
published.

[40] The DReaM Group. The Clam proof planner, user manual and programmer man-
ual (version 2.8.1), April 1999. Available from ftp://dream.dai.ed.ac.uk/pub/oyster-
clam/manual.ps.gz.

[41] J. D. Fleuriot. A Combination of Geometry Theorem Proving and Nonstandard Analysis,
with Application to Newton’s Principia. Springer-Verlag, 2001.

[42] K. Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter
systeme i. Monatsh. Math. Phys., 38:173–198, 1931. English translation in [99].

Bibliography 210

[43] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving environment
for higher order logic. Cambridge University Press, 1993.

[44] J. Gow. The Dynamic Creation of Induction Rules Using Proof Planning. PhD thesis,
School of Informatics, University of Edinburgh, 2004.

[45] J. T. Hesketh. Using Middle-Out Reasoning to Guide Inductive Theorem Proving. PhD
thesis, University of Edinburgh, 1991.

[46] G. Huet. A unification algorithm for typed lambda-calculus. Journal of Theoretical
Computer Science, 1(1):27–57, 1975.

[47] G. Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.

[48] D. Hutter. Annotated reasoning. Annals of Mathematics and Artificial Intelligence,
29(1-4):183–222, 2000.

[49] D. Hutter and M. Kohlhase. A colored version of the lambda-calculus. In CADE’97,
volume 1249 of LNCS, pages 291–305, 1997.

[50] D. Hutter and C. Sengler. INKA: the next generation. In M. A. McRobbie and J. K.
Slaney, editors, 13th International Conference on Automated Deduction, pages 288–
292. Springer-Verlag, 1996. Springer Lecture Notes in Artificial Intelligence No. 1104.

[51] A. Ireland. The use of planning critics in mechanizing inductive proofs. In Logic Pro-
gramming and Automated Reasoning, pages 178–189, 1992.

[52] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Auto-
mated Reasoning, 16(1–2):79–111, 1996.

[53] Isabelle archive of formal proof. http://afp.sourceforge.net/, 2004.

[54] M. Jackson and H. Lowe. System description: Interactive proof critics in xbarnacle. In
D. A. McAllester, editor, CADE, volume 1831 of Lecture Notes in Computer Science,
pages 502–506. Springer, 2000.

[55] P. Janičić and A. Bundy. Strict general setting for building-in decision procedures into
theorem provers. In Proceedings of International Joint Conference on Automated Rea-
soning, International Joint Conference on Automated Reasoning, pages 18–23, 2001.

Bibliography 211

[56] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales - a sectioning concept for isabelle.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, TPHOLs,
volume 1690 of Lecture Notes in Computer Science, pages 149–166. Springer, 1999.

[57] M. Kaufmann and J. Moore. An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203–213, April
1997.

[58] M. Kaufmann and J. Strother Moore. ACL2: An industrial strength version of nqthm. In
Compass’96: Eleventh Annual Conference on Computer Assurance, page 23, Gaithers-
burg, Maryland, 1996. National Institute of Standards and Technology.

[59] M. Kerber, M. Kohlhase, and V. Sorge. Integrating computer algebra into proof planning.
Journal of Automated Reasoning, 21(3):327–355, 1998.

[60] I. Kraan. Proof Planning for Logic Program Synthesis. PhD thesis, Department of
Artificial Intelligence, University of Edinburgh, 1994.

[61] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induction.
Journal of Automated Reasoning, 16(1–2):113–145, 1996. Also available from Edin-
burgh as DAI Research Paper 729.

[62] G. Kreisel. Mathematical logic. In T. Saaty, editor, Lectures on Modern Mathematics,
volume 3, pages 95–195. J. Wiley & Sons, 1965.

[63] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Trans.
Amer. Math. Soc., 95(2):210–225, 1960.

[64] D. Lacey, J. D. C. Richardson, and A. Smaill. Logic program synthesis in a higher order
setting. In Computational Logic, volume 1861 of LNCS, pages 87–100, 2000.

[65] E. Maclean. Generalisation as a critic to the induction strategy. Master’s thesis, Dept. of
Artificial Intelligence, University of Edinburgh, 1999.

[66] E. Maclean. Proof Planning Non-Standard Analysis. PhD thesis, School of Informatics,
University of Edinburgh, 2004.

[67] E. Maclean, J. D. Fleuriot, and A. Smaill. Proof-planning non-standard analysis. In The
7th International Symposium on AI and Mathematics, 2002.

Bibliography 212

[68] A. Manning, A. Ireland, and A. Bundy. Increasing the versatility of heuristic based the-
orem provers. In A. Voronkov, editor, Logic Programming and Automated Reasoning:
Proc. of the 4th International Conference LPAR’93, pages 194–204. Springer, Berlin,
Heidelberg, 1993.

[69] A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to the Exploration of the
Domain of Residue Classes. Journal of Symbolic Computation, 34(4):287–306, October
2002.

[70] L. I. Meikle and J. D. Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In
Theorem Proving in Higher Order Logics, pages 319–334, 2003.

[71] E. Melis. AI-techniques in proof planning. In European Conference on Artificial Intel-
ligence, pages 494–498, 1998.

[72] E. Melis. The “limit” domain. In Artificial Intelligence Planning Systems, pages 199–
207, 1998.

[73] E. Melis and A. Meier. Proof planning with multiple strategies. In Computational Logic,
pages 644–659, 2000.

[74] D. Miller and G. Nadathur. An overview of λProlog. In R. Bowen, K. & Kowalski, ed-
itor, Proceedings of the Fifth International Logic Programming Conference/ Fifth Sym-
posium on Logic Programming. MIT Press, 1988.

[75] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences., 17(3):348–375, 1978.

[76] R. Monroy. Planning Proofs of Correctness of CCS Systems. PhD thesis, Department of
Artificial Intelligence, University of Edinburgh, 1998.

[77] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and G. Plotkin, editors,
Logical Environments, pages 164–188. Cambridge University Press, 1993.

[78] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[79] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

Bibliography 213

[80] L. C. Paulson. Generic automatic proof tools. In Robert Veroff, editor, Automated
Reasoning and Its Applications. MIT Press, 1997.

[81] L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal of
Universal Computer Science, 5(3), 1999.

[82] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, University of
Cambridge, isabelle2004 edition, 2004.

[83] L. C. Paulson. Isabelle’s Logics. Computer Laboratory, University of Cambridge, is-
abelle2004 edition, 2004.

[84] L.C. Paulson. Isabelle: A generic theorem prover. Springer-Verlag, 1994.

[85] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Language design and Implemen-
tation, pages 199–208, New York, NY, USA, 1988. ACM Press.

[86] F. Pfenning and C. Schürmann. System description: Twelf — A meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, 1999.
Springer-Verlag LNAI 1632.

[87] B. Pientka and C. Kreitz. Automating inductive specification proofs. Fundamenta In-
formatica, 39(1-2):189–209, 1999.

[88] R. Pollack. On extensibility of proof checkers. In Dybjer, Nordstrom, and Smith, editors,
Types for Proofs and Programs: International Workshop TYPES’94, Båstad, June 1994,
Selected Papers, volume 996 of LNCS, pages 140–161. Springer-Verlag, 1995.

[89] T. M. Rasmussen. An inductive approach to formalizing notions of number theory
proofs. In R. J. Boulton and P. B. Jackson, editors, TPHOLs 2001: Supplemental Pro-
ceedings, number EDI-INF-RR-0046 in Informatics Report Series, pages 328–336. Di-
vision of Informatics, University of Edinburgh, Edinburgh, Scotland, UK, September
2001.

[90] J. Richardson and A. Smaill. Continuations of proof strategies. In Tobias Nipkov Ra-
jeev Gorê, Alexander Leitsch, editor, Proceedings of International Joint Conference on

Bibliography 214

Automated Reasoning, International Joint Conference on Automated Reasoning, pages
130–139, 2001.

[91] P. Rudnicki. An overview of the mizar project. In 1992 Workshop on Types for Proofs
and Programs, pages 311–332. Chalmers University of Technology, Bastad, 1992.

[92] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition edition, 2003.

[93] K. Slind. Derivation and use of induction schemes in higher-order logic. In TPHOLs’97,
volume 1275 of LNCS, pages 275–290, 1997.

[94] K. Slind and R. Boulton. Iterative dialogues and automated proof. In The Second Inter-
national Workshop on Frontiers of Combining Systems (FroCos’98), volume 7 of Studies
in Logic and Computation, pages 317–335, 1998.

[95] K. Slind and M. Norrish. The k combinator as a semantically transparent tagging mech-
anism. In TPHOLs’02, volume CP-2002-211736 of NASA Conference Proceedings,
pages 139–145, 2002.

[96] A. Smaill and I. Green. Higher-order annotated terms for proof search. In Theorem
Proving in Higher Order Logics, pages 399–413, 1996.

[97] T.F. Melham. The HOL logic extended with quantification over type variables. In L.J.M.
Claesen and M.J.C. Gordon, editors, International Workshop on Higher Order Logic
Theorem Proving and its Applications, pages 3–18, Leuven, Belgium, 1992. North-
Holland.

[98] A. M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society (2), 42:230–265, 1936-7.

[99] J. van Heijenoort. From Frege to Gödel: a source book in Mathematical Logic, 1879-
1931. Harvard University Press, Cambridge, Mass, 1967.

[100] C. Walther. Combining induction axioms by machine. In Proceedings of IJCAI-93,
pages 95–101. International Joint Conference on Artificial Intelligence, 1993.

[101] M. Wenzel. Type classes and overloading in higher-order logic. In Theorem Proving in
Higher Order Logics, pages 307–322, 1997.

Bibliography 215

[102] M. Wenzel. Isar - a generic interpretative approach to readable formal proof documents.
In TPHOLs’99, volume 1690 of LNCS, pages 167–184, 1999.

[103] V. Zammit. On the Readability of Machine Checkable Formal Proofs. PhD thesis,
University of Kent, March 1999.

