10,458 research outputs found

    High accuracy computation with linear analog optical systems: a critical study

    Get PDF
    High accuracy optical processors based on the algorithm of digital multiplication by analog convolution (DMAC) are studied for ultimate performance limitations. Variations of optical processors that perform high accuracy vector-vector inner products are studied in abstract and with specific examples. It is concluded that the use of linear analog optical processors in performing digital computations with DMAC leads to impractical requirements for the accuracy of analog optical systems and the complexity of postprocessing electronics

    The Scalability-Efficiency/Maintainability-Portability Trade-off in Simulation Software Engineering: Examples and a Preliminary Systematic Literature Review

    Full text link
    Large-scale simulations play a central role in science and the industry. Several challenges occur when building simulation software, because simulations require complex software developed in a dynamic construction process. That is why simulation software engineering (SSE) is emerging lately as a research focus. The dichotomous trade-off between scalability and efficiency (SE) on the one hand and maintainability and portability (MP) on the other hand is one of the core challenges. We report on the SE/MP trade-off in the context of an ongoing systematic literature review (SLR). After characterizing the issue of the SE/MP trade-off using two examples from our own research, we (1) review the 33 identified articles that assess the trade-off, (2) summarize the proposed solutions for the trade-off, and (3) discuss the findings for SSE and future work. Overall, we see evidence for the SE/MP trade-off and first solution approaches. However, a strong empirical foundation has yet to be established; general quantitative metrics and methods supporting software developers in addressing the trade-off have to be developed. We foresee considerable future work in SSE across scientific communities.Comment: 9 pages, 2 figures. Accepted for presentation at the Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SEHPCCSE 2016

    Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations

    Full text link
    Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems, based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose - to the best of our knowledge - the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin

    Flexible Multi-layer Sparse Approximations of Matrices and Applications

    Get PDF
    The computational cost of many signal processing and machine learning techniques is often dominated by the cost of applying certain linear operators to high-dimensional vectors. This paper introduces an algorithm aimed at reducing the complexity of applying linear operators in high dimension by approximately factorizing the corresponding matrix into few sparse factors. The approach relies on recent advances in non-convex optimization. It is first explained and analyzed in details and then demonstrated experimentally on various problems including dictionary learning for image denoising, and the approximation of large matrices arising in inverse problems
    • …
    corecore