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Abstract 

The successful transformation of conventional power grids into Smart Grids (SG) will require robust and scalable communication 

network infrastructure. The SGs will facilitate bidirectional electricity flow, advanced load management, a self-healing protection 

mechanism and advanced monitoring capabilities to make the power system more energy efficient and reliable. In this paper SG 

communication network architectures, standardization efforts and details of potential SG applications are identified. The future 

deployment of real-time or near-real-time SG applications is dependent on the introduction of a SG compatible communication system 

that includes a communication protocol for cross-domain traffic flows within the SG. This paper identifies the challenges within the 

cross-functional domains of the power and communication systems that current research aims to overcome. The status of SG related 

machine to machine communication system design is described and recommendations are provided for diverse new and innovative 

traffic features. 

 
Index Terms—Telecommunications, Smart Grid, Standards, Survey, Smart Grid Application. 

I. INTRODUCTION 

N the era of advanced automation and broadband communications where every aspect of daily life can be positively affected 

by smart applications; our power grids continue to be operated using antiquated technologies and systems. Although the 

traditional power grid has been an effective solution for more than 50 years, the future is uncertain as the shift from coal and gas 

to solar and wind occurs. As more efficient and lower cost batteries come onto the market the opportunity for bidirectional 

electricity flows will grow and the open loop system, where power flows from the generation plant to the customer, will cease to 

be the norm. Also, a lack of situational awareness, poor visibility and control over the power grid is making it more vulnerable to 

disturbances such as blackouts and brownouts [1, 2]. However, there are other pressing issues such as the move to incorporate 

renewable energy and gradually reduce carbon emissions. In the United States of America power generation produces more than 

40% of carbon emissions [3]. Similarly, Australia’s total carbon emissions are projected to reach 685 Mt and 801 Mt of CO2 in 

2020 and 2030 respectively, where power generation will be producing 30% of the carbon emissions in both cases [4]  

Governments around the world are now putting substantial effort into greenhouse gas emission reduction in order to slow the 

adverse effects of climate change. In Australia, more than 3.5 million people are living in premises with rooftop solar panels. The 

introduction of Electric Vehicles (EV) has been another promising step towards lower carbon emissions, but it will take some 

time until EV sales eclipse sales of oil dependent vehicles. The Australian Clean Energy Council estimated that the power 

produced from Australian rooftop solar panels will soon produce up to 3 GW which is equivalent to the electrical energy needed 

to run Melbourne’s train network [5]. According to the Australian Energy Market Commission EV sales will increase by 20 per 

cent by 2020 and by 45 per cent by 2030. The Commission also found that there will be an additional peak electricity demand of 

1900MW [6]. 

Fig. 1 shows a traditional power grid where the power flow follows a hierarchical pattern and is functionally unidirectional. 

The power is generated from the power plant and supplied to the distribution domain via a high voltage electricity transmission 

network. In the distribution domain the power is transmitted to customers via substations and a low voltage distribution network. 

The advent of renewable energy and increasing use of various Distributed Energy Resources (DER) have made it necessary for 

the power grid to facilitate bidirectional power flows. To stabilize operational parameters and balance load profiles to enable 

bidirectional energy flow capability, the existing power grid should be efficiently operated using enhanced control and 

monitoring technologies. The shift towards bidirectional energy flows and improved control and monitoring of the power grid 
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has led to the evolution of the next generation power grid known as a SG and the technologies used to convert the existing power 

grid into a SG must be reliable, scalable, interoperable, secure and cost effective. 

 

Fig. 1. Conventional power grid hierarchical placement of different domains. 

 

The SG concept has successfully grabbed the attention of the research community and research is now focused on how SGs 

can be used to address the limitations of the existing power grids. The operation of a SG should be flexible with increased 

control and monitoring that incorporates smart communications and remote interaction. For example SG substations should have 

the capability to coordinate their local devices autonomously [7].  

Available survey journals [8-12] on SG cover a wide range of topics such as defining the SG communication network 

architecture, communication requirements, security issues and related standards. A study on cognitive radio networks (CRN) for 

SG is presented in [13] where several aspects of using CRN is discussed. [14] discussed the possibility to reduce operational 

costs by upgrading SG communication infrastructure to utilize energy efficient communication techniques. Applications such as 

demand response, distributed energy resources and grid monitoring are analyzed to identify energy efficient communication 

strategies. A comparison based analysis is presented in [15] where several contemporary wireless standards have been reviewed. 

The study recommends Long Term Evaluation (LTE) as a key wireless solution to enable device-to-device communication in SG 

customer premises. Also, an application specific survey in [16] analyzed different mathematical approaches that are suitable for 

various types of demand response program modelling and another in [17] highlighted various modelling approaches to 

implement artificial intelligent in EVs for SG applications. An elaborate study on the incorporation of SG applications can be 

found in [18]. The breadth of the existing literature provides a vast range of SG challenges and this survey focuses on providing 

a guide to key issues and challenges for the research and engineering community. This review highlights the overall 

communication network architecture of SGs, major applications in different domains and communication requirements including 

power and standards. A range of communication models are presented with functionality explained to identify design 

considerations. Also, a comprehensive review of SG standards is presented to ensure the survey is comprehensive. This study 

provides a reference that is a starting point for a more detailed review of SGs, applications and architectures that map between 

the power grid and communication standards. 

The paper is organized as follows. Section II presents a brief background on the transformation process of power grids to SGs 

and the potential benefits. Section III provides an overview on the SG architecture and communication network topologies. 

Section IV discusses the existing SG standardization efforts. In Section V major SG applications and their communication 

requirements are presented. The conclusion and future research directions are presented in Section VI  

II. BACKGROUND 

According to the definition provided by the U.S. Department of Energy (DOE), SG is an energy supply network that supports 

bi-directional power flow, distributed and automated in nature, and permits real-time balancing of demand-supply via distributed 

and high speed computing and communications [1]. However, the key differentiator, while converting the existing power grids to 

next generation SGs, will be designing robust SG compatible communication network infrastructure. Severe drawbacks are 

associated with the existing power grids [8], such as: (1) disjointed architectural configuration; (2) bandwidth limitations for 

bidirectional communication; (3) inter-operability issues between vendor based network components; and (4) inefficient 
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handling of huge data bursts generated from a large number of smart devices. Table I shows the key characteristics and major 

differences between conventional power grids and SGs. 

According to Smart Grid Australia[19], next generation grids will introduce a number of major enhancements to conventional 

power grids including machine-to-machine (M2M) communications, real-time supply-demand management, asset supervision 

and improved operational efficiency (e.g. outage management). Research [20-22] demonstrates various benefits of SGs and 

Hamilton and Summy [20] projected that in the USA investment of US$1 billion in SG technology may generate up to US$100 

billion in Gross Domestic Product (GDP) growth. In the USA, it is predicted that the efficient power consumption behavior 

possible with a SG will add US$15–20 billion by 2020. As claimed in [20], SGs could be a potential economic development tool 

as demand grows for smart buildings and smart transportation systems creating more jobs for a skilled workforce. A study of 

European SG projects [22] shows that most of the European countries are already at different stages of deploying smart meters. 

The study also shows that Italy and Sweden have fully installed smart meters while in Finland and Spain full phase deployment 

will be completed soon. The key reason for the mass roll-out of smart meters is real-time monitoring and reducing power 

consumption. The European Electricity Grid Initiative (EEGI) will generate 35% of electricity from the DERs by 2020 in 

preparation for planned green power production by 2050 [22]. To ensure a robust electricity supply network exists throughout 

the pan-European region the EEGI is seeking more customer participation and energy efficient schemes such as electric 

transportation. Generation, transmission and the distribution domain of power grids should have efficient communications and 

networking infrastructure in order to meet the complex requirements of SGs. Chen et al. [23] mentioned that via communication 

infrastructure SGs would be able to gather detailed statistics about power generation, instantaneous or predicted consumption 

data, storage and distribution information. According to Cisco SGs are the combination of power grids and the communication 

networks that collect real-time data on power transmission, distribution and consumption [24, 25]. The two domains of the power 

grid where SG should impact the most are the transmission and distribution domains and there is a need for communication 

protocols designed to support data exchange between different network devices. 
TABLE I CONVENTIONAL GRIDS VS. SMART GRIDS 

 Conventional Grid  Smart Grid 

Power flow property Unidirectional  Bidirectional  

Generation profile Centralized  Distributed  

Grid configuration Radial  Network  

Integrating DERs Very rare Frequently  

Sensor Devices Few Plenty 

Monitoring  Restricted view Self-monitoring  

Control Limited and passive  Pervasive and active 

Outage recovery  Manual restoration  Self-reconfiguration  

 

SG communication requirements vary significantly depending on the SG applications in use. Some of the SG applications are 

delay sensitive, where signals or other information should be delivered within a specific time period with guaranteed reliability, 

and SG applications may utilize a low data rate, for example a device, substation automation system or a Device Response 

Management (DRM) application. Also, applications may require high bandwidth with flexible delay bounds, such as Advance 

Metering Infrastructure (AMI), EV Charging and Vehicle to Grid (V2G) power transfer [9]. Table II summarizes the bandwidth 

and latency requirements for several important SG applications.  The next section focuses on the factors to determine the overall 

SG architecture as this is the first step towards designing the future SGs. 

III. SMART GRID COMMUNICATION NETWORK ARCHITECTURE 

An understanding of the SG architecture provides a guide as to the requirements for SG communication networks. Different 

standardization bodies and organizations such as the DOE [1], the State of West Virginia [26] and the National Institute of 

Standards and Technology (NIST) [27] have developed conceptual SG architectures. However, the IEEE 2030-2011 standard has 

been broadly accepted as the first industry standard with a SG architecture, and configuration and inter-operability requirements 

[28]. Within the standard, an operational model called the Smart Grid and Interoperability Reference Model (SGIRM) is 

proposed in order to deal with the interoperability issues among different components of the communication network, power 

system and information technology platform. The SGIRM provides a guide to communication between SG generation, 

transmission, and distribution domains [10].  An architecture model of the End-to-End (E2E) SG communications network based 

on the IEEE 2030 standard is shown in Fig. 2. 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

 
Fig. 2. Smart grid end-to-end network architecture  

Modern SGs are structured in three layers called the Electric Power System Layer, Communication Layer and Application 

Layer. Interestingly, there could be numerous applications such as Automatic Meter Reading (AMR), AMI, Demand Response 

Management (DRM), Outage management, EV charging, Asset Management (AM), pilot protection [29] and fraud detection 

developed and deployed via the Application Layer. Advanced intelligent modelling of the applications could resolve crucial 

interoperability issues. The Electric Power Layer comprises four domains including the generation domain, transmission domain, 

distribution domain and customer domain. A key challenge for SG in this layer is to provide two-way power flow between the 

different domains in order to balance energy demand and supply. The core of a SG exists in the Communication Layer and 

provides interconnections between all of the devices and corresponding systems. 

At present, in the generation and transmission domain of the power system, legacy communications infrastructure is already in 

place to establish communications between the large substations. These substations are connected with the utility control center 

and third party networks mainly via a high bandwidth backbone network using Digital Subscriber Line (DSL), fiber, or cable. 

The distribution domain is typically a large geographical area that contains a large number of substations, feeder equipment, 

storage facilities, distribution assets and end-users. Wide Area Networks (WAN) connect the infrastructure with the control 

center. Additionally, ‘last mile’ connectivity is also provided to customer premises to support various applications within the 

home area network (HAN), building area network (BAN) and industrial area network (IAN). Hence, to enable a grid wide 

monitoring and control application, functionally the WAN remains a hub for the E2E SG network as it connects all of the 

domains of the Electric Power Layer. Fig.3 shows the logical architecture of a WAN. 
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TABLE II LATENCY AND BANDWIDTH REQUIREMENT FOR DIFFERENT SG APPLICATIONS [8] 

Application Bandwidth Latency Payload 

(bytes) 

Reliability  

Electric Vehicles (V2G, EV 

charging) 

9.6-56kbps 2s – 5 min 255 >98% 

Demand Response 14-100kbps 500ms-1min 100 >99.5% 

Meter reading 10Kbps to 

128Kbps 

2-15s 200 >98% 

Overhead Transmission Line 

Monitoring 

9.6-56kbps 15-200 ms 25 >99.5% 

Substation Automation 9.6-56kbps 15-200 ms 25 >99.5% 

Outage management 56kbps 2s 25 >98% 

Distribution automation 

Periodical 

9.6-56kbps 25 _ 100 ms 150-200 >99.5% 

 

 

 
Fig. 3. Logical architecture of a SG wide area communications network 

 

A. Neighborhood Area Network 

The NAN connects customer premises to utility control centers via the AMI network. The main functional device of an AMI is 

the Smart Meter, which supplies consumption information and performs quality monitoring. It can also be used as an interface 

for energy control when used in the HAN and exchange information via the AMI system. The AMI system supports various 

types of intelligent SG applications such as Demand Response (DR), DERs, EV charging, and energy consumption in home 

displays. The network topology for a NAN is shown in Fig. 4 where all of the smart meters are connected to a Data Aggregation 

Point (DAP) that accumulates all the data received and transmits the data to a control center. 

It’s important to classify the required communication technology suitable for SG applications within NAN and WAN. 

According to [30], wireless communication may be the only practical solution to support last mile communications in the 

distribution domain, which provides connectivity from smart meters to the AMI access points. Hence, to implement wireless 

communication network technologies in SGs, the IEEE 802.15 Task Group 4g (TG4g) was founded in December 2008 to define 

the Medium Access Control (MAC) and physical layer (PHY) protocols based on the IEEE 802.15.4 standard for wireless smart 

utility networks (SUNs) [31]. In this context it would be interesting to investigate the possible exploitation of TV White Space 

(TVWS) cognitive radio to enable M2M communication in the NAN domain. TVWS has been extensively studied [32] 

specifically for SG applications and in general as a promising communication technology for smart meters. It can be a viable, 

although not yet fully standardized, solution for the SG ecosystem. 

 

TG4g’s key objectives is to provide a global standard to support large SG network applications. SUNs support large and 

geographically diverse networks with minimal infrastructure, potentially connecting millions of fixed endpoints. 

B. Field Area Network 

In a power system distribution domain high voltage electricity is converted to low voltage electricity via step down 

transformers in order to supply various users including commercial, industrial and home users. To perform various substation 

automation functions an adequate number of Remote Terminal Units (RTUs) along with Phasor Measurement Units (PMUs) and 

Intelligent Electronic Devices (IEDs) will be required throughout the SG distribution domain. In the SG distribution domain, the 
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distribution  

 
 

Fig. 4. NAN Network topology 

 

feeders could be used as a point of common coupling (PCC) for the connected DERs and micro-grid components. Also, 

installing wireless sensors along with the feeder lines, poles and transmission towers would be required for developing 

distribution supervisory applications. Exchanging information between the distribution substations, feeder level equipment and 

applications would be the primary task of the Field Area Network (FAN). 

The FAN is a communication network connecting the backhaul of a utility service provider to any specific service point of 

the distribution grid. Usually with a combination of various collectors, data concentrators and access points, a FAN provides the 

communication link between the substation segment and customer premises. Data collectors or sensors are connected to a 

centralized gateway via highly robust, reliable, low bandwidth FAN channels. At present the International Electromechanical 

Commission (IEC) 61850 standard is widely used for substation and distribution automation within the FAN and provides 

interoperability between IEDs and M2M communication. Based on the IEC 61850 protocol, the FAN latency requirements for 

mission critical data can vary between 3 to 10 ms [33]. 

C. Workforce Mobile Network 

The Workforce Mobile Network (WMN) is used by the utility for maintenance purposes and to carry out daily operations. SG 

applications can be added to the WMN, for example V2G or G2V load management capable systems and smart vehicles with 

power that might be returned to the grid using location update services via tracking and navigation based on the Global 

Positioning System (GPS) [34].  Through the WAN, WMNs may access both the NAN and FAN to collect various types of 

information from equipment installed at customer premises. IEEE 802.11s is devoted to the architecture and protocols of WMNs 

because the communication requirement of WMN will be similar to non-M2M communication services including the Internet, 

voice or video applications [35]. 

IV. SMART GRID STANDARDIZATION  

As a widely accepted SG standard, IEEE 2030 could be regarded as the key recent standardization effort.  It defines the E2E 

smart grid architecture by integrating power systems with communications and information technology [36]. The IEEE P2030.1 

and IEEE P2030.2 standards add to the detail provided in the IEEE P2030 standard. IEEE P2030.1 defines a knowledge based 

addressing terminology, mechanism, devices and planning requirements for EVs and ITS applications. IEEE P2030.2 covers 

discrete and hybrid energy storage systems integrated with the electric power infrastructure [37]. Also, IEEE 1547 specifies the 
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standards to interconnect distributed resources and renewable energy sources with the power grid. As a part of the SG  

 
Fig. 5. Mapping of the IEEE standards with the SG architecture 

 

standardization process, the IEEE has released several other standardized protocols. Fig.5 shows the effort undertaken to map the 

SG protocol standards and Table III summarizes the SG standardization effort carried out by various organizations in different 

regions of the world.    

 
TABLE III SG STANDARDIZATION IN DIFFERENT REGIONS OF THE WORLD 

Location SG standardization Organizations  

Australia Standard Australia [38] 

United States of 

America 

National Institute of Standards and Technology (NIST)  
[27] 

American National Standards Institute (ANSI)  [39] 

European 

Countries 

European Standardization Mandate M441 

Smart Meter Co-ordination Group [40] 

European Committee for Standardization (CEN) 

European Committee for Electro-technical 

Standardization (CENELEC) 

European Telecommunications Standards Institute 
(ETSI) 

Smart Grid Standardization Mandate M/490  

European Standardization Organizations (ESOs) [41] 

Japan Japanese Industrial Standards Committee (JISC) [41] 

China State Grid Corporation of China [11] 

 

The International Telecommunication Union Standardization Sector (ITU-T) has established a focus group called the Smart 

Grid Focus Group (SGFC) to develop recommendations, evaluate the impact of SG standards and strengthen the relationship 

between the ITU-T and power grid authorities. The International Standardization Organization (ISO) has put an effort in 

developing SG standards for home electronics architectures (defined by ISO/IEC 14543-3) [42], and smart building design and 

control systems (defined by ISO 16484-5) [43]. Also, Standards Australia (SA) has been commissioned by the Australian 

Department of Resources, Energy and Tourism in June 2011 to support SG in Australia [38]. There are a few other national and 

international standardization efforts by different agencies including the IEC, NIST, ANSI, CIGRE, ISO, and ESO specifying a 

wide range of SG attributes [38]. 

The field of interest and application requirements identified in the approved IEEE standards are further classified as shown in 

Table IV. 
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TABLE IV APPROVED IEEE STANDARDS 

ield of Interest  Approved standards Field of Interest Approved standards 

Interoperability IEEE Std 2030-2014 [36] 

IEEE Std 1377-2015 [44] 

IEEE Std 1701-2011 [45] 
IEEE Std 1702-2011 [46] 

IEEE Std 1703-2012  

(Local Area Network-
LAN/WAN) [47] 

Networking and 

communications 

IEEE Std 802-2012 [48] 

IEEE Std 802.1AB-2009 [49] 

IEEE Std 802.1AE-2006 (MAC) Security [50] 
IEEE Std 802.1AR-2009 [51] 

IEEE Std 802.1AXbk-2012 [52](Link Aggregation) 

IEEE Std 802.1Xbx-2014 [53] (Port-Based Network Access Control) 
ISO 8802-2 IEEE 802.2 (Logical LinkControl) [54] 

IEEE Std 802.3bj-2014 (Ethernet) [55] 

P802.11-REVmb/D12 (PHY)(MAC) [56] 
IEEE Std 802.15.1-2005 (LAN to MAC info exchange) (MAC, PHY) [57] 

IEEE Std 802.15.4m-2014 (MAC & PHY for LR WPANs) [58] 

IEEE Std 802.15.4e-2012 (MAC for LR-WPANs) [59] 
IEEE Std 802.15.4g-2012 (PHY for LR-WPANs) [60]  

IEEE Std 802.16-2012 (Air Interface for Broadband Wireless Access Systems) [61] 

IEEE Std 802.16n-2013 (Higher Reliability Networks) [62] 
IEEE Std 802.16p-2012 (M2M application) [63]  

IEEE Std 802.16.1-2012 (WirelessMAN-Advanced) [64] 

IEEE Std 802.16.1a-2013 (Higher Reliability Networks) [65] 
IEEE Std 802.16.1b-2012 [66] 

IEEE Std 802.20-2008 (Vehicular Mobility) [67] 

IEEE Std 1901-2010 (Power Line Networks) [68] 

Cyber Security IEEE Std 1402-200 
(Electric power substation 

physical and electronic 
security) [69] 

IEEE Std 1686 -2013 

(Substation Intelligent 
Electronic Devices ) [70] 

IEEE Std 1711-2010 

(Cryptographic Protocol 
for cyber security of 

substation serial links) [71] 

Substation and 

Distribution 

automation 

IEEE Std 1379-2000 (Communication between RTUs & IEDs at substations) [72] 
IEEE Std 1615-2007 (Network Communication in Substations) [73] 

IEEE Std 1646-2004[74] (Time Performance Requirements for Electric Power 
Substation Automation) 

IEEE Std 1815-2012- Distributed Network Protocol (DNP3) [75] 

IEEE Std C37.94-2002 [76] IEEE Standard for N Times 64 Kilobit Per Second Optical 
Fiber Interfaces Between Teleprotection and Multiplexer Equipment 

IEEE Std C37.111-2013 [77], Common Format for Transient Data Exchange 

(COMTRADE) 
IEEE Std C37.118.2-2011 [78] (Synchrophasor Data Transfer) 

IEEE Std C37.1-2007 [79] (SCADA and Automation Systems) 

IEEE Std C37.231-2006 [80] (Microprocessor-Based Protection Equipment Firmware 
Control) 

IEEE Std C37.232-2007 [81] (Naming Time Sequence Data Files) 

IEEE Std C37.232-2011 [82] (Naming Time Sequence Data Files (COMNAME) 
IEEE Std C37.236-2013 [83] (Protective Relay Applications over Digital 

Communication Channels) 

IEEE Std C37.238-2011 [84] (Use of IEEE Std 1588 Precision Time Protocol in Power 
System Applications) 

IEEE Std C37.239-2010 [85] (Event Data Exchange (COMFEDE) 

IEEE Std C37.244-2013 [85] IEEE Draft Guide for Phasor Data Concentrator 
Requirements for Power System Protection, Control, and Monitoring 

Electric power 

infrastructure 

IEEE P2030.100 [86] Renewables IEEE Std 1547.3-2007 [87] IEEE Guide For Monitoring, Information Exchange, and 

Control of Distributed Resources Interconnected With Electric Power Systems 

AMI IEEE Std 1377-2012, 
Utility Industry Metering 

Communication Protocol 

Application Layer 
Standard (End Device Data 

Tables) [47] 

Device data 

tables 

IEEE P1703 [88] Draft Standard for Utility Industry End Device Communications 
Module 

Power quality and 

energy efficiency 

IEEE Std 1159.3-2003 [89] 
IEEE Recommended 

Practice for the Transfer of 

Power Quality Data 

EVs IEEE Std 1901-2010 [68] 
IEEE Std 1901.2-2013 [90] 

To accommodate universal interoperability and standardize the general requirements for a SG architecture, the IEC formed the 

Smart Grid Strategic Group (SGSG) in 2008 [91]. So far more than 100 IEC standards, 44 recommendations, 12 application 

areas and general topics have been identified and examined by the IEC SGSG. As an initial SG implementation effort, within the 

distribution grid, a large number of legacy devices were successfully deployed utilizing systems based on IEC 61970 and IEC 

61968 standards [92, 93]. 

For electrical substation automation, the IEC 61850 standard has been widely adopted in different parts of the world in recent 

years [94]. SG security related issues are defined in the IEC 62351 standard [94]. The standards play a vital role in the future 

transition of electrical distribution grids to SGs. To integrate communication technology along with the distribution system, the 

standards can be considered as basic block to derive improved technology solutions. A summary of the IEC standards and their 

functional domain is shown in Table V [11, 12]. 
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TABLE V SG STANDARDIZATION IN DIFFERENT REGIONS OF THE WORLD 

Standard Point of Interest  

IEC 61970/61968 Common Information Model (CIM) [95], [96] 

IEC 61850 Substation Automation Systems (SAS) and DER 
[97] 

IEC 62351 Security for the Smart Grid [98] 

IEC 62357 TC 57 Seamless Integration Architecture [99] 

IEC 60870 Communication and Transport Protocols [100-102] 

IEC 61400-25 Communication and Monitoring for Wind Power 

Plants [103] 

IEC 61334 DLMS [104] 

IEC 62056 COSEM [105] 

IEC 62325 Market Communications using CIM [106] 

 

In the United States of America (U.S.A.) NIST [27] and ANSI [39] participate in the standardization effort. The aim of the 

U.S.A. initiative is to provide SG standardization that focuses on interoperability, reliability, security and system maintenance. 

So far, NIST has identified 75 SG standards, developed a theoretical SG architecture model and identified priorities for 

additional standards including SG related cyber security and SG action plans [27].  

SG would permit a large amount of raw data to be collected from the end users. It is quite clear that there are security and 

privacy threats on the user’s personal data and behavior profile. The existence of SG could be jeopardized if the security and 

privacy issues are not carefully handled. A large monitoring and sensory device network would widen the horizon of possible 

intrusions and attacks. For example, an inefficient user authentication system may result in meter data manipulation. A possible 

protective measure to increase SG security and privacy could be achieved by increasing the capacity available to update network 

configuration and monitoring during operations. Software engineering approaches to handle SG security and privacy issues are 

discussed in [107]. Also, an agent based protective scheme is presented in [108] to handle different types of cyber-attacks on SG. 

V. SMART GRID APPLICATIONS AND COMMUNICATION REQUIREMENTS  

A. Advance Metering Infrastructure  

To exchange information between the end users and the utilities AMI creates a two-way communication network comprised of 

advanced sensors, smart meters, monitoring systems, computer hardware, software, and data management systems. Within an 

AMI, smart meters are used to collect meter data or information on events via a periodic message exchange. AMI features and 

capabilities include a Meter Data Management System, Consumer Awareness systems, Interactive Services for Regulation of 

Energy Demand, systems to assist with avoidance of Electricity-related fraud and time accurate billing services [109]. There is a 

significant amount of literature available on AMI and AMR applications for SGs [110], [111], [112], [113]. Also, standards such 

as ANSI C12.19-2008 [114], IEEE 1377 2012 [47], and IEC 61968-9 [96] define and specify the technical requirements for the 

physical implementation of AMI applications and the IEC 61968-9 [115] standard provides a more generic platform to cover 

various aspects of AMI based SG applications (e.g. meter connection status, meter data, outage management etc.) 

Fig. 6 shows a detailed architecture for AMI that includes the use of a data collection unit. Based on a RF/Zigbee 

communications network, Smart Meters act as an aggregator and send data to the data collection unit where a system controller 

transfers the aggregated data to the Meter Data Management System (MDMS). The MDMS processes incoming raw data to 

generate useful statistics and provides energy usage information for customers. 
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Fig. 6. Logical representation of SG Automatic Metering Infrastructure 

 

The basic component of an AMI system is the Smart Meter which sends meter readings in a scheduled manner to the MDMS. 

Meter reading data can be used for verification applications such as outage extent verification, outage restoration verification, 

billing applications and event based alarm applications such as meter health status (e.g. configuration and connection status), and 

voltage distortion (e.g. high or low).  

An AMI has to deal with a large amount of data, as it collects information from all of the active meters within the network 

coverage. According to the Smart Grid Priority Action Plan 2 (PAP2) report, released by the U.S. NIST, meter density is 100, 

800 and 2000 per square kilometer for rural, suburban and urban areas respectively [116]. According to [117] in an event of 

widespread power outage affected smart meters need to send an alarm to the control center within a few hundred milliseconds. 

It’s highly challenging to send the ‘last gasp’ message within the delay boundary as all of the smart meters are bound to operate 

without battery power relying on capacitive charge only. Thus, for a large number of Smart Meters, providing network access 

within a short period of time is a crucial requirement of an AMR application [117].  

B. Demand Response  

DR is the mechanism used to reduce power generation peak demand through consumer participation and by optimally 

balancing or controlling their energy consumption or demand load. By optimally balancing energy consumption and power 

generation, either through adaptive pricing or by applying various load management techniques DR can offer efficient, reliable 

and cheaper power to consumers. Studies [117, 118] explain various types of DR programs such as incentive-based programs 

(IBP) and priced based programs (PBP), real-time pricing (RTP), time of use (ToU) rate, critical peak pricing (CPP), extreme 

day pricing (EDP) and extreme day CPP (ED-CPP). In DR programs, end users take part in the energy business by changing 

their energy consumption behavior with respect to variable energy price units rather than fixed price units which results in profits 

by both the utilities and customers[119]. There are various types of demand response based on implementation and long term or 

short term outcomes. A brief summary of the available DR programs are shown below.  

1) Time of Use 

ToU is a DR program where billing months are segmented into hourly windows that are assigned a different price based on 

production cost. A price signal is provided to consumers to minimize energy usage during peak periods. For example, ToU could 

include daily peak and off peak pricing. Variable pricing could be extended to differentiate between weekdays and weekends. 

Also, seasonal pricing could be incorporated in the ToU for implementing DR programs.  
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2) Critical Peak Pricing  

CPP is an optional scheme that is often combined with on peak and off peak ToU periods and may not be applied during 

specific periods. CPP will be in operation only when the Load Serving Entity is serving a load demand that is deemed to be 

critical. Critical state could include reaching maximum capacity, and there could be multiple CPP events on a single day. 

3) Peak Time Rebate (PTR): 

 In this kind of DR program a customer can be paid for not using the electricity during the CPP hours. A notice before 

initiating the event or during the event would be sent to the customers participating in the DR program. The total demand load 

reduced by the customer during CPP hours is measured by comparing with the basic demand load of same hours in a normal day. 

Based on the amount of demand reduction a rebate could be claimed by the customer. 

4) Real Time Pricing (RTP):  

In a RTP DR program, customers are provided with day ahead or hour ahead pricing of energy units. The energy price units 

determine energy usage limits where the customers volunteer to minimize energy consumption in order to maximize their saving. 

Participants of this program are usually charged for exceeding the assigned Customer Baseline (CBL) load curve. Also, 

customers receive reward in term of credit if the usage remain below the CBL. 

5) Direct Load Control (DLC):  

When DLC becomes unavoidable it is necessary to initiate load reduction, such as load shedding in order to maintain system 

reliability and cope with high production costs. DLC provides credits to participants for reducing load during these events. There 

are two types of load reduction mechanism: (1) the DLC program maintains direct control over consumer loads that may be shed, 

and (2) participants maintain control over loads that may be shed. If a participant does not shed a load that is part of a DLC 

program penalties may apply. 

6) Remote Load Control (RLC):  

This is more advanced DR program where household appliances are remotely controlled using an advanced algorithm to 

reduce demand load. A M2M communication infrastructure is used and price signals are sent to the automated electrical home 

appliances so that time of operation can be scheduled based on the energy unit price. There are three types of loads defined for 

RLC: 

a) Interruptible Loads:  

This load can accept an interruption and have its operation shifted to other time to avoid a peak period. Electrical appliances, 

like water pumps, dish washers, and dryers, can be shifted to a different time slot to avoid peak periods. A load control command 

is required to initiate the interruption and the operation time shift. 

b) Reducible Load:  

A reducible load indicates that operations can be reduced for a specific amount of time. For instance, an air conditioner can 

reduce its energy consumption and maintain a minimum threshold of comfort level during a peak time if the temperature is set to 

high for that period. Hence, periodic interactions are required from the distant DR server at the time of load management. 

 

c) Interruptible Load:  

Iinterruptible loads can be shed over a peak period based on the run time cycle length. For example, if the run time cycle is 60 

minutes, then 50% reduction will result in a 30-minute cycle during a peak hour. Two control signals are required to initiate and 

complete the cycle limit. 

There are factors that affect DR program operations including regulations, energy pricing, environmental requirements and 

control signal communications. For example, during summer the wholesale electricity price may increase as there will be more 

demand for air conditioning. In this case, there is likely to be multiple RLC sessions initiated by the DR controller. Hence, this 

will result in a high SG communication traffic load and a robust communication network will be essential. Additionally, in the 

case of price based DR programs, remote servers utilise multicast signaling to the subscribed customers. Usually, transmission of 

these traffic loads are delay tolerant but at the same time they are very sensitive to packet loss. However, according to [120] 

DRM programs require bandwidth of 14 to 100 Kbps per device to provide system continuity and to remotely control smart 

appliances for peak demand management. 

The communication loads vary with the type of DR program being used. DR programs based on price have relatively lower 

communication traffic load compared to the other RLC programs as they require increased information exchange. Among the 

RLC programs, the Interruptible Load program require a lower traffic load because it involves fewer control signals to interrupt 

and reschedule operations. On the other hand, a Partially Interruptible Load and Reducible Load programs require higher 

communication traffic as more control signals are exchanged. 
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Fig. 7. Intra Substation communication network 

C. Substation Automation 

In SGs, substation automation via M2M communication facilitates advance monitoring, protection and control functions for 

the transmission and distribution substations (e.g. protection signals to relays) and feeder equipment (e.g. automatic re-closers 

and switches for fault isolation). Widely adopted standards for this part of the power grid are the IEC 61850 and Distributed 

Network Protocol: version 3 (DNP3) or IEEE 1815 standards. The IEC 61850 standard is fairly comprehensive when it comes to 

defining substation automation features, including control applications and real time high-bandwidth protection. According to the 

IEC 61850 standard, communication between interoperable IEDs will be based on the Internet Protocol (IP) and Ethernet 

standards. Additionally, to differentiate various traffic flows, five types of priority based communication services are defined: 

i. Abstract Communication Service Interface (ACSI) 

ii. Generic Object Oriented Substation Event (GOOSE) 

iii. Generic Substation Status Event (GSSE) 

iv. Sampled Measured Value (SMV) 

v. Time Synchronization (TS) 

 

1) Intra-substation Communications:  

The IEC 61850 standard covers control and communication with substation equipment and devices. Fig. 7 shows the 

communication architecture of intra-substation communication which has three classified levels known as station level, bay level 

and process level. The switch yards’ equipment including current transformers (CT), potential transformers (PT), input output 

(I/O) devices, sensors, actuators, circuit breakers, switches, and merging unit (MU) IEDs are part of the process level.  

Analogue voltage and current values are collected from the field CT and PTs via the MU IEDs and sent to the protection and 

control (P&C) IEDs at the bay level. The station level comprises the station controllers and human device interfaces (HMI). Two 

separate Ethernet subnetworks that are called the process bus and substation bus are defined in the IEC 61850 to facilitate QoS 

implementations. The process bus handles delay sensitive communication between P&C IEDs and switch IEDs, breaker IEDs as 

well as the merging IEDs. Communication between different bays and station controllers is handled by the station bus. However, 

communication with external networks, including other substations and the utility control center occurs via a gateway to the 

substation. 

 

2) Inter-substation Communications 

Inter-substation communication or M2M communication between different IEDs in a distribution domain requires application 

data transmission from telemetry or sensors to an aggregator. M2M communication is based on reliable delivery of single 

message within a strict delay boundary. Also, the extensive use of microprocessor-based protective relaying techniques enables 

development of wide area monitoring, protection and control (WAMPC) system [121], a converging process towards a universal 

SG communications network [122-124] solution. According to IEC 61850, the type of message in the inter-substation 

communication is defined by the GOOSE profile. The GOOSE message can be exchanged using IP and can also support both 

unicast and multicast. Thus, the shift to IP based integrated SG communications networks for advanced protection and control 

schemes in the power transmission and distribution grid could be an important feature of the inter-substation communication. 
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However, performance of an M2M application is evaluated in objective terms such as measurement of delay or packet arrival 

rate while using any wireless communication system. So, to accommodate different types of SG traffic along with the protection 

traffic, a wireless communication solution must be efficient and ensure high E2E transmission reliability. 

A number of proposals can be found in the literature on using digital communications to develop protective applications at the 

SG distribution domain [122-124]. [88] presents a report released by the IEEE Power System Relaying Committee (PSRC) on 

protective relaying applications using the forthcoming SG communications infrastructure. Clement-Nyns et al. describe the use 

of wireless communication media such as microwave, narrow band radio, and spread spectrum radio for pilot protection schemes 

[125]. Other pilot protection applications based on the IEC 61850-based GOOSE messaging are described in [126, 127]. WiMax 

and Zigbee based pilot protection schemes for smart distribution domain are proposed in [127, 128]. 

Among the common protection methods, directional comparison blocking (DCB) and permissive over-reaching transfer trip 

(POTT) [129] are well cited in the literature as popular pilot protection schemes. The key development challenge for protection 

scheme communications is to transfer the GOOSE packets with the pilot trip/block signals within a specified time delay in order 

to isolate the fault otherwise the relay would trip automatically. Also, the signal should be transferred as fast as possible because 

the associated switch/circuit breakers will be delayed by the data communication time plus a small guard time [130]. So, to 

maximize the efficiency of the protection scheme the communication delay should be minimized as much as possible. Usually, 

POTT operating delay is 30-35ms whereas the DCB operating delay is 80ms (including relay operation time) for a 50 Hz power 

system. Hence, Maciejowski [129] suggested that with a 5 ms delay for high speed relay operation a pilot signal would have a 

delay budget of 25-30 ms for the communications network. Table VI summarizes the communication requirements and service 

types of substation automation. 

 

D. Distributed Energy Resources  

Distributed Energy Resources (DER) have significantly increased due to the growing trend towards rooftop solar panels and 

other renewable energy resources, including wind power. Renewable energy resources are advantageous because of lower carbon 

emissions and due to lower installation costs the DER are becoming more popular. However, some of the renewable energy 

sources require energy storage devices for low generation periods. 

The additional controllable power provided by energy storage devices could be used to provide consistent supply with more 

reliability and capacity. However, the bandwidth requirement for extracting instantaneous information from the generation points 

is about 9.6 to 56 Kbps. The latency range can vary from 300ms to 2s while the reliability must be within 99 to 99.99% [120]. 

Required power to drive an EV ranges from 10 to 200KW and this power is usually supplied from batteries or fuel cells. By 

V2G operation the stored energy can be sent back to the grid, if needed. So, EVs may work like a mobile DER and the stored 

power of the batteries or generated power from the vehicle’s kinetic energy can be supplied to the power grid. Hence by using 

EVs as a power source it would be possible to increase power generation during peak times, improve back-up capacity and 

power system reliability. Additionally, renewable energy sources can be integrated with the V2G, the vehicle can provide 

sufficient back-up for renewable energy generation and act as storage device. The communication requirement of V2G 

application depends on the speed of the vehicle. The authors of [131] provide the communication requirements for parked fleet 

of vehicles. Wireless communication technologies like ZigBee or Wi-Fi will support V2G applications in parking areas. For 

moving vehicles, mobile cellular communication is appropriate. Power transmission enhancement is an important factor for 

planning large scale power systems and regional transmission because the EVs introduce new types of loads to the grid. The 

communication bandwidth requirement for a V2G application is 5-10 kbps and the latency requirement is up to 2s [120]. 

 
TABLE VI SG COMMUNICATION SPECIFICATION FOR SUBSTATION AUTOMATION 

Msg. 

Type 

Application  Service type  Time boundary 

(ms) 

A1 Fast Message (Trip) GOOSE, 

GSSE 

3-100 

A2 Fast Message (Other) 20-100 

B Medium Speed ACSI 100 

C Low Speed 500 

D Raw Data SMV 3-10 

E File Transfer ACSI >1000 

F Time Synchronization TS (Accuracy) 
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Fig. 8. Network topology of a Wide Area Measurement System 

 

E. Wide Area Measurement  

In a Wide Area Measurement System (WAMS) the power grid status is continuously monitored and a Phase Measurement 

Unit (PMU) is used to update system state informatics and real-time power quality measures. To get accurate real-time 

measurements, GPS data can be used to allocate a time stamp with each measurement [132]. High resolution phase information 

can be obtained by the utility with precise measurement synchronization and the utility could initiate an appropriate response 

within the delay bound to protect the WAN from a black-out [92]. In the existing power grid PMUs are installed within the 

generation and transmission domain of the power grid taking into account the unidirectional power flow from generation to 

distribution. However, in order to enable bidirectional power flow and real-time system monitoring, PMUs need to be deployed 

at SG distribution points [133]. Fig. 8 shows the WAMS network topology. 

 

To build a WAMS it is essential to deploy PMUs within the regional and national power grids and usually a Phasor Data 

Collector (PDC) collects all of the measurements from a network where the PMUs are deployed. The PDC aggregates and 

transmits the data to the Central Control (CCN) location via the transit and backhaul networks. 

The IEEE C37.118.2–2011 provides the PMU data communication specifications. The reporting frequency is the key factor 

used to determine the communication load which may vary between 10, 25 Hz and 10, 12, 15, 20, 30 Hz for a 50 Hz and 60 Hz 

based power systems respectively. However, the main communication requirement for WAMS applications is to establish a 

secure and reliable communication link between PMUs and PDC within the specific latency.  

VI. CONCLUSION 

To present a comprehensive survey on smart grid architecture, potential applications and standardization effort, this paper 

reviews recent literature, reference models and standards. As SGs are an enormously broad and diverse network of electronics 

devices there is a challenge to model the communication network requirements. A summary of the standardization effort is 

provided for future investigators, professionals and researchers. 

This paper initially focuses on the SG communication network architecture, network topologies and functions. The 

standardization initiative taken by different organizations, nations and regions are then described. Finally, potential SG 

applications and communication requirements are presented. This paper aims to provide information about how to build a smart, 

reliable, secure power grid and to identify the requirements and challenges associated in the development of SG applications. 

Future research into the potential for a software defined networking (SDN) paradigm for SG M2M communication provides a 

logical extension of SDN implementations in broadband networks. Very limited studies have been identified in the literature on 

SDN based SG systems [134-136] making this an interesting and challenging topic for further research. 
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