6,495 research outputs found

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure

    Strengthening measurements from the edges: application-level packet loss rate estimation

    Get PDF
    Network users know much less than ISPs, Internet exchanges and content providers about what happens inside the network. Consequently users cannot either easily detect network neutrality violations or readily exercise their market power by knowledgeably switching ISPs. This paper contributes to the ongoing efforts to empower users by proposing two models to estimate -- via application-level measurements -- a key network indicator, i.e., the packet loss rate (PLR) experienced by FTP-like TCP downloads. Controlled, testbed, and large-scale experiments show that the Inverse Mathis model is simpler and more consistent across the whole PLR range, but less accurate than the more advanced Likely Rexmit model for landline connections and moderate PL

    A Practical Hierarchial Model of Parallel Computation: The Model

    Get PDF
    We introduce a model of parallel computation that retains the ideal properties of the PRAM by using it as a sub-model, while simultaneously being more reflective of realistic parallel architectures by accounting for and providing abstract control over communication and synchronization costs. The Hierarchical PRAM (H-PRAM) model controls conceptual complexity in the face of asynchrony in two ways. First, by providing the simplifying assumption of synchronization to the design of algorithms, but allowing the algorithms to work asynchronously with each other; and organizing this control asynchrony via an implicit hierarchy relation. Second, by allowing the restriction of communication asynchrony in order to obtain determinate algorithms (thus greatly simplifying proofs of correctness). It is shown that the model is reflective of a variety of existing and proposed parallel architectures, particularly ones that can support massive parallelism. Relationships to programming languages are discussed. Since the PRAM is a sub-model, we can use PRAM algorithms as sub-algorithms in algorithms for the H-PRAM; thus results that have been established with respect to the PRAM are potentially transferable to this new model. The H-PRAM can be used as a flexible tool to investigate general degrees of locality (“neighborhoods of activity) in problems, considering communication and synchronization simultaneously. This gives the potential of obtaining algorithms that map more efficiently to architectures, and of increasing the number of processors that can efficiently be used on a problem (in comparison to a PRAM that charges for communication and synchronization). The model presents a framework in which to study the extent that general locality can be exploited in parallel computing. A companion paper demonstrates the usage of the H-PRAM via the design and analysis of various algorithms for computing the complete binary tree and the FFT/butterfly graph

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored
    • …
    corecore