118 research outputs found

    Optimal Checkpointing for Secure Intermittently-Powered IoT Devices

    Full text link
    Energy harvesting is a promising solution to power Internet of Things (IoT) devices. Due to the intermittent nature of these energy sources, one cannot guarantee forward progress of program execution. Prior work has advocated for checkpointing the intermediate state to off-chip non-volatile memory (NVM). Encrypting checkpoints addresses the security concern, but significantly increases the checkpointing overheads. In this paper, we propose a new online checkpointing policy that judiciously determines when to checkpoint so as to minimize application time to completion while guaranteeing security. Compared to state-of-the-art checkpointing schemes that do not account for the overheads of encrypted checkpoints we improve execution time up to 1.4x.Comment: ICCAD 201

    Energy-Efficient System Architectures for Intermittently-Powered IoT Devices

    Get PDF
    Various industry forecasts project that, by 2020, there will be around 50 billion devices connected to the Internet of Things (IoT), helping to engineer new solutions to societal-scale problems such as healthcare, energy conservation, transportation, etc. Most of these devices will be wireless due to the expense, inconvenience, or in some cases, the sheer infeasibility of wiring them. With no cord for power and limited space for a battery, powering these devices for operating in a set-and-forget mode (i.e., achieve several months to possibly years of unattended operation) becomes a daunting challenge. Environmental energy harvesting (where the system powers itself using energy that it scavenges from its operating environment) has been shown to be a promising and viable option for powering these IoT devices. However, ambient energy sources (such as vibration, wind, RF signals) are often minuscule, unreliable, and intermittent in nature, which can lead to frequent intervals of power loss. Performing computations reliably in the face of such power supply interruptions is challenging

    Optimizing Embedded Software of Self-Powered IoT Edge Devices for Transient Computing

    Get PDF
    IoT edge computing becomes increasingly popular as it can mitigate the burden of cloud servers significantly by offloading tasks from the cloud to the edge which contains the majority of IoT devices. Currently, there are trillions of edge devices all over the world, and this number keeps increasing. A vast amount of edge devices work under power-constrained scenarios such as for outdoor environmental monitoring. Considering the cost and sustainability, in the long run, self-powering through energy harvesting technology is preferred for these IoT edge devices. Nevertheless, a common and critical drawback of self-powered IoT edge devices is that their runtime states in volatile memory such as SRAM will be lost during the power outage. Thanks to the state-of-the-art non-volatile processor (NVP), the runtime volatile states can be saved into the on-chip non-volatile memory before the power outage and recovered when harvesting power becomes available. Yet the potential of a self-powered IoT edge device is still hindered by the intrinsic low energy efficiency and reliability. In order to fully exert the potentials of existing self-powered IoT edge devices, this dissertation aims at optimizing the energy efficiency and reliability of self-powered IoT edge devices through several software approaches. First, to prevent execution progress loss during the power outage, NVP-aware task schedulers are proposed to maximize the overall task execution progress especially for the atomic tasks of which the unfinished progress is subjected to loss regardless of having been checkpointed. Second, to minimize both the time and energy overheads of checkpointing operations on non-volatile memory, an intelligent checkpointing scheme is proposed which can not only ensure a successful checkpointing but also predict the necessity of conducting checkpointing to avoid excessive checkpointing overhead. Third, to avoid inappropriate runtime CPU clock frequency with low energy utility, a CPU frequency modulator is proposed which adjusts the runtime CPU clock frequency adaptively. Finally, to thrive in ultra-low harvesting power scenarios, a light-weight software paradigm is proposed to help maximize the energy extraction rate of the energy harvester and power regulator bundle. Besides, checkpointing is also optimized for more energy-efficient and light-weight operation

    Hibernus++: a self-calibrating and adaptive system for transiently-powered embedded devices

    Get PDF
    Energy harvesters are being used to power autonomous systems, but their output power is variable and intermittent. To sustain computation, these systems integrate batteries or supercapacitors to smooth out rapid changes in harvester output. Energy storage devices require time for charging and increase the size, mass and cost of systems. The field of transient computing moves away from this approach, by powering the system directly from the harvester output. To prevent an application from having to restart computation after a power outage, approaches such as Hibernus allow these systems to hibernate when supply failure is imminent. When the supply reaches the operating threshold, the last saved state is restored and the operation is continued from the point it was interrupted. This work proposes Hibernus++ to intelligently adapt the hibernate and restore thresholds in response to source dynamics and system load properties. Specifically, capabilities are built into the system to autonomously characterize the hardware platform and its performance during hibernation in order to set the hibernation threshold at a point which minimizes wasted energy and maximizes computation time. Similarly, the system auto-calibrates the restore threshold depending on the balance of energy supply and consumption in order to maximize computation time. Hibernus++ is validated both theoretically and experimentally on microcontroller hardware using both synthesized and real energy harvesters. Results show that Hibernus++ provides an average 16% reduction in energy consumption and an improvement of 17% in application execution time over stateof- the-art approaches

    Efficient Placement and Migration Policies for an STT-RAM based Hybrid L1 Cache for Intermittently Powered Systems

    Full text link
    The number of battery-powered devices is rapidly increasing due to the widespread use of IoT-enabled nodes in various fields. Energy harvesters, which help to power embedded devices, are a feasible alternative to replacing battery-powered devices. In a capacitor, the energy harvester stores enough energy to power up the embedded device and compute the task. This type of computation is referred to as intermittent computing. Energy harvesters are unable to supply continuous power to embedded devices. All registers and cache in conventional processors are volatile. We require a Non-Volatile Memory (NVM)-based Non-Volatile Processor (NVP) that can store registers and cache contents during a power failure. NVM-based caches reduce system performance and consume more energy than SRAM-based caches. This paper proposes Efficient Placement and Migration policies for hybrid cache architecture that uses SRAM and STT-RAM at the first level cache. The proposed architecture includes cache block placement and migration policies to reduce the number of writes to STT-RAM. During a power failure, the backup strategy identifies and migrates the critical blocks from SRAM to STT-RAM. When compared to the baseline architecture, the proposed architecture reduces STT-RAM writes from 63.35% to 35.93%, resulting in a 32.85% performance gain and a 23.42% reduction in energy consumption. Our backup strategy reduces backup time by 34.46% when compared to the baseline
    • …
    corecore