16,430 research outputs found

    Architecture-based Qualitative Risk Analysis for Availability of IT Infrastructures

    Get PDF
    An IT risk assessment must deliver the best possible quality of results in a time-effective way. Organisations are used to customise the general-purpose standard risk assessment methods in a way that can satisfy their requirements. In this paper we present the QualTD Model and method, which is meant to be employed together with standard risk assessment methods for the qualitative assessment of availability risks of IT architectures, or parts of them. The QualTD Model is based on our previous quantitative model, but geared to industrial practice since it does not require quantitative data which is often too costly to acquire. We validate the model and method in a real-world case by performing a risk assessment on the authentication and authorisation system of a large multinational company and by evaluating the results w.r.t. the goals of the stakeholders of the system. We also perform a review of the most popular standard risk assessment methods and an analysis of which one can be actually integrated with our QualTD Model

    Formal Safety and Security Assessment of an Avionic Architecture with Alloy

    Full text link
    We propose an approach based on Alloy to formally model and assess a system architecture with respect to safety and security requirements. We illustrate this approach by considering as a case study an avionic system developed by Thales, which provides guidance to aircraft. We show how to define in Alloy a metamodel of avionic architectures with a focus on failure propagations. We then express the specific architecture of the case study in Alloy. Finally, we express and check properties that refer to the robustness of the architecture to failures and attacks.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Gateway Modeling and Simulation Plan

    Get PDF
    This plan institutes direction across the Gateway Program and the Element Projects to ensure that Cross Program M&S are produced in a manner that (1) generate the artifacts required for NASA-STD-7009 compliance, (2) ensures interoperability of M&S exchanged and integrated across the program and, (3) drives integrated development efforts to provide cross-domain integrated simulation of the Gateway elements, space environment, and operational scenarios. This direction is flowed down via contractual enforcement to prime contractors and includes both the GMS requirements specified in this plan and the NASASTD- 7009 derived requirements necessary for compliance. Grounding principles for management of Gateway Models and Simulations (M&S) are derived from the Columbia Accident Investigation Board (CAIB) report and the Diaz team report, A Renewed Commitment to Excellence. As an outcome of these reports, and in response to Action 4 of the Diaz team report, the NASA Standard for Models and Simulations, NASA-STD-7009 was developed. The standard establishes M&S requirements for development and use activities to ensure proper capture and communication of M&S pedigree and credibility information to Gateway program decision makers. Through the course of the Gateway program life cycle M&S will be heavily relied upon to conduct analysis, test products, support operations activities, enable informed decision making and ultimately to certify the Gateway with an acceptable level of risk to crew and mission. To reduce risk associated with M&S influenced decisions, this plan applies the NASA-STD-7009 requirements to produce the artifacts that support credibility assessments and ensure the information is communicated to program management

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    Reasoning About the Reliability of Multi-version, Diverse Real-Time Systems

    Get PDF
    This paper is concerned with the development of reliable real-time systems for use in high integrity applications. It advocates the use of diverse replicated channels, but does not require the dependencies between the channels to be evaluated. Rather it develops and extends the approach of Little wood and Rush by (for general systems) by investigating a two channel system in which one channel, A, is produced to a high level of reliability (i.e. has a very low failure rate), while the other, B, employs various forms of static analysis to sustain an argument that it is perfect (i.e. it will never miss a deadline). The first channel is fully functional, the second contains a more restricted computational model and contains only the critical computations. Potential dependencies between the channels (and their verification) are evaluated in terms of aleatory and epistemic uncertainty. At the aleatory level the events ''A fails" and ''B is imperfect" are independent. Moreover, unlike the general case, independence at the epistemic level is also proposed for common forms of implementation and analysis for real-time systems and their temporal requirements (deadlines). As a result, a systematic approach is advocated that can be applied in a real engineering context to produce highly reliable real-time systems, and to support numerical claims about the level of reliability achieved

    Integration of domain and resource-based reasoning for real-time control in dynamic environments

    Get PDF
    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress
    • …
    corecore