2,885 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite xĖ˜\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201

    Learning Opposites with Evolving Rules

    Full text link
    The idea of opposition-based learning was introduced 10 years ago. Since then a noteworthy group of researchers has used some notions of oppositeness to improve existing optimization and learning algorithms. Among others, evolutionary algorithms, reinforcement agents, and neural networks have been reportedly extended into their opposition-based version to become faster and/or more accurate. However, most works still use a simple notion of opposites, namely linear (or type- I) opposition, that for each xāˆˆ[a,b]x\in[a,b] assigns its opposite as xĖ˜I=a+bāˆ’x\breve{x}_I=a+b-x. This, of course, is a very naive estimate of the actual or true (non-linear) opposite xĖ˜II\breve{x}_{II}, which has been called type-II opposite in literature. In absence of any knowledge about a function y=f(x)y=f(\mathbf{x}) that we need to approximate, there seems to be no alternative to the naivety of type-I opposition if one intents to utilize oppositional concepts. But the question is if we can receive some level of accuracy increase and time savings by using the naive opposite estimate xĖ˜I\breve{x}_I according to all reports in literature, what would we be able to gain, in terms of even higher accuracies and more reduction in computational complexity, if we would generate and employ true opposites? This work introduces an approach to approximate type-II opposites using evolving fuzzy rules when we first perform opposition mining. We show with multiple examples that learning true opposites is possible when we mine the opposites from the training data to subsequently approximate xĖ˜II=f(x,y)\breve{x}_{II}=f(\mathbf{x},y).Comment: Accepted for publication in The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Å krjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Å krjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Å krjanc and Edwin Lughofer acknowledges the support by the ā€LCM ā€” K2 Center for Symbiotic Mechatronicsā€ within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    MICE:Multi-layer multi-model images classifier ensemble

    Get PDF
    In this paper, a new type of fast deep learning (DL) network for handwriting recognition is proposed. In contrast to the existing DL networks the proposed approach has clearly interpretable structure that is entirely data-driven and free from user- or problem-specific assumptions. It is entirely parallelizable and very efficient. First, same fundamental image transformation techniques (rotation and scaling) that are used by other existing DL methods are used to improve the generalization. The commonly used descriptors are then used to extract the global features from the training set and based on them a bank/ensemble of zero order AnYa type fuzzy rule-based (FRB) models is built through the recently introduced Autonomous Learning Multiple Model (ALMMo) method working in parallel. The final decision about the winning class label is made by a committee on the basis of the fuzzy mixture of the trained ALMMo-0 models (where ā€œ0ā€ stands for 0 order meaning that the consequent represent a class label, a singleton, not a regression model as in the first order). The training of the proposed MICE system is very efficient and highly parallelizable. It significantly outperforms the best known methods in terms of time and is on par in terms of precision/accuracy. Critically, it offers a high level of interpretability, transparency of the classification model, full repeatability (unlike the methods that use probabilistic elements) of the results. Moreover, it allows an evolving scenario whereby the data is provided in an incremental, online manner and the system structure is being developed in parallel with the classification which opens opportunities for online and real-time applications (on a sample by sample basis). Numerical examples from the well-known handwritten digits recognition problem (MNIST) were used and the results demonstrated the very high repeatable performance after a very short training process which is in addition to the high level of interpretability, transparency

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curveā€fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fineā€tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fineā€tuning, fuzzy ruleā€based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programmingā€based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods
    • ā€¦
    corecore