1,557 research outputs found

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering Infrastructure

    Get PDF
    Utility companies (electricity, gas, and water suppliers), governments, and researchers recognize an urgent need to deploy communication-based systems to automate data collection from smart meters and sensors, known as Smart Metering Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system is envisaged to bring tremendous benefits to customers, utilities, and governments. The advantages include reducing peak demand for energy, supporting the time-of-use concept for billing, enabling customers to make informed decisions, and performing effective load management, to name a few. A key element in an SMI is communications between meters and utility servers. However, the mass deployment of metering devices in the grid calls for studying the scalability of communication protocols. SMI is characterized by the deployment of a large number of small Internet Protocol (IP) devices sending small packets at a low rate to a central server. Although the individual devices generate data at a low rate, the collective traffic produced is significant and is disruptive to network communication functionality. This research work focuses on the scalability of the transport layer functionalities. The TCP congestion control mechanism, in particular, would be ineffective for the traffic of smart meters because a large volume of data comes from a large number of individual sources. This situation makes the TCP congestion control mechanism unable to lower the transmission rate even when congestion occurs. The consequences are a high loss rate for metered data and degraded throughput for competing traffic in the smart metering network. To enhance the performance of TCP in a smart metering infrastructure (SMI), we introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP). This scheme is based on the idea of upgrading intermediate devices in SMI (known in the industry as regional collectors) to offer the service of aggregating the TCP connections. An SA-TCP aggregator collects data packets from the smart meters of its region over separate TCP connections; then it reliably forwards the data over another TCP connection to the utility server. The proposed split and aggregated scheme provides a better response to traffic conditions and, most importantly, makes the TCP congestion control and flow control mechanisms effective. Supported by extensive ns-2 simulations, we show the effectiveness of the SA-TCP approach to mitigating the problems in terms of the throughput and packet loss rate performance metrics. A full mathematical model of SA-TCP is provided. The model is highly accurate and flexible in predicting the behaviour of the two stages, separately and combined, of the SA-TCP scheme in terms of throughput, packet loss rate and end-to-end delay. Considering the two stages of the scheme, the modelling approach uses Markovian models to represent smart meters in the first stage and SA-TCP aggregators in the second. Then, the approach studies the interaction of smart meters and SA-TCP aggregators with the network by means of standard queuing models. The ns-2 simulations validate the math model results. A comprehensive performance analysis of the SA-TCP scheme is performed. It studies the impact of varying various parameters on the scheme, including the impact of network link capacity, buffering capacity of those RCs that act as SA-TCP aggregators, propagation delay between the meters and the utility server, and finally, the number of SA-TCP aggregators. The performance results show that adjusting those parameters makes it possible to further enhance congestion control in SMI. Therefore, this thesis also formulates an optimization model to achieve better TCP performance and ensures satisfactory performance results, such as a minimal loss rate and acceptable end-to-end delay. The optimization model also considers minimizing the SA-TCP scheme deployment cost by balancing the number of SA-TCP aggregators and the link bandwidth, while still satisfying performance requirements

    Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering Infrastructure

    Get PDF
    Utility companies (electricity, gas, and water suppliers), governments, and researchers recognize an urgent need to deploy communication-based systems to automate data collection from smart meters and sensors, known as Smart Metering Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system is envisaged to bring tremendous benefits to customers, utilities, and governments. The advantages include reducing peak demand for energy, supporting the time-of-use concept for billing, enabling customers to make informed decisions, and performing effective load management, to name a few. A key element in an SMI is communications between meters and utility servers. However, the mass deployment of metering devices in the grid calls for studying the scalability of communication protocols. SMI is characterized by the deployment of a large number of small Internet Protocol (IP) devices sending small packets at a low rate to a central server. Although the individual devices generate data at a low rate, the collective traffic produced is significant and is disruptive to network communication functionality. This research work focuses on the scalability of the transport layer functionalities. The TCP congestion control mechanism, in particular, would be ineffective for the traffic of smart meters because a large volume of data comes from a large number of individual sources. This situation makes the TCP congestion control mechanism unable to lower the transmission rate even when congestion occurs. The consequences are a high loss rate for metered data and degraded throughput for competing traffic in the smart metering network. To enhance the performance of TCP in a smart metering infrastructure (SMI), we introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP). This scheme is based on the idea of upgrading intermediate devices in SMI (known in the industry as regional collectors) to offer the service of aggregating the TCP connections. An SA-TCP aggregator collects data packets from the smart meters of its region over separate TCP connections; then it reliably forwards the data over another TCP connection to the utility server. The proposed split and aggregated scheme provides a better response to traffic conditions and, most importantly, makes the TCP congestion control and flow control mechanisms effective. Supported by extensive ns-2 simulations, we show the effectiveness of the SA-TCP approach to mitigating the problems in terms of the throughput and packet loss rate performance metrics. A full mathematical model of SA-TCP is provided. The model is highly accurate and flexible in predicting the behaviour of the two stages, separately and combined, of the SA-TCP scheme in terms of throughput, packet loss rate and end-to-end delay. Considering the two stages of the scheme, the modelling approach uses Markovian models to represent smart meters in the first stage and SA-TCP aggregators in the second. Then, the approach studies the interaction of smart meters and SA-TCP aggregators with the network by means of standard queuing models. The ns-2 simulations validate the math model results. A comprehensive performance analysis of the SA-TCP scheme is performed. It studies the impact of varying various parameters on the scheme, including the impact of network link capacity, buffering capacity of those RCs that act as SA-TCP aggregators, propagation delay between the meters and the utility server, and finally, the number of SA-TCP aggregators. The performance results show that adjusting those parameters makes it possible to further enhance congestion control in SMI. Therefore, this thesis also formulates an optimization model to achieve better TCP performance and ensures satisfactory performance results, such as a minimal loss rate and acceptable end-to-end delay. The optimization model also considers minimizing the SA-TCP scheme deployment cost by balancing the number of SA-TCP aggregators and the link bandwidth, while still satisfying performance requirements

    A survey of smart grid architectures, applications, benefits and standardization

    Get PDF
    The successful transformation of conventional power grids into Smart Grids (SG) will require robust and scalable communication network infrastructure. The SGs will facilitate bidirectional electricity flow, advanced load management, a self-healing protection mechanism and advanced monitoring capabilities to make the power system more energy efficient and reliable. In this paper SG communication network architectures, standardization efforts and details of potential SG applications are identified. The future deployment of real-time or near-real-time SG applications is dependent on the introduction of a SG compatible communication system that includes a communication protocol for cross-domain traffic flows within the SG. This paper identifies the challenges within the cross-functional domains of the power and communication systems that current research aims to overcome. The status of SG related machine to machine communication system design is described and recommendations are provided for diverse new and innovative traffic features
    • 

    corecore