4,156 research outputs found

    Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels

    Full text link
    Computer vision algorithms with pixel-wise labeling tasks, such as semantic segmentation and salient object detection, have gone through a significant accuracy increase with the incorporation of deep learning. Deep segmentation methods slightly modify and fine-tune pre-trained networks that have hundreds of millions of parameters. In this work, we question the need to have such memory demanding networks for the specific task of salient object segmentation. To this end, we propose a way to learn a memory-efficient network from scratch by training it only on salient object detection datasets. Our method encodes images to gridized superpixels that preserve both the object boundaries and the connectivity rules of regular pixels. This representation allows us to use convolutional neural networks that operate on regular grids. By using these encoded images, we train a memory-efficient network using only 0.048\% of the number of parameters that other deep salient object detection networks have. Our method shows comparable accuracy with the state-of-the-art deep salient object detection methods and provides a faster and a much more memory-efficient alternative to them. Due to its easy deployment, such a network is preferable for applications in memory limited devices such as mobile phones and IoT devices.Comment: 6 pages, submitted to MMSP 201

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    Harnessing Big Data and Machine Learning for Event Detection and Localization

    Get PDF
    Anomalous events are rare and significantly deviate from expected pattern and other data instances, making them hard to predict. Correctly and timely detecting anomalous severe events can help reduce risks and losses. Many anomalous event detection techniques are studied in the literature. Recently, big data and machine learning based techniques have shown a remarkable success in a wide range of fields. It is important to tailor big data and machine learning based techniques for each application; otherwise it may result in expensive computation, slow prediction, false alarms, and improper prediction granularity.First, we aim to address the above challenges by harnessing big data and machine learning techniques for fast and reliable prediction and localization of severe events. Firstly, to improve storage failure prediction, we develop a new lightweight and high performing tensor decomposition-based method, named SEFEE, for storage error forecasting in large-scale enterprise storage systems. SEFEE employs tensor decomposition technique to capture latent spatio-temporal information embedded in storage event logs. By utilizing the latent spatio-temporal information, we can make accurate storage error forecasting without training requirements of typical machine learning techniques. The training-free method allows for live prediction of storage errors and their locations in the storage system based on previous observations that had been used in tensor decomposition pipeline to extract meaningful latent correlations. Moreover, we propose an extension to include severity of the errors as contextual information to improve the accuracy of tensor decomposition which in turn improves the prediction accuracy. We further provide detailed characterization of NetApp dataset to provide additional insight into the dynamics of typical large-scale enterprise storage systems for the community.Next, we focus on another application -- AI-driven Wildfire prediction. Wildfires cause billions of dollars in property damages and loss of lives, with harmful health threats. We aim to correctly detect and localize wildfire events in the early stage and also classify wildfire smoke based on perceived pixel density of camera images. Due to the lack of publicly available dataset for early wildfire smoke detection, we first collect and process images from the AlertWildfire camera network. The images are annotated with bounding boxes and densities for deep learning methods to use. We then adapt a transformer-based end-to-end object detection model for wildfire detection using our dataset. The dataset and detection model together form as a benchmark named the Nevada smoke detection benchmark, or Nemo for short. Nemo is the first open-source benchmark for wildfire smoke detection with the focus of the early incipient stage. We further provide a weakly supervised Nemo version to enable wider support as a benchmark

    Do We Need Another Explainable AI Method? Toward Unifying Post-hoc XAI Evaluation Methods into an Interactive and Multi-dimensional Benchmark

    Full text link
    In recent years, Explainable AI (xAI) attracted a lot of attention as various countries turned explanations into a legal right. xAI allows for improving models beyond the accuracy metric by, e.g., debugging the learned pattern and demystifying the AI's behavior. The widespread use of xAI brought new challenges. On the one hand, the number of published xAI algorithms underwent a boom, and it became difficult for practitioners to select the right tool. On the other hand, some experiments did highlight how easy data scientists could misuse xAI algorithms and misinterpret their results. To tackle the issue of comparing and correctly using feature importance xAI algorithms, we propose Compare-xAI, a benchmark that unifies all exclusive functional testing methods applied to xAI algorithms. We propose a selection protocol to shortlist non-redundant functional tests from the literature, i.e., each targeting a specific end-user requirement in explaining a model. The benchmark encapsulates the complexity of evaluating xAI methods into a hierarchical scoring of three levels, namely, targeting three end-user groups: researchers, practitioners, and laymen in xAI. The most detailed level provides one score per test. The second level regroups tests into five categories (fidelity, fragility, stability, simplicity, and stress tests). The last level is the aggregated comprehensibility score, which encapsulates the ease of correctly interpreting the algorithm's output in one easy to compare value. Compare-xAI's interactive user interface helps mitigate errors in interpreting xAI results by quickly listing the recommended xAI solutions for each ML task and their current limitations. The benchmark is made available at https://karim-53.github.io/cxai

    Interpreting CNN Knowledge via an Explanatory Graph

    Full text link
    This paper learns a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside a pre-trained CNN. Considering that each filter in a conv-layer of a pre-trained CNN usually represents a mixture of object parts, we propose a simple yet efficient method to automatically disentangles different part patterns from each filter, and construct an explanatory graph. In the explanatory graph, each node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More importantly, we learn the explanatory graph for a pre-trained CNN in an unsupervised manner, i.e., without a need of annotating object parts. Experiments show that each graph node consistently represents the same object part through different images. We transfer part patterns in the explanatory graph to the task of part localization, and our method significantly outperforms other approaches.Comment: in AAAI 201

    Language modelling for clinical natural language understanding and generation

    Get PDF
    One of the long-standing objectives of Artificial Intelligence (AI) is to design and develop algorithms for social good including tackling public health challenges. In the era of digitisation, with an unprecedented amount of healthcare data being captured in digital form, the analysis of the healthcare data at scale can lead to better research of diseases, better monitoring patient conditions and more importantly improving patient outcomes. However, many AI-based analytic algorithms rely solely on structured healthcare data such as bedside measurements and test results which only account for 20% of all healthcare data, whereas the remaining 80% of healthcare data is unstructured including textual data such as clinical notes and discharge summaries which is still underexplored. Conventional Natural Language Processing (NLP) algorithms that are designed for clinical applications rely on the shallow matching, templates and non-contextualised word embeddings which lead to limited understanding of contextual semantics. Though recent advances in NLP algorithms have demonstrated promising performance on a variety of NLP tasks in the general domain with contextualised language models, most of these generic NLP algorithms struggle at specific clinical NLP tasks which require biomedical knowledge and reasoning. Besides, there is limited research to study generative NLP algorithms to generate clinical reports and summaries automatically by considering salient clinical information. This thesis aims to design and develop novel NLP algorithms especially clinical-driven contextualised language models to understand textual healthcare data and generate clinical narratives which can potentially support clinicians, medical scientists and patients. The first contribution of this thesis focuses on capturing phenotypic information of patients from clinical notes which is important to profile patient situation and improve patient outcomes. The thesis proposes a novel self-supervised language model, named Phenotypic Intelligence Extraction (PIE), to annotate phenotypes from clinical notes with the detection of contextual synonyms and the enhancement to reason with numerical values. The second contribution is to demonstrate the utility and benefits of using phenotypic features of patients in clinical use cases by predicting patient outcomes in Intensive Care Units (ICU) and identifying patients at risk of specific diseases with better accuracy and model interpretability. The third contribution is to propose generative models to generate clinical narratives to automate and accelerate the process of report writing and summarisation by clinicians. This thesis first proposes a novel summarisation language model named PEGASUS which surpasses or is on par with the state-of-the-art performance on 12 downstream datasets including biomedical literature from PubMed. PEGASUS is further extended to generate medical scientific documents from input tabular data.Open Acces

    Autonomous learning for face recognition in the wild via ambient wireless cues

    Get PDF
    Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak. We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort
    • …
    corecore