11 research outputs found

    ON-MOVE Workshop Introduction

    Full text link

    Differentiated Service Entanglement Routing for Quantum Networks

    Full text link
    The entanglement distribution networks with various topologies are mainly implemented by active wavelength multiplexing routing strategies. However, designing an entanglement routing scheme, which achieves the maximized network connections and the optimal overall network efficiency simultaneously, remains a huge challenge for quantum networks. In this article, we propose a differentiated service entanglement routing (DSER) scheme, which firstly finds out the lowest loss paths and supported wavelength channels with the tensor-based path searching algorithm, and then allocates the paired channels with the differentiated routing strategies. The evaluation results show that the proposed DSER scheme can be performed for constructing various large scale quantum networks.Comment: 25 pages, 14 figure

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Quantum key distribution and cryptography: a survey

    Get PDF
    I will try to partially answer, based on a review on recent work, the following question: Can QKD and more generally quantum information be useful to cover some practical security requirements in current (and future) IT infrastructures ? I will in particular cover the following topics - practical performances of QKD - QKD network deployment - SECOQC project - Capabilities of QKD as a cryptographic primitive - comparative advantage with other solution, in order to cover practical security requirements - Quantum information and Side-channels - QKD security assurance - Thoughts about "real" Post-Quantum Cryptograph

    QUANTUM SECURE COMMUNICATION USING POLARIZATION HOPPING MULTI-STAGE PROTOCOLS

    Get PDF
    This dissertation presents a study of the security and performance of a quantum communication system using multi-stage multi-photon tolerant protocols. Multi-stage protocols are a generalization of the three-stage protocol proposed in 2006 by Subhash Kak. Multi-stage protocols use “Polarization Hopping,” which is the process of changing the polarization state at each stage of transmission. During the execution of a multi-stage protocol, the message transfer always starts by encoding a bit of information in a polarization state; for example, bit 0 is encoded using state |0⟩ and bit 1 is encoded using state|1⟩ whereas, on the channel, the state of polarization is given by α|├ 0⟩┤+β|├ 1⟩┤. In the following α and β are restricted to the real numbers i.e., the polarization stays on the equator of the Poincare sphere. A transformation applied by one communicating party at a given stage will result in new values of α and β. This dissertation analyzes the security of multi-stage, multi-photon tolerant protocols and proposes an upper bound on the average number of photons per pulse in the cases where Fock states and the cases where coherent states are used in the implementation of the three-stage protocol. The derived average number of photons is the maximum limit at which the three-stage protocol can operate at a quantum secure level while operating in a multi-photon domain. In addition, this dissertation studies the vulnerability of the multi-stage protocol to the Trojan horse attack, Photon Number splitting attack (PNS), Amplification attack, as well as the man-in-the middle attack. Moreover, this dissertation proposes a modified version of the multi-stage protocol. This modified version uses an initialization vector and implements a chaining mode between consecutive implementations of the protocol. The modified version is proposed in the case of the three-stage protocol and named a key/message expansion four variables three-stage protocol. The proposed nomenclature is based on the fact that an additional variable is added to secure the three-stage protocol. The introduction of this additional variable has the potential to secure the multi-stage protocol in the multi-photon regime. It results in the eavesdropper having a set of simultaneous equations where the number of variables exceeds the number of equations. The dissertation also addresses the performance of the multi-stage, multi-photon tolerant protocol. An average photon number of 1.5 photon/stage is used to calculate the maximum achievable distance and key transfer rates while using the single-stage protocol over fiber optic cables. We compute the increase in distance as well as data transfer rate while using the single-stage protocol. Channel losses as well as the detector losses are accounted for. Finally, an application of the multi-stage protocol in IEEE 802.11 is proposed. This application provides wireless networks with a quantum-level of security. It proposes the integration of multi-stage protocols into the four-way handshake of IEEE 802.11

    Architecture of the Secoqc Quantum Key Distribution network

    No full text
    The European projet Secoqc (Secure Communication based on Quantum Cryptography) aims at developing a global network for unconditionally secure key distribution. This paper specifies the requirements and presents the principles guiding the design of this network, and relevant to its architecture and protocols
    corecore