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Abstract 

We introduce a model of parallel computation that retains the ideal properties of the PRAM 

by using it as a sub-model, while simultaneously being more reflective of realistic paral

lel architectures by accounting for and providing abstract control over communication and 

synchronization costs. The Hierarchical PRAM (H-PRAM) model controls conceptual com

plexity in the face of asynchrony in two ways. First, by providing the simplifying assump

tion of synchronization to the design of algorithms, but allowing the algorithms to work 

asynchronously with each other; and organizing this "control asynchrony" via an implicit 

hierarchy relation. Second, by allowing .the restriction of "communication asynchrony" in 

order to obtain determinate algorithms (thus greatly simplifying proofs of correctness). It 

is shown that the model is reflective of a variety of existing and proposed parallel architec

tures, particularly ones that can support massive parallelism. Relationships to programming 

languages are discussed. Since the PRAM is a sub-model, we can use PRAM algorithms 

as sub-algorithms in algorithms for the H-PRAM; thus results that have been established 

with respect to the PRAM are potentially transferable to this new modeL The H-PRAM 

can be used as a flexible tool to investigate general degrees of locality ("neighborhoods" of 

activity) in problems, considering communication and synchronization simultaneously. This 

gives the potential of obtaining algorithms that map more efficiently to architectures, and of 

increasing the number of processors that can efficiently be used on a problem (in comparison 

to a PRAM that charges for communication and synchronization). The model presents a 

framework in which to study the extent that general locality can be exploited in parallel 

computing. 

A companion paper demonstrates the usage of the H-PRAM via the design and analysis 

of various algorithms for computing the complete binary tree and the FFT /butterfly graph. 



1 Introduction 

In few areas of computer science is theoretical research as important to practice than in 

parallel computer systems. "Systems" is a very general term, broadly standing for the 

integrated hardware and software that comprises the computer that a user sees. One reason 

theoretical work is important is is that it is necessary to have sound conclusions about 

the operation of a system before undertaking the cost of building it. This is particularly 

important in parallel computing, since there are so many different ways of building and 

using parallel systems. 

Another reason for the importance of theoretical work is that the youth and conceptual 

complexity of parallel computing necessitate simplified and clean descriptions of systems, 

in order to be able to discover and apply general principles and methods without excessive 

complicating "implementational" baggage. This is done by defining models at certain levels 

of abstraction, and designing and analyzing algorithms with respect to them. Although 

simplicity is of prime importance in a model, in order to be useful in the real world a model 

must allow the efficient usage of (some) realistic parallel computer system. This effectively 

means that a "good" (fast, efficient) algorithm for the model should translate to a"good" 

algorithm on a system; if this holds generally we could say that the model is reflective of the 

system. The simultaneous achievement of simplicity and reflectivity can be difficult, and the 

relative balance between these two properties in a model is the subject of much debate. 

In this paper a model is presented that we believe achieves a good balance between 

simplicity of usage and reflectivity of realistic systems. Simplicity is attained through implicit 

hierarchical organizations, synchronous communication, and the use of the PRAM model as 

a sub-model. Reflectivity is achieved by accounting for communication and synchronization 

costs, and these can be controlled through the representation of a generalized form of locality. 

The model is defined in Section 2. Since parallel computing is a rather unorganized field, 

with conflicting and sometimes vague terms, it is necessary to first lay some groundwork, 

which we do in the remainder of this section. 

1.1 Types of models 

A "computing model", in the general sense, is a simplified and clean description of a com

puter. Models can differ not only in the specifics of their definitions, but also by the levels of 

abstraction away from the hardware that they reside in, which is what we are concerned with 

in this section. In sequential computing, with its standardized von Neumann architecture, 
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existing models differ only by their level of abstraction; this combined with the relative sim

plicity of sequential computing (to parallel computing) has made it unnecessary to explicitly 

classify types of models. In parallel computing, though, the inherent complexity of the field 

along with the existence of a wide range of architectures, and also models which are not 

(yet) buildable as architectures, makes it seem important to at least loosely classify models 

by level of abstraction. This would negate any possible confusion about purposes of models, 

and make explicit the translations a high level user program would need in order to execute 

on the low level hardware of some computer. Ideally, multiple compilations could be done, 

with each compilation mapping a program for a model in a higher class to a model in the 

next lowest class. 

In this paper we use four basic types of models: machine, architectural, computational, 

and programming. The machine model is at the lowest level of abstraction. The description 

of the computer by this type of model consists of the hardware and operating system. As

sembly language programming could be considered as using the machine model. Computer 

architectures are abstractions of the hardware and operating system, and are thus models in 

themselves. Thus the architectural model is at the next higher level of abstraction over the 

machine model. The architectural model of a parallel computer describes the interconnection 

network (thus how to perform communication, but not its implementation details), whether 

the computer is synchronous or asynchronous, SIMD or MIMD, and whether the physical 

memory of the computer consists of one large bank (shared memory) or the union of the 

local memories of the processors (distributed memory). 

The computational model (or model of computation) is at the next higher level of abstrac

tion over the architectural model. Ideally, a model of computation provides an abstract view 

of a class of computers while accurately reflecting costs and resources of those computers. 

It should be simple and general enough to make the design and analysis of algorithms, and 

the proving of lower bounds for problems, relatively easy. At the same time, complexity re

sults of algorithms on the model should sufficiently predict their performance on computers. 

The RAM (Random Access Machine) [AHU) is a widely accepted model of sequential com

putation which satisfies these requirements with respect to the von Neumann architectural 

model. 

The computational model is usually used in theoretical work, and is sometimes called 

an "abstract" or "formal" model corresponding to an architectural model. As this suggests, 

there has traditionally been (in sequential computation) a very close relationship between 

the computational and architectural models, lo the point of considering them the same thing 
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except that the computational model has defined cost functions for the purpose of algorithm 

analysis. Although they may be considered equivalent, they need not and should not be. For 

example, the PRAM model of parallel computation is not physically implementable as an 

architectural model, and there has been much interest in simulating (mapping) the PRAM 

on realistic architectures. 

The programming model is at the next higher level of abstraction over the computational 

model. We define this type of model to describe the computer in terms of the semantics of 

a particular implementation of a programming language, i.e. a formalization of a language. 

One key difference between a programming model and a computational model is that a 

computational model typically describes memory as a sequence of memory locations, while 

a programming model will describe it in terms of (possibly elaborate) data structures. 

The current state of parallel computing consists of programming models mapped to (im

plemented on) architectural models, which results in programs being architecture dependent, 

and the existence of a nice model of computation (the PRAM) which is not reflective of re

alistic architectures. Additionally, programming directly on architectural models is quite 

complicated. What is needed is computational models possessing the properties of sim

plicity and reflectivity of realistic architectural models, that programming models can be 

mapped to. 

1.2 Models of computation 

In parallel computing, the PRAM (Parallel RAM) ([FW] [82], among others) has become 

quite established as an ideal model of parallel computation; the evidence is the large body 

of work which now exists on parallel algorithm design and analysis with respect to it. The 

reason for this is that the PRAM provides an abstraction that removes many of the com

plications which make the programming of parallel computers so much more difficult than 

the programming of sequential ones. This allows algorithm designers to concentrate on the 

logical structure of a parallel computation. The PRAM provides a very simple basis upon 

which to design, analyze, and compare algorithms, and has proven to be a very useful vehicle 

for studying the power and limitations of parallel computing (see [KR] and [EG] for surveys 

of results). Many organizational strategies in algorithm design have been discovered because 

of the PRAM's simplicity. 

The PRAM consists of a collection of sequential processors (RAMs), each with their 

own bounded (usually small) private memory, and each of which can access any location 

of a global shared memory in unit time. Processors operate synchronously (but may run 
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different programs); in any one step a processor may read from shared memory into its private 

memory, write into shared memory from its private memory, or perform a computation on 

operands in private memory, storing the result in its private memory. Each step (consisting 

of a read, a write or a compute) is assumed to take unit time. Different variants of the 

PRAM can be defined based upon how concurrent writes and/or reads to the same shared 

memory location are handled (EREW, CREW, CRCW with various methods of resolving 

write conflicts), and by adding read-modify-write (Fetch-&-Op) capabilities (strong PRAM). 

Although it provides an ideal and simple view to the programmer, the PRAM has been 

criticized as being too far away from realistic architectures, in that it does not accurately 

reflect costs and resources. Thus there is no close relationship between the PRAM and 

realistic parallel architectural models like there exists between the RAM and von Neumann 

architectures in the sequential domain. In fact, one of the reasons that the PRAM has become 

established despite its distance from "reality" is that no standard parallel counterpart of the 

von Neumann model has emerged (to serve as a basis for comparison of algorithms); there is a 

great variety of existing and proposed architectures. An architectural model is of paramount 

importance as a "meeting place" for hardware and software designers, and has thus been 

called a "bridging model" by Valiant. Recently in [V2] he claims that what is required before 

general purpose parallel computation can succeed, as sequential computation has done, is 

the adoption of a standard bridging model; he then goes on to introduce one based on 

preservation of efficiency when mapping PRAM-like programs to hardware. Snyder [S3] has 

also discussed these issues in the context of "type architectures". 

Regardless of the details of architectural models, a computational model still needs to 

accurately reflect costs and resources, so we can't necessarily blame the PRAM's distance 

from reality on lack of adequate architectural models. H there were a sufficiently close 

relationship between the PRAM and an architectural model, then it would be possible to 

address these issues in the context of the architectural model (i.e. in the accurate reflection 

of the underlying machine model). Still, a PRAM model more reflective of reality would only 

be beneficial. First, it would not require the architectural model to be so powerful, and thus 

possibly expensive. Second, it can only increase the retainment of the "general performance" 

of a PRAM program when it is mapped onto the underlying architecture. Third, there is no 

escaping the variety of existing and proposed architectures. 

Because of the attractiveness of the PRAM's conceptual simplicity, considerable research 

has been performed to bring the model closer to realistic parallel computers. Three primary 

issues arise here: communication, synchronization, and memory granularity (or pipelining). 



Communication is a cost in parallel computers that the PRAM does not account for. The 

weakest P processor PRAM (the EREW variant) allows any P distinct memory locations 

to be accessed simultaneously. This implies an unbounded fan-in of communication links 

to individual memory locations, and is clearly impractical. In reality, system memory is 

partitioned into memory modules which can only service a constant number of access requests 

per memory cycle. The memory modules may exist as physical banks (shared memory) 

or as local memories of processors (distributed memory). There has been extensive work 

on simulating the shared memory abstraction of PRAMs on architectures with bounded 

fan-in to memory modules, both probabilistically [DM] [KRS] [LPPl] [Rl] [V2] [KU] and 

deterministically [LPP2] [H] [HP] [HB] [HGC] [AHMP] (UW]. However, there is another 

aspect of communication that no PRAM simulation can overcome: the communication delay, 

or latency, of an architecture. The latency of an architecture is typically the diameter of its 

interconnection network; many global memory accesses will need to traverse the full diameter 

of the network. Thus the latency of an architecture serves as a lower bound for any PRAM 

simulation on it. The significance of latency has resulted in recent work on PRAM variants 

which take it into account [ACSl] [PY] [PU2]. The thrust of this work is to use cheaper 

local computation as much as possible in order to limit more expensive communication. 

Synchronization is a cost in parallel computers that the PRAM does not account for. 

The PRAM is synchronous, i.e. after every step on it there is a "free" synchronization step 

over all of the processors. While the assumption of free synchronization may be valid when 

the reflected underlying architecture is SIMD, in general synchronization has a significant 

cost (it is at least of the order of the latency, and may be up to a logarithmic factor greater). 

Additionally, the real world, and thus many general applications by definition are (naturally) 

asynchronous; to force synchrony where it is not needed or wanted is wasteful. There has 

been much recent work on incorporating asynchrony into PRAMs [KRS) [MSP) [Gl) [G2] 

[CZl] [CZ2) [N]. 

Memory granularity is a possible resource in parallel computers that the PRAM does 

not represent. In some architectures there is a significant cost, typically the latency, for a 

processor to access a word in memory, but after that subsequent words can be accessed in 

unit time. Let l be the latency of an architecture, and c be a constant representing the 

ratio between the time taken by a "communication operation" and the time taken by a 

"computation operation" in an architecture. Then the architecture has memory granularity 

g if< g contiguous words in memory can be accessed in time l + c ·g. Typically, granularity 

is correlated with latency in architecture design, so that g contiguous words can be accessed 
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in time 0(£). Conceptually, granularity g means that information can be transferred in the 

architecture in blocks of size g or less. In contrast, if g words are accessed by a processor 

in a PRAM algorithm individually (as it must), then on the underlying architecture it 

will take time lg. In [ACS2] a PRAM variant (BPRAM) is introduced t"!Iat can employ 

"block transfers" and thus provides a representation of the resource of granularity. Memory 

granularity may be defined without the restriction that words be in contiguous memory 

locations. Some architectures may be capable of performing g arbitrary memory references 

so that they complete in time l + c · g; Gibbons' asynchronous PRAM model [Gl] [G2] is 

an example of a model that represents this resource. Memory granularity has been referred 

to as the ability to pipeline memory references (e.g. block pipelining or arbitrary pipelining, 

according to whether there is a restriction that words accessed be in contiguous memory 

locations or not). 

Valiant [V2] [V3] has addressed the above issues in a unified framework, only for an alter

nate purpose of designing architectural models that can "support" the PRAM abstraction. 

The danger of adding constraints to a model of computation in order to make it more 

reflective of real architectures is that it may result in the sacrifice of the abstract properties of 

the model that have established it as a good model in the first place. The PRAM provides a 

conceptually simple and general view, but does not accurately reflect costs and resources. A 

model that accurately reflects costs and resources but is not conceptually simple and general 

would not be much better. For example, one of the two properties of the PRAM which lend 

it its "ideal" abstract view is its assumption of synchronous execution (the other property 

is unit time communication to any memory location). Thus it could be claimed that by 

incorporating asynchrony into the PRAM we are sacrificing half of its advantages. It is well 

known how difficult asynchronous programming is. This argument is stated in the general 

sense; it does not hold when the model is meant for a specific class of architectures which 

must be programmed asynchronously. This is the case for the above-mentioned work on 

asynchronous PRAMs; it is targeted towards existing shared memory MIMD architectures. 

Another negative consequence of modifying the PRAM model too much is that the large 

body of work that has been done in respect to it may no longer be applicable to the new 

model. It is likely that new algorithms have to be designed for problems for which (efficient) 

PRAM algorithms already exist, in order to efficiently make use of the new model; this 

situation occurs for example in the asynchronous PRAM work referenced above. Ideally, we 

would like to build on past results. 

It can be argued that, at least at the present time, simplicity of usage is a more impor-
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tant property in a computational model than (perfect) reflectivity of realistic architectures. 

This follows from the fact that the largest "consumers" of parallel computers will not be 

computer scientists, but those from other science and engineering fields. Parallel computing 

will not become widespread unless models are sufficiently simple for non-computer scientists 

to use productively. This suggests the path of defining a computational model that retains 

the PRAM abstraction and finding a means, other than adding (complicating) constraints, 

to make it more reflective of realistic architectural models, but not insisting on perfect re

flectivity. Perfect reflectivity of "reality" is not such a good idea anyway, one reason is that 

reality changes as technology advances. 

1.3 Overview of the paper 

In this paper we introduce a model which accounts for and provides control over communi

cation and synchronization costs an abstract sense (as a computational model should) and 

which, instead of changing the properties of the PRAM, takes the opposite direction and 

makes the PRAM a sub-model. It also simultaneously controls conceptual complexity via 

the use of hierarchy. Hierarchy is well-established in computing to control conceptual com

plexity [Ml]; here we employ it as a method of organizing asynchrony. Although the model is 

designed in an ideal sense, i.e. without considering its relation to any specific architectures, 

it turns out that it is reflective of a variety of existing and proposed architectural models. We 

also discuss possible relationships between the model and parallel programming languages 

(programming models). 

The Hierarchical PRAM (H-PRAM) model is defined and discussed in Section 2; com

parisons with other relevant computational models is also done there. In Section 3 we discuss 

the model's relationships to existing and proposed architectures. Relationships to overlaying 

programming models are discussed in Section 4, and Section 5 concludes the paper. 

The companion paper [HR] provides an introduction to the use of the H-PRAM through 

algorithms for computing a complete binary tree, and gives a case study of the model through 

various algorithms for computing the FFT /butterfly graph. 
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2 The Hierarchical PRAM model 

2.1 Definition 

The Hierarchical PRAM (H-PRAM) model consists of a dynamically configurable hierarchy 

of synchronous PRAMs, or equivalently, a collection of individual synchronous PRAMs that 

operate asynchronously from each other. A hierarchy relation defines the organization of 

synchronization between independent PRAMs. We treat the hierarchy in a top-down way. 

Suppose we have a P-processor H-PRAM. At Ievell of the hierarchy, which is the entry point 

of an algorithm, or the view of the model before an algorithm executes its first step, we have 

a single P-processor synchronous PRAM. Allowable instructions are any PRAM instruction 

and one additional instruction: the partition instruction, which adds a controlled form of 

asynchrony to the model. A partition step in an algorithm partitions the P processors into 

disjoint subsets and assigns a synchronous PRAM algorithm to execute on each of them. 

Each subset of processors is a synchronous PRAM operating separately (asynchronously) 

from the others (the extent of the shared memory "belonging" to each "sub-PRAM" is 

defined below). This is seen as level 2 of the hierarchy. The hierarchy relation defines how 

the individual sub-PRAMs, or more specifically the PRAM algorithms running on them, 

relate to each other, i.e. synchronize with each other. 

In this paper we define the hierarchy relation to be that of recursive decomposition, or 

a tree. Other relations are possible; see (Ml) for a hierarchy relation based on condensation 

of cyclic subgraphs. 

With a tree hierarchy relation, each individual sub-PRAM in level2 runs its algorithm to

tally asynchronously from the others. When the algorithm terminates, the sub-PRAM waits 

until all ofthe algorithms on the other sub-PRAMs terminate, i.e. the individual sub-PRAMs 

synchronize with each other. We consider this to be implemented by a synchronization step 

on the sub-PRAMs which follows every partition step. When the synchronization step on 

the sub-PRAMs finishes, the next step of the P-processor PRAM algorithm at Ievell begins. 

Thus the time complexity of a partition step is the maximum of the times of the PRAM 

algorithms running on the individual sub-PRAMs. The non-partition steps of the level! 

PRAM algorithm (computation and communication steps on P processors) are synchronous 

by definition; we consider this to be implemented by a synchronization step on P processors 

which follows every non-partition step. 

Each of the algorithms in level2 is designed with a parameterized number of processors, 

so from its vantage point it is at level 1 of a hierarchy. Partition steps can be used here to 
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create level 3 of the hierarchy. This process may continue recursively until partitioning is 

no longer possible, i.e. when we are running a PRAM algorithm on a !-processor PRAM. 

Thus, an H-PRAM algorithm consists of a hierarchy relation and a collection of synchronous 

PRAM sub-algorithms, each augmented with the partition instruction (except possibly those 

that operate at the bottom level of a hierarchy). Since each sub-algorithm applies to a 

two-level hierarchy (or one-level, if there are no partition instructions in it), the H-PRAM 

can be structurally defined as a recursive two-level hierarchy. In view of this, we often 

speak of a level,\ synchronous PRAM augmented with the partition instruction (and/or the 

associated algorithm), and its level,\+ 1 sub-PRAMs (and/or their associated algorithms). 

The H-PRAM, and the H-PRAM algorithm, is what we have when ,\ = 1. 

In order to define the form of the partition instruction, consider a P'-processor (sub)

PRAM at some arbitrary level in a hierarchy. A partition instruction in its associated 

algorithm has the form 

partition { P1 : Algorithm-1 (parameter-list); 

P2 : Algorithm-2(parameter-list); 

Pq: Algorithm-Q(parameter-list) } 

where Q is the number of sub-PRAMs created, Pi is the number of processors in the ith 

sub-PRAM, Algorithm-i is the algorithm assigned to the ith sub-PRAM, 1 < i ~ Q, and 

Q 

l:Pi = P' 
i=l 

Intuitively, the partition instruction acts like a call of Q procedures in parallel. 

Very often in H-PRAM algorithm design, the partition instruction is used to create a 

number of sub-PRAMs, each of which has the same number of processors and the same 

algorithm (with the same parameter list) assigned to it. In this case we use an abbreviated 

form of the partition instruction: 

partition { Q, Pi, Algorithm(parameter-list)} 

where Q is the number of sub-PRAMs created, 11 is the number of processors in each of 

them, and Q ·Pi= P'. Algorithm is the name of the algorithm assigned to each sub-PRAM. 

Any sub-PRAM sub-algorithm in the H-PRAM can be seen as a PRAM algorithm by 

simply viewing any partition instruction as t1 procedure/function call. 
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At this point an example is called for. Assume that P is the number of H-PRAM 

processors and that P ~ 8. The H-PRAM algorithm Algl(P) consists of five sub-algorithms, 

and does nothing except create a hierarchy for demonstration purposes. The sub-algorithms 

Alg2(P'), Alg3(P'), Alg4(P'), and Alg5(P') do absolutely nothing (except exit the instance 

they are invoked). The sub-algorithm Algl(P') is given below. 

Algl(P') 

if P' > 16 then 

partition{2, P' /2, Algl(P' /2)} 

else 

< Comment: P' = 8 > 
partition{ 

P' /2: Alg2(P' /2); 

P' /4: Alg3(P' /4); 

P' /8: Alg4(P' /8); 

P' /8: Alg5(P' /8)} 

end-if-then-else 

end-Aigl 

We often give an H-PRAM algorithm the name of the sub-algorithm that runs at Ievell 

of the hierarchy. The algorithm is invoked by Algl(P). Figure 1 shows the the hierarchy 

created by this algorithm when P = 16; each box in each level represents a sub-PRAM in 

that level, and the sub-algorithms running on the sub-PRAMs are noted in the boxes. 

We define two variants of the H-PRAM: 

• Non-uniform H-PRAM: The partition instruction partitions the shared memory 

along with the processors, such that each sub-PRAM has its own "private" block of 

shared memory disjoint from the shared memories of the other sub-PRAMs. If a 

level .A+ 1 sub-PRAM has 1/x of the processors of its level..\ PRAM, then the size of 

its shared memory is 1/x of the size of the level .A PRAM's shared memory. 

• Uniform H-PRAM: The partition instruction does not partition the shared memory 

along with the processors. Each sub-PRAM in a hierarchy has the H-PRAM's entire 
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16-processor H-PRAM 

i I 

Levell 

Alg1(16) 

Level 2 

Level 3 

Alg2(4) Alg2(4) 

Figure 1: Hierarchy arising from Algl(16) 

shared memory (the shared memory seen at level 1 of a hierarchy) as "its" shared 

memory, i.e. the sub-PRAMs share the global shared memory. 

The names "non-uniform" and "uniform" refer to the cost (time) of accessing a shared 

memory location. In the uniform H-PRAM any memory access by any sub-PRAM takes 

the same time (proportional to the "size" of the entire H-PRAM), while in the non-uniform 

H-PRAM a memory access by a sub-PRAM takes time proportional to the "size" of that sub

PRAM. Sections 2.2 and 2.3 discuss the concepts behind and implications of these definitions. 

The PRAM sub-models of the H-PRAM may be any of the common variants except 

asynchronous PRAMs, e.g. EREW, CREW, CRCW, strong, LPRAM [ACSl], BPRAM 

[ACS2]; or PRAMs augmented with scan [Bl] or multiprefix [R2] unit-time operations. We 

do not restrict all of the sub-models to be the same variant. 

The use of the BPRAM as a sub-model implies block pipelining capability. Note that 

in block pipelining, only one instruction to access memory is outstanding at a time, but in 

arbitrary pipelining, as many instructions as there are memory references being pipelined 

are outstanding at a time [G2]. Essentially, the H-PRAM represents the resource of memory 

granularity by passing along responsibility for it to the sub-models. (However, it may be 
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that this resource in a parallel computer will be "consumed" by an architectural model for 

the purpose of supporting the efficient mapping of the overlaying H-PRAM computational 

model to it; if so, there will be no pipelining capability in the H-PRAM. We return to this 

in Section 3.) 

Because the model is meant to be reflective of reality, it is parameterized by latency, 

synchronization cost, and memory granularity. The first two are functions of the number 

of processors being communicated amongst and synchronized, respectively; the functions 

are defined by the specific underlying architecture. The last is a function of latency and a 

quantity g defined by an architecture. These parameters allow H-PRAM algorithm design 

and analysis to be reflective of the costs and resources of realistic parallel architectures, as 

shall be seen. 

Partition steps can be viewed as compound instructions on "super-processors", thus 

giving the appearance of lock-step execution. In other words, each level..\+ 1 sub-PRAM 

involved in a partition step runs an algorithm that performs an operation; from the level ..\ 

vantage point it is as if (possibly different) operations are done in parallel on disjoint sets 

of processors, or disjoint super-processors. The operations do not take generally take unit 

time like a PRAM step, so they are seen as compound steps. Because there are two types of 

steps, unit-time PRAM steps on processors and compound steps on super-processors, there 

are two types of synchronization, a-synchronization on the processors of a PRAM step and 

fJ-synchronization on the super-processors of a compound step (this will be explained more 

fully below). 

2.2 Discussion 

The purpose in designing the H-PRAM was to obtain a flexible model that is more reflective 

of realistic parallel architectures than the PRAM, while retaining its simplicity. This can be 

reformulated as accounting for and providing control over four types of complexity simulta

neously: computation, communication, synchronization, and conceptual. The first three are 

the fractions of the total time taken by an algorithm which are devoted to performing local 

computation, communication, and synchronization, respectively. These are measurable costs 

in parallel computation; we discuss how the H-PRAM represents and gives control of them 

towards the end of this section and in Section 2.3. The majority of this section discusses 

how the H-PRAM controls conceptual complexity (difficulty of programming) arising from 

asynchrony and communication. 

As mentioned in the introduction, synchronization is costly and potentially wasteful (in 
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that real-world problems, and thus algorithms that solve them, have naturally asynchronous 

functional definitions), thus the H-PRAM admits asynchrony. There are two types of asyn

chrony in parallel computation, which we term control asynchrony (or asynchronous control) 

and communication asynchrony (or asynchronous communication). 

Control asynchrony exists where different processes (sub-PRAMs in our case) execute 

separately from each other, but wait for each other at logical points in their individual algo

rithms. These logical points are usually called synchronization points for the participating 

processes. It can be quite difficult to explicitly organize control asynchrony, keeping track 

of when and where synchronization points occur, and among which sets of processes. The 

H-PRAM allows asynchronous control of multiple synchronous PRAM algorithms, organiz

ing the control structure as a hierarchy. The model constrains conceptual complexity in the 

face of control asynchrony since synchronization between individual sub-PRAMs is implicit; 

the structure of an H-PRAM algorithm implies the organization of control via the hierarchy 

relation. It allows explicit management of control granularity; for example, a coarse grained 

computation can be obtained by using many sub-PRAMs running non-constant time al

gorithms, and a fine grained computation by very few sub-PRAMs running constant time 

algorithms (or no sub-PRAMs, i.e. no partition step, in which case we have one synchronous 

PRAM). 

The other type of asynchrony that complicates asynchronous programming is commu

nication asynchrony. Communication between asynchronously executing processes causes 

even more problems than control asynchrony. Programs become indeterminate, where dif

ferent runs on the same set of data may result in different execution paths. We say that 

two processes (or processors) are communicating asynchronously if they are operating asyn

chronously from each other and each accesses the same shared memory location, where 

1. one access is a write and the other is a read, or 

2. each access is a write and the two values being written are different. 

Since the timing of asynchronously operating processes is independent of each other and 

they may have different (and varying) relative speeds, there is no way to predict the order

ing of the communication operations, i.e. values read or written in a particular instruction 

sequence may be different from run to run. Programmers must explicitly coordinate asyn

chronous communication operations in order to prevent this from happening, a very difficult 

task. This requires the existence of additional synchronization primitives (e.g. busy-waiting, 

arbitration) in the computer system, along with their corresponding (significant) costs. Since 
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programs are correct only if they work regardless of process speeds, it is almost impossible 

to prove correctness in the face of this indeterminacy. Program testing cannot guarantee 

that programs are error-free; debuggers must be left on at all times since a particular "bad" 

sequence of communication operations may not occur for thousands or more runs [G2). This 

is infeasible since debuggers slow down the execution of programs. 

As stated above, the H-PRAM uses hierarchy to control the conceptual complexity of 

control asynchrony. It may or may not use hierarchy to eliminate asynchronous communica

tion, and thus the indeterminacy arising from it, depending on the variant: the non-uniform 

H-PRAM employs a "communication hierarchy" (or hierarchical memory), while the uniform 

H-PRAM does not. Recall that in the non-uniform variant the shared memory is partitioned 

along with the processors, such that each sub-PRAM created by a partition step consists 

of a disjoint set of processors and a corresponding disjoint block of shared memory that 

is private to it. No sub-PRAM algorithm may access a memory location belonging to the 

private memory of another sub-PRAM. Thus there is no asynchronous communication since 

each sub-PRAM synchronously operates on its private block of shared memory. This means 

that, assuming all synchronous sub-PRAM algorithms are determinate, any non-uniform 

H-PRAM algorithm is determinate; a single successful run of the algorithm on a particular 

input serves as a proof of correctness for that input. If there is an error in a program run, 

the error can be reproduced in future runs on the same input. A debugger need only be 

turned on when required. (Note that a sub-PRAM in the H-PRAM model corresponds to a 

process in the discussion of the previous paragraph.) 

Indeterminacy can only arise in a synchronous PRAM algorithm if a read from and a 

write to the same memory location is done in the same step, or if a concurrent write of 

different values to the same memory location is done in the same step where the resultant 

written value may be different from run to run. Since a read and a write on the same location 

in the same step is disallowed in all PRAM variants, the only place where indeterminacy 

can occur is in the ARBITRARY CRGW PRAM variant, where the resultant written value 

is chosen randomly. This means that an ARBITRARY CRCW PRAM algorithm must be 

proven correct regardless of resultant written values, or that the underlying architecture 

must provide a primitive (black box routine) to "choose pseudo-randomly" the same value 

be written in different runs of the algorithm. 

Another way of seeing how the non-uniform H-PRAM disallows asynchronous communi

cation is to note that it enforces the paradigm that any two processors which are operating 

asynchronously from each other, and want to communicate with each other, must synchro-
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nize with each other between the time one accesses the memory location being communicated 

through, and the time the other one does. Consider a partition step in a level .,\ PRAM algo

rithm which creates a number of level.,\+ 1 sub-PRAMs. Assume we have two processors in 

different sub-PRAMs (thus the processors are operating asynchronously from another) that 

want to communicate through a shared memory location which "belongs" to one of the sub

PRAMs. The "communication operation" consists of two successive accesses to this memory 

location. The only way for it to occur is for the processor in the sub-PRAM "owning" the 

memory location to make its access, then for all sub-PRAM algorithms to terminate, thus 

finishing the partition step in the level .,\ PRAM algorithm; and finally for the other processor 

to perform its access to the memory location in the level.,\ algorithm. Sub-PRAMs synchro

nize with each other upon the termination of their algorithms, thus a partition step can be 

seen as immediately followed by a synchronization step on the sub-PRAMs. We call this 

a ,8-synchronization step (where an a-synchronization step follows every non-partition step 

of a synchronous sub-PRAM algorithm, and operates on all processors in that sub-PRAM). 

The above discussion shows that the non-uniform H-PRAM disallows communication asyn

chrony by enforcing the existence of a ,8-synchronization step among any two asynchronously 

communicating processors (i.e. processors in different sub-PRAMs) between their memory 

accesses. 

In the uniform H-PRAM, shared memory is not partitioned along with the processors; all 

sub-PRAMs in a hierarchy share the same (global) shared memory. Asynchronous communi

cation, thus indeterminacy, is possible in this variant of the model. However, if an H-PRAM 

algorithm is written such that there are always ,8-synchronization steps among communicat

ing processors belonging to different sub-PRAMs between the time one accesses the memory 

location being communicated through, and the time the other one does, then the algorithm 

will not use asynchronous communication and will thus be determinate. We note that in 

the uniform variant, a memory location being communicated through does not have to "be

long" to either of the sub-PRAMs containing the communicating processors. Thus, instead 

of enforcing determinate behavior at the computational model level, as the non-uniform H

PRAM does, the responsibility for this is passed on to an overlaying programming model at 

the next highest level of abstraction. What this means is that the programmer is responsible 

for explicitly organizing communication such that it is not asynchronous (by inserting ,a
synchronization steps, i.e. by partitioning appropriately), and that the formal programming 

model being used to do this must provide enforcement (i.e. can find and flag any attempt 

at asynchronous communication as a progr<~m error, and abort the program). We consider 
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this a requirement for any programming model mapped to the uniform H-PRAM. 

Generally, the H-PRAM controls conceptual complexity in the face of asynchrony by 

providing an implicit hierarchy for organizing control asynchrony, and by disallowing com

munication asynchrony, either explicitly (the non-uniform variant) or by depending on an 

overlaying programming model to do so (the uniform variant). The concept of allowing 

control asynchrony but not communication asynchrony can be seen as a compromise be

tween the flexibility of completely asynchronous models and the simplicity of completely 

synchronous models. The resulting benefits of determinate computation and lack of need 

for expensive synchronization primitives should not be underestimated. Gibbons refers to 

models of this type as "semi-synchronous"; in [G2] he provides an extensive discussion which 

includes, in part, a new model called the Asynchronous PRAM, "repeatable" (determinate) 

algorithms for it, and relationships to possible overlaying programming models (as the model 

does not enforce determinacy itself). Steele [S4] has introduced a programming model based 

on a hierarchy of processes operating on a shared memory, including dynamic enforcement 

mechanisms for maintaining determinacy (error checking for asynchronous communication). 

The H-PRAM retains the shared memory abstraction of the PRAM, thus retaining its 

property of simplicity the face of parallel communication (the practicality of this will be 

addressed below). The non-uniform variant can be seen as embodying a multi-level memory 

hierarchy, where the access time in a sub-PRAM to its private block of shared memory is 

a function of the size of the sub-PRAM. While "uniform" in the name uniform H-PRAM 

suggests that there is a one-level shared memory where all memory accesses by all sub

PRAMs take the same amount of time (which is a function of the size of the entire H-PRAM, 

regardless of the size of a sub-PRAM), we consider the uniform variant to embody a two

level memory consisting of the global shared memory and memory private to each H-PRAM 

processor. Clearly an access to private memory by a processor will be much faster than an 

access to shared memory. The LPRAM [ACSl] and BPRAM [ACS2] each have a two-level 

memory, where private memory is unbounded in size (although the processors in the PRAM 

are defined to have private memories they are seen as being small, e.g. consisting of a set of 

registers). 

The other types of complexities mentioned at the beginning of this section were com

putation, communication, and synchronization; in contrast to conceptual complexity, these 

are measurable by adding up their total costs in an algorithm. The cost of a computation 

operation is usually defined to take unit time (operands are in a processor's registers). The 

H-PRAM provides control over communication (in the non-uniform variant) and synchro-
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nization costs via the partitioning into smaller subsets of processors, with communication 

(in the non-uniform variant) and synchronization only occurring between processors of the 

same subset. The latency and the synchronization cost of an architecture are functions of the 

number of processors being communicated amongst and synchronized. Thus, the H-PRAM 

reflects and allows control over costs in an underlying architecture in an abstract sense, as 

a model of computation should. The property that the H-PRAM assumes of an underlying 

architecture is that it be "partitionable into contiguous segments", where the word "contigu

ous" implies that the processors, and memory (in the non-uniform variant), in a segment be 

close or in the physical neighborhood of each other (a stronger assumption would be that a 

segment have the same properties as the architecture, only a smaller size). We return to this 

in Section 3; the point is that the H-PRAM is representative of the situation where costs are 

functions of the number of processors participating. 

The term communication locality (or just locality) has been used in the literature pri

marily to describe certain algorithms where processors perform substantially more local 

computation steps than global communication steps. Since local computation steps take 

unit time and global communication steps take time !l(latency), this results in more efficient 

algorithms, and normally is exploitable only when the input size is significantly larger than 

the number of processors. It is normally obtained by having processors run sequential algo

rithms on data in their local memories independently of each other, at certain stages of the 

algorithm. Since processors running independent sequential algorithms need not synchro

nize with each other (until the end of the stage), the term locality can be used to refer to 

synchronization in addition to communication. We call this type of locality strict locality. 

The non-uniform H-PRAM can represent strict communication and synchronization locality, 

and the uniform H-PRAM strict synchronization locality, by partitioning into }-processor 

sub-PRAMs and assigning sequential algorithms to them (in the non-uniform variant, a 

1-processor sub-PRAM's private block of shared memory is seen as the processor's local 

memory; the following subsection shows the validity of this statement). 

The H-PRAM can also represent neighborhood locality, in which activity (communication, 

in the non-uniform variant, and synchronization) can be organized into independent neigh

borhoods (i.e sub-PRAMs). Members (processors, memory locations) of a neighborhood are 

in close proximity to each other in comparison with proximity to members of other neigh

borhoods. The costs of neighborhood activity are functions of the size of the neighborhood. 

Strict locality refers to the special case where neighborhoods have "size 1". We use the term 

general locality to encompass both strict and neighborhood locality. Many problems seem 
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to submit to natural solutions possessing the property of general locality. General locality 

has not seemed to be previously researched (although there has been some work on it in the 

field of distributed computing). 

Clearly, the non-uniform variant of the H-PRAM is the most ideal since it provides 

the tightest control over all four types of complexity simultaneously. There are two basic 

reasons for the uniform variant. First, it may be more difficult for an architecture to support 

a partitionable, non-uniform shared memory than a uniform shared memory. Second, there 

may be difficulties in designing algorithms such that data required by a processor is always 

present in the shared memory block private to the sub-PRAM the processor belongs to. We 

will return to these issues later on in the paper. 

Because the H-PRAM accounts for and provides control over communication and syn

chronization costs, it presents a more practical abstract reflection of realities in parallel 

computing, with a minimal amount of added conceptual complexity, than the PRAM. It 

shall be seen to be applicable to variety of architectures. It allows general degrees of locality 

to be employed by algorithm designers. This gives the potential of obtaining algorithms 

that map more efficiently to architectures than could be done otherwise. Since the PRAM 

is a sub-model, we can retain direct relevance of established theory of parallel computing, 

and possibly build on it in a manner of "construction from existing components". It is 

attractive from a practitioner's point of view because of its support of determinate (thus 

testable) parallel programming, and because of the methodology of modular construction 

from sub-algorithms (the traditional way of programming in the sequential domain). 

2.3 Costs and complexity analysis 

This section defines the types and costs of steps in an H-PRAM algorithm, and the method 

of analyzing the complexity of an algorithm. Section 2.3.1 provides complete and detailed 

definitions. Section 2.3.2 defines a streamlined complexity analysis methodology which sim

plifies H-PRAM usage without loss of accuracy or generality. 

2.3.1 Definitions 

Consider any "arbitrary" model of computation which can perform three types of steps: 

computation {on operands in processors' private memories), communication, and synchro

nization. A computation step is (always) defined to take unit time. In a PRAM, a com

munication step takes unit time and synchron i :~,ation is free, i.e. it takes zero time. If an 
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algorithm analyzed on our "arbitrary" model is to accurately predict performance on an 

architecture, then its costs must be parameters of the model. The latency and the syn

chronization cost are functions of the number of processors P being communicated amongst 

and synchronized; we denote these parameters by l(P) and s(P) respectively. The values 

of these parameters are defined by the architectural model, where the communication and 

synchronization mechanisms are implemented. Possible values that the latency l(P) could 

take on are the diameter of the network interconnecting P processors in the architecture, e.g. 

log P for the hypercube and VP for the mesh, or the cost of implementing (simulating) a 

communication step of the "arbitrary" model on the architectural model. The latency func

tion l(x) is an non-decreasing function of x such that l(x) = 0(1) iff x = 0(1). Since f(P) 

is not necessarily the diameter of a P-processor network, we use diam(P) when diameter is 

meant. The synchronization cost is typically diam(P) 5 s(P) 5 diam(P) log P. We often 

use the shorter forms of .e and s when their arguments are clear from context. 

Let T, C, and S denote the number of computation, communication, and synchronization 

steps in an algorithm on this arbitrary model, respectively. We need to discern between these 

types of steps in order to properly account for costs, and predict performance on· the archi

tecture underlying the model. The computation complexity is T (since computation steps are 

defined to take unit time), the communication complexity is C · .e, and the synchronization 

complexity is S · s. and the total complexity of the algorithm is T + C · f + S · s. Setting 

f = 1, s = 0 and S = T + C turns the arbitrary model into a PRAM, and results in a com

munication complexity of C, a synchronization complexity of zero, thus a total complexity 

ofT+C. 

Recall that the H-PRAM has an additional type of step, the partition step. We extend 

the definitions to account for this. The partition step creates a two level (>. and A + 1) 

hierarchy; T, C, and S refer to steps in the level A algorithm. Because a partition step can 

be seen as a compound computation step, we denote the number of partition steps in the 

level A algorithm as Tp. Let the number of level A+ 1 sub-PRAMs (or super-processors) 

created in the ith partition step be Qi, 1 ~ i < Tp, and index these sub-PRAMs by q, 

1 ~ q ~ Qi. Different partition steps may have different costs, unlike the other types of 

steps: recall that a partition step ends when all of the sub-algorithms running on the sub

PRAMs have terminated. Therefore, letting r(q, A+ 1) be the complexity of the algorithm 

running on the qth level A+ 1 sub-PRAM, 1 5 q ~ Qi, of the ith partition step, the cost of 

the ith partition step is max{r(q, A+ 1)11 < q < Qi}. The partition complexity of the level A 

algorithm is Er:!1 max{r(q, A+ 1)11 < q < Qi}. 
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When the sub-algorithms running on the sub-PRAMs of a partition step terminate, they 

must synchronize before the following level A step can start. Only one representative proces

sor from each sub-PRAM need participate in this synchronization step (since all processors 

within a sub-PRAM have synchronized after the final step of the sub-algorithm running on 

it). Thus there is a. different type of synchronization step and a. (possibly) different type 

of synchronization cost. Above we defined S to be the number of synchronization steps 

in an algorithm, and s to be the cost of one of these steps. In terms of a level A PRAM 

in the H-PRAM, we call these a-synchronization steps and redenote S as 8 01 and s as S 01 • 

Note that Sa = T + C. We term the synchronization steps following partition steps as 

P-synchronization steps and denote the number of them as s(J (note s(J = Tp)• 

The cost of a. {3-synchronization step is usually a function of the number of sub-PRAMs 

Q in the partition step being synchronized, but may also be a function of the level A latency, 

and thus the number of processors, say P', in the PRAM executing the partition step. 

Therefore we denote the J]-synchronization cost as sfJ( Q, P') , or just sp when usage is clear 

from context. From the synchronization cost bounds for the "arbitrary" model above, P
synchronization cost in the case that sp is solely a function of the number of sub-PRAMs 

being synchronized is typically diam( Q) < s fJ ( Q, P') < diam( Q) log Q. For the case where P
synchronization cost is also a function of P', its bounds are typically diam( P') < sp( Q, P') $ 

diam(P') log Q. We return to {3-synchronization in Section 3, where these cost definitions 

are justified in the context of underlying architectures. 

In the non-uniform H-PRAM, the latency within a sub-PRAM is a function of the number 

of processors in that sub-PRAM, i.e. l = l(P') where P' is the number of processors in the 

sub-PRAM, and in the uniform variant, lis fixed and a function of the number of processors 

in the entire H-PRAM, regardless of the size of a sub-PRAM. 

Complexities on the H-PRAM are formally defined via recursive functions, because of the 

hierarchy relation of recursive decomposition (however, in practice this formalism is generally 

not needed, as shall be seen). 

Let P be the number of processors in the H-PRAM. For any P'-processor sub-PRAM q0 

in level A of the hierarchy, the total complexity of its associated algorithm on an architectural 

model with latency l, a-synchronization cost s01 , and {3-synchronization cost sp is 

~ ~ 
r(qo,A) = T + C ·l +Sa· Sa+ L:ma.x{r(q,A+ 1)11 < q < Qi} + L:sp(Qi,P') 

i=l i=l 
Tp 

- T ·(sa+ 1) + C · (l +sa)+ L(max{r(q,A + 1)11 ~ q ~ Qi} + sp(Qi,P')) 
i=l 
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(recall that Sa= T + C and Tp = Sp), where 

• in the non-uniform variant: l and Sa are functions of P'. 

• in the uniform variant: l is a function of P, and Sa is a function of P'. 

Let H denote the sub-PRAM at Ievell of the hierarchy, i.e. the PRAM that exists at the 

entry point of an H-PRAM algorithm, or simply the P-processor H-PRAM. Then the total 

complexity of its associated H-PRAM algorithm is r(H, 1), where land Sa are functions of 

P. 
The recursion in this definition bottoms out when Tp = 0, i.e. when there are no partition 

steps in a level..\ sub-algorithm. Intuitively, the definitions state that when analyzing a level..\ 

algorithm, the complexities of the level..\+ 1 sub-algorithms running in the sub-PRAMs of 

partition steps are already known. These complexities have been determined in the same 

way, meaning that analysis starts at the deepest level of the hierarchy and proceeds upward. 

Note that from a level ..\ algorithm's vantage point, the complexities of the level..\+ 1 

sub-algorithms are total complexities, i.e. all communication and synchronization costs have 

been accounted for by the sub-algorithm analysis. Thus a partition step can be seen as a 

compound (non-unit time) step consisting of local computation on super-processors, as there 

is no level..\ communication or synchronization "within" such a step (,8-synchronization is 

performed after the step). The larger the super-processors, the faster they are (potentially, 

through more parallelism); at the same time, the greater the costs of communication and 

synchronization overhead in the sub-algorithms running on them. This is another way of 

looking at the concept of general locality. 

In the literature, latency l( P) has normally been correlated with the diameter of a net

work interconnecting P processors. Alternatively, it could take the value of the cost of sim

ulating a communication step of a PRAM algorithm on a distributed memory architecture, 

since this is the true "cost of communication" when PRAMs are employed as computational 

models in this case. Network diameter is a function of P, and lower bounds any PRAM 

simulation. The cost of simulating a PRAM communication step is also a function of P, so l 

remains a function of P regardless of whether it represents diameter or simulation overhead 

(however, if a simulating architecture and a simulated PRAM have different numbers of 

processors, then l will be a function of both quantities). The non-uniform H-PRAM model 

allows for the control of communication cost via the simulation of multiple "smaller" sub

PRAMs on sub-networks of the underlying architecture. In fact, the non-uniform variant 

seems to relate best to physically distributed memory architPdures that "implement" shared 
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memory as the union of its processor's local memories, since an architecture's memory par

titions naturally along with its processors. The uniform variant is also suitable; memory 

accesses are just allowed to go outside of the sub-network that a sub-PRAM is simulated on. 

The details of PRAM simulation, if used, are part of the architectural model; we return to 

this in Section 3. The point here is that the latency is a parameter representing the cost of 

an H-PRAM communication step; it is most accurate when a mapping of the H-PRAM to 

an architecture defines it as the full cost of "implementing" the communication step on the 

architecture. 

2.3.2 Simplifications 

It is well known that too many parameters in a model of computation can make it hard 

to use. The difficulty of having to consider multiple concepts (parameters) simultaneously, 

and their interactions, tends to cloud up otherwise discernible properties and patterns in 

algorithm design. 

The previous subsection defined three parameters(£, s01 , sp) and their usage for complex

ity analysis on the H-PRAM (we also have the additional obvious parameters of number 

of H-PRAM processors P and input size N). These definitions were necessary for the sake 

of rigor. In this subsection we define a streamlined complexity analysis procedure which 

simplifies H-PRAM usage by reducing the number of parameters that need be considered at 

once. 

Consider an arbitrary P'-processor (sub)-PRAM in a hierarchy, and let R denote its 

corresponding algorithm's partition and ,8-synchronization complexity: 

Tp sfl 
R = L;max{r(q,A + 1)11 ~ q ~ Qi} + "L,s.e(Q;,P') 

i=l i=l 

Then the algorithm's complexity as defined in the previous subsection is 

where sa is a function of P', and .e is a function of P' in the non-uniform variant and of 

P in the uniform variant. This definition charges the a-synchronization cost sa to every 

one of the the T computation steps (i.e. there is an a-synchronization step following every 

computation step). 

The first simplification can be arrived at by requiring that, in any one step, all (active) 

processors must execute a computation step or all (active) processors must execute a com

munication step. This is very reasonable since n10st, if not all, PRAM algorithms are SIMD 



anyway (in any one step all active processors execute the same instruction, not just the 

same type of instruction). If an algorithm is MIMD, we can break a step into two sub-steps, 

the first in which all (active) processors with computation instructions execute these in

structions, and the second in which all (active) processors with communication instructions 

execute them. 

Define a computation-phase step to be a "longest sequence" of consecutive computation 

steps. Thus a computation-phase step is immediately preceded by a communication step or 

the entry point of the algorithm (i.e. it is the first step in the algorithm), and is immediately 

followed by a communication step or the exit point of the algorithm (i.e. it is the last step in 

the algorithm). Note that when all processors are running a sequence of local computations 

(a computation-phase step), it is unnecessary for them to a-synchronize with each other 

with each other until the end of the computation-phase step. Furthermore, it is a reason

able assumption tbat an architecture would not force them to do so. If the information to 

turn off synchronization within a computation-phase step is not available to a compiler, an 

architecture can be directed to only synchronize between any two steps which are not both 

computation steps. 

Therefore, letting T' be the number of computation-phase steps in a sub-PRAM algo

rithm, we need only charge a-synchronization toT' computation steps rather than T. This 

changes the algorithm complexity to 

T + T' · sOt + C · ( l + sOt) + R 

Clearly T' < C + 1 = O(C) and most likely we will have T' ~ C (since most algorithms 

consist of repeated computation-then-communication or communication-then-computation 

stages), so we make the assumption that T' ·~ C with the confidence that little, if any, 

accuracy will be lost. This simplifies the complexity to be 

~ T + C · ( l + 2s0t) + R 

We need to consider the parameters on the cost functions now. Recall that sa = sa ( P') on 

both the non-uniform and uniform H-PRAM variants, l = l(P') on the uniform variant, and 

l = l(P) on the uniform variant. Also recall that sa(P') is lower bounded by diam(P'), and is 

at most a logarithmic (in P') factor greater than diam(P'). However, it is difficult to believe 

that, because of the importance of synchronization, any architecture will be built without 

special support for implementing barrier synchronization of P' processors at the (order of 

the) diameter diam(P') of the network interconnecting P' processors in the architecture 
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(Section 3 addresses this further). Remember that f(P') > diam(P'). Therefore, on the 

uniform variant we have 

f(P) + 2sa(P') 

- f(P) + O(diam(P')) 

< f(P) + O(f(P')) 

- O(f(P)) 

and on the non-uniform variant we have 

f(P') + 2sa(P') 

f( P') + 0( diam( P')) 

O(f(P')) 

For either variant, the complexity becomes 

O(T + C · .e + R) 

which is natural and intuitive (charging latency cost alone to communication steps alone). 

If in fact sa > .e in an architecture, we could simply use sa rather than £. Either way, little 

accuracy is lost due to the small implied constant in the "big Oh" notation. 

As it stands now, complexity analysis employs two parameters, .e and Sf3 (which is part 

of the term denoted by R; see above). We can simplify further by defining a two-stage 

complexity analysis procedure so that only one parameter is under consideration at one 

time: 

1. determine the H-PRAM algorithm complexity, ignoring ,8-synchronization costs. 

2. determine the total cost of 19-synchronization in the H-PRAM algorithm. 

The total complexity of the the H-PRAM algorithm is the sum of the quantities obtained 

in each of these two stages. The first stage consists of counting the numbers of computation 

and communication steps of the sub-PRAM algorithms in the hierarchy, charging a cost of 

f(P') (non-uniform variant) or f(P) (uniform variant) for each communication step in a P'

processor sub-PRAM, and adding on the partition complexities of the sub-PRAM algorithms 

(which have already been determined as analysis proceeds from bottom-up in the hierarchy). 

The second stage usually just consists of a check to make sure that the total cost of 19-
synchronization does not dominate the complexity of the first stage analysis. 
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The separation of ,8-synchronization is probably the proper thing to do anyway, as parti

tionable architectures would likely have special-purpose mechanisms to do ,8-synchronization. 

In practice, analysis is even simpler since the recursion in the complexity definitions is not 

needed. Algorithms will have regular structures, such that each level of a hierarchy consists 

of sub-PRAMs of the same size running the same algorithm. In this case we can analyze 

the complexity of each level (one sub-PRAM algorithm per level) and sum the complexities 

over all levels in the hierarchy. For example, consider an H-PRAM algorithm that employs a 

hierarchy of L levels, where all sub-PRAM algorithms have one partition instruction {except 

at the bottom level L). Let T>., C>., l>., and (sp)>. be the number of computation steps, 

number of communication steps, latency, and ,8-synchroniza.tion cost, respectively, in the 

{identical) sub-PRAM algorithms in level A of the hierarchy. Then the first stage complexity 

is 
L 

L(T>. + C>. ·l>.) 
>..=1 

the second stage complexity is 
L-1 

L(sp)>. 
>..=1 

and the total complexity is the sum of these. 

The companion paper [HR] demonstrates the design and analysis (using the techniques 

of this subsection) of some H-PRAM algorithms. 

2.4 Comparisons to other models 

Clearly, if an H-PRAM algorithm uses no partition steps, then it is a valid PRAM algorithm. 

Thus the H-PRAM subsumes the PRAM in that the PRAM is an instance, or configuration, 

of the H-PRAM (where l = 1 and S 01 = 0). 

In the introduction, we briefly discussed various approaches to making the PRAM more 

realistic as a computational model. These approaches generally involve three main issues: 

communication, synchronization, and memory granularity (or pipelining). In this section we 

compare the H-PRAM to related models under these issues. 

Previous work on asynchronous PRAMs has been targeted at more accurately reflecting 

shared memory MIMD architectures by relaxing the assumption of synchronous execution. 

Maintaining synchrony on these architectures is very expensive since processes may run at 

different relative speeds, so that a single slow process can slow down the whole computa

tion. Process speeds may differ from instructions taking different times to complete and 



from delays that may occur between instruction executions; delays may be due to process 

swapping, contention, interrupts, etc. On all proposed asynchronous PRAMs, algorithms 

are correct only if they work regardless of any delays that may occur among processes. Dif

ferences between them are based on assumptions made about the characteristics of delays; in 

general algorithms designed and analyzed on a model assuming smaller delays are inefficient 

on models allowing for larger delays. 

Gibbons [Gl] [G2] has introduced the Asynchronous PRAM model, where processors 

operate asynchronously on a global shared memory but requires that two communicating 

processors (in the sense described in Section 2.2) explicitly synchronize with each other be

tween the time one accesses the memory location being communicated through and the time 

the other one does. Thus the model is semi-synchronous in that it disallows asynchronous 

communication (although it doesn't enforce it; that is left for an overlaying programming 

model to do), unlike other work on asynchronous PRAMs (next paragraph). Algorithms are 

designed and analyzed on Gibbons' model assuming that delays are small and spread evenly 

among the processors, such that processors progress through their programs at roughly the 

same rate. This is a reasonable assumption for certain system environments (see Section 3). 

Kruskal, Rudolph, and Snir [KRS], and later Cole and Zajicek [CZl], have introduced 

asynchronous PRAM variants that assume bounded deterministic delays. The work of Cole 

and Zajicek [CZ2], and Nishimura (N], assume probabilistic delays. Martel et al. [MSP] 

[MS] allow for completely arbitrary delays, including fail-stop faults, giving "expected work" 

complexity results. The thrust of the Kruskal et al. model is that it is more realistic than 

a synchronous PRAM, but can efficiently simulate a PRAM. The thrust of the other work 

is towards using known (assumed) properties of delays in the algorithm design process to 

obtain algorithms that are efficient in the face of those delays. 

The problem with retrofitting the PRAM to reflect shared memory MIMD architectures 

is that it takes on the latter's property of relative difficulty of programming. The resulting 

algorithms are much more conceptually complex than their PRAM counterparts. The dif

ference between the H-PRAM and the above-mentioned work is that, instead of relaxing the 

synchronization assumption, we accept (insist) on the synchronization assumption as critical 

to controlling conceptual complexity but give means of controlling its extent. For this reason, 

the H-PRAM seems not especially well suited for the existing shared memory MIMD com

puters that the above-mentioned work, except Gibbons', is geared toward; thus we consider 

it orthogonal to this work (in Section 3 we discuss architectures that it is geared toward). 

Gibbons' target architecture consists of a (nearly) regular network of asynchronously oper-
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ating processors where shared memory is implemented as a union of the memory modules 

local to each processor (i.e. on top of physically distributed memory). The H-PRAM is most 

similar with Gibbons' model as it restricts asynchrony by requiring that two communicating 

processors have either an a-synchronization or ,8-synchronization step between them. In fact, 

Gibbons' model can be seen as an instance, or configuration, of the uniform H-PRAM. His 

"all processor synchronization" variant corresponds to a two-level hierarchy with partition 

steps in the Ievell algorithm, where alllevel2 sub-PRAMs consist of a single processor. His 

"subset synchronization" variant corresponds to a three-level hierarchy with partition steps 

in the Ievell and 2 algorithms, where alllevel3 sub-PRAMs consist of a single processor. In 

addition to synchronization costs, Gibbons also accounts for latency, unlike the other work 

on asynchronous PRAMs. 

Previous work on communication complexity in PRAM computations has been aimed 

at reducing global memory references, with their associated costs (latency), by employing 

computation on data in processors' private memory as much as possible. Aggarwal, Chandra, 

and Snir [ACSl] propose the LPRAM model, where processors have unbounded private 

memories, and use it to study communication requirements in problems and algorithms. 

This is a uniform, two-level memory, as discussed in Section 2.2. The basic idea here is to 

read a collection of variables from shared memory into private memory, perform a non-trivial 

amount of local computation on them (communication to private memory is unit-time), 

and write the result(s) back to global memory. The model implied by Papadimitriou and 

Yannakakis [PY), and Papadimitriou and Ullman [PU2), is similar to the LPRAM except 

that it pipelines global memory references. The LPRAM can be seen as an instance of the H

PRAM corresponding to a two-level non-uniform H-PRAM where all global communication 

is done in Ievell and where level2 sub-PRAMs consist of single processors performing local 

computation; the block of global shared memory "private" to a !-processor sub-PRAM is 

seen as the processor's private memory (as communication to it is unit-time since f(P) = 1 

when P = 1). The LPRAM is also trivially an instance of the H-PRAM corresponding to a 

one-level uniform H-PRAM with an LPRAM Ievell sub-model. 

As discussed in Section 2.2, the ratio of computation steps to communication steps in a 

computation has been known as the communication locality (or just the locality) of it; the 

higher it is the better the performance of a PRAM algorithm will be on realistic architecture. 

The difference between the non-uniform H-PRAM and the models of [ACSl] [PY) [PU2] is 

that these models represent strict locality, which distinguishes between comparatively "free" 

communication (unit-time communication to private memory) and communication charged 
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at the full latency of the architecture, while the non-uniform H-PRAM represents neighbor

hood locality in addition to strict locality. Many problems seem to have the characteristic 

of neighborhoods of communication, where communication need not be charged at the full 

latency of the architecture but at the latency of the neighborhood. We give examples in 

[HR]. The point is that there is a limit to replacing communication with local computa

tion; communication must exist in parallel computing and often it need not traverse the full 

"width" of the architecture. An analog of communication locality is synchronization locality; 

Gibbons' algorithm work [Gl] [G2] is essentially towards those that exhibit good strict syn

chronization locality. We defined general locality to subsume both strict and neighborhood 

locality, in terms of both communication and synchronization (simultaneously). 

In [ACS2], Aggarwal, Chandra, and Snir augment the LPRAM with block pipelining 

capability and call the resulting model a BPRAM. The BPRAM can transfer a contiguous 

block of g words from global memory into local memory in time l + g, and thus represents 

the resource of memory granularity in parallel machines. If we allow block pipelining in the 

H-PRAM, the BPRAM is an instance of the H-PRAM in the same way that the LPRAM is. 

Valiant's architectural (in our opinion) model (BSP [V2]; XPRAM [V3]) considers com

munication, synchronization, and memory granularity in a unified framework, so in this sense 

is related to our work. In it processors run asynchronously but synchronize with each other 

at fixed periods of time; the amount of time between synchronizations is called the period

icity. Processors employ arbitrary pipelining and simulate a number of virtual processors 

proportional to the periodicity in order to efficiently simulate a PRAM. It does not employ 

hierarchy or represent general locality. 

Neighborhood locality has received some attention in terms of networks in distributed 

computing [AGLP] [API]. 

3 Relations to architectures 

The original purpose in designing the H-PRAM model was to obtain an idealized model 

retaining as many properties of the PRAM as possible, but accounting for and providing 

abstract control over communication and synchronization costs. It turns out that the H

PRAM reflects (is fairly close to) a variety of existing and proposed architectures, in that 

they are able to support its computing style. 

In the previous section we noted that some other models of computation can be seen as 

instances of the (uniform and/or non-uniform) H-PRAM. It follows that these models are 
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reflective of any architecture the H-PRAM is reflective of (when the H-PRAM cost functions 

are charged in the analysis of their algorithms). Also, these restricted instances of the H

PRAM are reflective of any architectures that those models are. 

In Subsection 3.1 we discuss relations, or mappings, of the H-PRAM to architectural 

models with respect to the issues of structure (partitioning) and operation. Subsection 3.2 

considers some specific, practical issues arising from the mapping of the H-PRAM's shared 

memory to an architecture's physical memory. 

3.1 Structural and operational mapping 

An architecture where processes may proceed at different and varying speeds is said to 

present a non-uniform environment [CZ2]. Non-uniformity arises in "process oriented" (or 

implicit scheduling) architectures, where a user program may create an arbitrary number of 

processes and an architecture's operating system is responsible for scheduling and managing 

their execution on a (usually) small number of powerful processors (which is a very involved 

procedure). Without extremely efficient dynamic scheduling and load balancing mechanisms 

in process oriented architectures, a synchronization assumption results in algorithms which 

perform poorly in the resultant non-uniform environments, thus the significant amount of 

work on asynchronous PRAMs which relax this assumption. Since the H-PRAM retains the 

assumption, even though controlling the extent of it, it seems not especially well suited for 

architectures presenting a non-uniform environment, such as most existing shared memory 

MIMD architectures. 

On the other hand, an architecture where processes proceed at predictable and relatively 

similar speeds presents a uniform environment. "Virtual processor oriented" (or explicit 

scheduling) architectures generally result in uniform environments. In these types of archi

tectures, a user program is given a fixed set of processors to work with explicitly, where 

each processor may simulate a number of virtual processors. Since physical processors are 

identical, each generally simulates the same number of virtual processors, and their inter

connection networks are have a regular structure, there is little variation between the speeds 

of the processors as seen from the user program. Distributed memory architectures are 

usually virtual processor oriented, and thus present uniform environments; they also have 

more potential for general purpose massively parallel computing because of their relative 

scalability. 

In relating the H-PRAM to architectures we generally consider architectures that present 

uniform environments, i.e. virtual processor oriented, distributed memory architectures. 
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However, it may be that certain hierarchically structured, process oriented architectures 

(with efficient partitioning, scheduling, and load balancing mechanisms) would be able to 

support the H-PRAM. A hierarchically structured system may be able to reduce the degree 

of non-uniformity via partitioning, thus "controlling its extent" analogously to the way we 

control the extent of synchronization and communication costs. 

In order to fully support the H-PRAM, an architecture must basically be capable of 

recursively partitioning itself into independent "subsystems". If it is able to do this is such 

a way that the subsystems are "contiguous", in that they may be seen as smaller parallel 

computers that sub-models of the H-PRAM can be logically mapped onto, then the H-PRAM 

provides an accurate and abstract reflection of it, as a computational model is supposed to. 

For the uniform H-PRAM variant, a subsystem in the architecture consists of processors, 

since a-synchronization cost in an overlaying sub-PRAM is a function of number of processors 

participating. For the non-uniform variant, a subsystem consists of processors and memory, 

since a-synchronization and latency are functions of number of processors participating in 

this case. The property of partitionability into "contiguous" subsystems is a very reasonable 

requirement for a general purpose parallel computer; one argument for this is that any multi

user computer will necessarily be partitionable in some way. By recursively partitionable, we 

mean that subsystems obtained from a partitioning may be further partitioned themselves, 

and this may continue until a certain smallest subsystem size is reached (such as a single 

processor); this gives rise to a hierarchy of subsystems. 

There are two issues to address in partitioning into subsystems: the partitioning of 

synchronization (or control communication), resulting in asynchronous control, and the par

titioning of the physical resources of the architecture (e.g. processors, memory). There are 

two methods of partitioning synchronization. The first is by computing in Multiple SIMD 

(MSIMD) style, where subsystems operate in SIMD mode. In this sort of system the sub

PRAMs of the H-PRAM would run in SIMD mode rather than just synchronously (this is 

no drawback; as noted in Section 2.3.2 synchronous MIMD execution has questionable value, 

and we are unaware of any MIMD PRAM algorithms). PASM [SSKD] [SSKMSS] is a system 

that has been built that can support this type of computing; it consists of a two-level hierar

chy where subsystems can run in either SIMD or MIMD mode. The GPA Machine [B2) is a 

proposed two-level MSIMD architecture which has more partitioning flexibility than PASM. 

The other method of partitioning control is by having a completely asynchronous system, and 

using synchronization primitives to implement (a) synchronization steps within subsystems. 

Barrier synchronization (see (KRS) and (G2]) and (maybe) network synchronizers adapted 
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from distributed computing [A] [AP2] [PUl] [ER] are possible primitives. Barrier synchro

nization of P' sub-PRAM processors should be implementable in time O(l(P')) on most 

architectures. This follows from the fact that prefix/scan operations (which can implement 

a barrier synchrqnization step) can be implemented in time 0( l( P')) on most architectures 

(actually O(diam(P')); recall that O(l(P')) is not necessarily the diameter of a P'-processor 

network but diam(P') < l(P')). Busy-waiting would have to be incorporated into a pre

fix/scan barrier synchronization operation, but the overhead of it would be negligible since 

a sub-PRAM algorithm is tightly synchronized, with processors executing the same types of 

instructions at the same rate. The maximum difference between times needed by processors 

participating in one parallel step to complete their instructions is O(l(P')) (the shortest 

time required by a single instruction in a single processor is unit time, while the longest is 

O(l(P'))), which does not dominate the time needed by a prefix/scan operation. 

Note that in massively parallel computing, MSIMD architectures may be preferable to 

both SIMD and MIMD from a synchronization cost point of view. Synchronization under 

MIMD has a high cost, but is not done after every algorithm step. Under SIMD, synchro

nization has lower cost but is done after every step, and becomes more costly as the number 

of processors to synchronize grows. 

Feitelson and Rudolph [FR] have addressed the issue of partitioning control in the context 

of operating systems; they propose a hierarchical system for general purpose, interactive, 

multi-user parallel computing. Partitioning of physical resources is also addressed. In the 

context of user programs, the H-PRAM might be reflective of a system such as this. However, 

we note that this system is a process oriented one. 

The partitioning of the physical resources of an architecture depends on its interconnec

tion network. There have been conflicting definitions of "partitionable" and "hierarchical" 

in the literature in the context of interconnection networks. We use the following defini

tions. A network is partitionable if it can be divided (once) into independent sub-networks 

that have the same interconnection properties (topology) as the larger, whole network. The 

network is recursively partitionable if each sub-network resulting from a partitioning can be 

further partitioned in the same way, and this recursive decomposition of the network can 

continue until some "smallest" possible sub-network is obtained (usually a single processor). 

A network is hierarchical if it can be recursively decomposed, as a recursively partitionable 

network can, except that the topology of a sub-network need not be the same as the network 

that was partitioned to obtain it. Thus "hierarchical" subsumes "recursively partitionable", 

which in turn subsumes "partitionable". Siegel [Sl] has discussed recursive partitionability 
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of general interconnection networks. 

In the following, we are solely concerned with distributed memory architectures, where 

the global memory consists of the union of the local memories of the processors. Thus 

the partitioning of proc~ssors naturally partitions the memory proportionately, and these 

architectures can support the non-uniform H-PRAM. They can also support the uniform H

PRAM by simply ignoring the effect that partitioning of processors has on the global memory. 

(Subsection 3.2 considers issues of supporting the H-PRAM's shared memory abstraction on 

architectures' physically distributed memory.) 

The H-PRAM is reflective of partitionable (although restricted to being a two-level H

PRAM), recursively partitionable, and hierarchical networks. The PASM and GPA are 

both partitionable architectures. Examples of recursively partitionable networks are the 

hypercube, mesh, and star graph [AK] (the hypercube and star graph are Cayley graphs 

[AK], a class of graphs that are highly symmetric and recursively partitionable; thus, the 

H-PRAM would be reflective of any Cayley graph). Kruskal, Rudolph, and Snir [KRS] 

have stated that "most models" satisfy the property that Q processors can simulate n( Q I P) 

independent P processor models with constant overhead, for Q > P. This could be seen as an 

alternative definition of recursive partitionability. PRAM models, hypercubes, and meshes 

have this property, but butterfly and related networks do not (in particular, constant degree 

networks that permute in logarithmic time do not possess this property [KRS]). 

There have been numerous proposed hierarchical architectures where interconnection 

properties are identical within the same level of hierarchy but may differ between different 

levels. This work is based on the recognition that many problems exhibit natural (neighbor

hood) locality of communication and it is thus possible to reduce the number of communi

cation links between sub-networks and as a result efficiently accommodate a larger number 

of processors. These architectures are typically more sparsely connected at the higher levels 

of hierarchy and more densely at the lower levels. Cm* (SFS] and CEDAR (GKLS] have 

two-level cluster-based hierarchies. Cluster-based hierarchical systems have been proposed 

based on crossbars [AM] and shared buses [WL]. Carlson [Cl] has proposed mesh based 

hierarchies, and Hwang and Ghosh [HG] have designed hypercube and tree based hierarchi

cal networks. Dandamudi and Eager [DE) have investigated hierarchical networks composed 

of combinations of a number of different topologies. Youssef et al. [YNl] [YN2} [BY] have 

recently defined "banyan-hypercube" networks. There is undoubtably many more such pro

posed architectures which we have not referenced here. 

Since hierarchical architectures have been considered one of the most realistic ways to 
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build massively parallel computers, due to their cost-effective scalability (via minimization of 

the number of communication links), the H-PRAM naturally suggests itself an ideal model 

of massively parallel computation. Additionally, the property of recursive decomposability 

in a network greatly helps manufacture, since it can be constructed from a large number of 

relatively few kinds of components [V3). The conclusion is that the H-PRAM seems to have 

a nice "fit" with large scale parallel architectures that are likely to be built. 

An H-PRAM variant with different cost parameters for each level of hierarchy would be 

most reflective of hierarchical architectures, due to differences in interconnection properties 

between different levels. Potentially, design and analysis of H-PRAM algorithms could use 

parameters l).., (sa)>., and (s.a)>. according to which level of hierarchy A a sub-PRAM algo

rithm is meant for, depending on how much accuracy in cost reflection is desired. However, 

single latency, a-synchronization, and P-synchronization parameters may very well provide 

adequate approximation while keeping things simpler (again, we do not want too many 

parameters). 

The cost of ,8-synchronization has been defined to "usually" be a function of the number 

of sub-PRAMs created by the partition step being synchronized. This can be justified as 

follows. Since all processors within a level .A+l sub-PRAM have been synchronized following 

the last step of its algorithm, only one designated processor in each sub-PRAM needs to par

ticipate in a level A P-synchronization step among the sub-PRAMs. Sub-PRAMs are mapped 

to sub-networks in the architecture; let Q again be the number of sub-PRAMs/sub-networks. 

The logical network over which P-synchronization communication is done is obtained by con

sidering each sub-network as a node and linking these nodes according to the interconnection 

links between the designated processors of each sub-network (the designated processors of 

the sub-networks should be chosen such that they are collectively "close"). Thus, for the 

purpose of P-synchronization, we get a logical network of Q nodes. Usually, in hierarchical 

architectures the diameter of this logical network is a function of Q, however there may be 

exceptions where it is also a function of P', where P' is the number of processors in the 

level .A PRAM. Hence, in most cases, the cost of P-synchronization is a function of Q. When 

this is so, it may be quite common to have sf3(Q,P') = sa(Q) for networks possessing a 

regular structure. This is the case for the hypercube; it partitions in such a way that both 

the sub-networks and the logical network that P-synchronization is performed on are also 

hypercubes. 

The two-dimensional mesh is an architecture where P-synchronization is also a function 

of the number of processors P' in the PRAl\f performing a partition step on Q sub-PRAMs. 



It is generally not possible to choose designated processors in each sub-network such that 

they form a logical network whose diameter is a function of Q. 
As some of the referenced papers mention, patterns of communication locality can be 

used to optimize topologies at various levels of hierarchical networks. These patterns can be 

isolated by considering certain application domains, such as computer vision. We suggest 

that an abstract model such as the non-uniform H-PRAM would be an excellent tool for 

studying general properties of locality in problems, and thus drive topological optimization 

in hierarchical networks for general purpose parallel computing. 

The point may be raised that the H-PRAM allows arbitrary partitioning but realistic 

architectures naturally restrict the sizes and numbers of sub-networks. This can be countered 

by a weak argument and a stronger argument. The weak argument is that the H-PRAM is 

by definition an abstract model, and will adequately reflect an architecture even if its sub

PRAMs do not perfectly map onto an architecture's sub-network; in other words costs will be 

proportional to the numbers and sizes of sub-models, and the depth of the hierarchy, in both 

the H-PRAM and the architectural model. Remember from the introduction that we are 

not (necessarily) looking for perfect reflectivity of architectures. The strong argument is that 

we can map a sub-PRAM onto the nearest-sized sub-network; most networks can simulate 

differently-sized versions of themselves with only a constant loss of efficiency [KRS]. 

H hierarchy were introduced into Valiant's architectural model [V2] [V3], there would be 

a close relationship between it and the H-PRAM. This seems like a reasonable prospect since 

hardware designs have exhibited hierarchy (and Valiant specifically discusses the hypercube 

as an implementing network), and ideal since it is proposed as a parallel counterpart of the 

von Neumann architectural model, i.e. as a standard. A hierarchy capability does not have 

to be used. 

3.2 Memory mapping 

Since latency is a parameter of the H-PRAM, the results of this paper are independent of 

(the costs of) any particular technique for "implementing" the H-PRAM's shared memory 

on a distributed memory architecture. Still, for practical reasons, it is important to consider 

the issues behind it. 

The PRAM effectively automates all memory management; an algorithm deals with a 

collection of memory locations, each of which can be accessed in unit time. As stated, this 

results in simplicity of usage, but its realization (simulation) has a cost. On the other hand, 

distributed memory architectures require m.mual memory management; an algorithm needs 
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to explicitly map data to the local memories of processors and change mappings (using 

explicit communication links) as necessary. As stated, this is significantly more difficult but 

leads to more efficient use of architectures. 

Automated memory management essentially means PRAM simulation, which consists 

of the mapping of a shared memory space onto the physical memory of the simulating 

architecture. Since the uniform H-PRAM employs one large, fixed shared memory, like the 

PRAM, it embodies automated memory management, and known techniques using hashing 

can be used to simulate it (this is one reason for its existence). The nature of memory 

management in the non-uniform H-PRAM lies between the extremes of totally automated 

and totally manual. Therefore, in terms of memory management it provides a good balance 

(compromise) between simplicity and efficiency (or reflectivity of an architecture). In the 

non-uniform variant, H-PRAM algorithms need to map data to blocks of memory that will 

become sub-PRAMs' private blocks of memory when a partition step is executed. To be more 

specific, consider a partition step in an algorithm running on a (sub)-PRAM in level A of a 

hierarchy, and suppose it creates Q level A+ 1 sub-PRAMs. Then prior to the partition step 

the level A algorithm maps groups of data (not necessarily contiguous in the level A PRAM's 

memory) into Q blocks of contiguous memory according to the purpose of the algorithm. 

In other words, the level A PRAM's memory is permuted prior to a partition step so that 

data are grouped into blocks of memory; each block will become the private memory of a 

level A+ 1 sub-PRAM. In the remainder of this section, we concentrate on the non-uniform 

variant of the H-PRAM. 

Since, in a distributed memory architecture, the physical memory is partitioned into 

blocks along with the processors, there needs to be a method (a memory mapping scheme) 

that maps contiguous blocks of the non-uniform H-PRAM's shared memory to contiguous 

blocks of physical memory (i.e. to the local memories of processors forming a sub-network 

that a sub-PRAM is mapped to). Given this mapping scheme, the algorithm designer has 

abstract control over the mapping of data to the physical memory of an architecture. This 

would be analogous to the data is explicitly mapped to processors in distributed memory 

algorithms, except that data need only be kept in the right "groups", and "groups" mapped 

to contiguous sets of processors (sub-networks). This is what we mean by "abstract control" 

over memory mapping. 

The details of a mapping scheme depend on the details of the automated memory man

agement, or simulation of the level A PRAM, with respect to the underlying architecture. 

Known PRAM simulation techniques use hash functions to map shared memory locations to 

35 



physical memory locations so that any combination of memory accesses completes quickly 

with high probability. Given that this technique is used to simulate sub-PRAMs, a possible 

mapping scheme could just unhash the memory, assuming that the given hash function is 

a permutation (i.e. one-to-one, which linear-polynomial pseudo-random hash functions are 

(V2]). In this case, unhashing entails performing a permutation on the memory defined by 

the inverse of the hash function. This operation could be part of an implementation of a 

partition step. An implementation of a partition step would also have to hash the memo

ries of the Q level..\+ 1 sub-PRAMs onto the physical memories of Q sub-networks of an 

architecture, so as to simulate them. Since both the mapping scheme (unhashing) and the 

hashing operation entail permutations, their composition is a single permutation and can 

implement the memory management part of a partition step. When level A+ 1 sub-PRAM 

algorithms terminate, i.e. the level A partition step terminates, the inverse permutation is 

executed, i.e. the memories of the level A+ 1 sub-PRAMs are unhashed and the memory of 

the level A PRAM is (re)hashed. 

The reader is referred to [V2] and references therein for discussion on properties of hash 

functions. 

The permutation of N' elements by P' processors can be done in time O((N' / P')l(P')) on 

a P'-processor sub-PRAM (any variant) of the H-PRAM. Thus the overhead of this possible 

memory mapping scheme would not normally effect the complexity of a sub-PRAM algorithm 

by more than a constant factor. Recall that sub-PRAM algorithms which undertake memory 

management execute a permutation prior to (and after) a partition step anyway. 

PRAM simulation and mapping schemes are research topics in their own right, and 

depend on underlying architectural models. 

One drawback to current PRAM simulation techniques is that they obliterate (through 

hashing) any natural communication locality that may be present in an algorithm. The non

uniform H-PRAM has the potential to reduce the scope of this problem, via simulation of 

multiple smaller sub-PRAMs (this constrains the extent of obliteration to be within the sub

network simulating the sub-PRAM). Another possible advantage of the non-uniform variant 

is that it may allow the efficient usage of larger parallel architectures than could be done 

otherwise. To see this, note that as an architecture scales up, its communication bandwidth 

must grow faster than its computation bandwidth, in order to maintain the same level of 

efficiency (V1] [V3]. By increasing the number of sub-PRAMs in a non-uniform H-PRAM 

algorithm as an architecture scales up, thus reducing the sizes of the sub-PRAMs relative to 

an architecture's size, the need for higher communication bandwidth is reduced. 
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If a parallel computer has the resource of memory granularity, or pipelining, thought 

needs to be given as to whether it is best represented in the computational model level of 

abstraction or the architectural model level of abstraction. An arbitrary pipelining capability 

can be combined with a sufficient reduction in parallelism in an architecture to achieve PRAM 

simulation with only a constant loss of efficiency [V2] [KRS] (reduced parallelism means that 

the simulating architecture has less processors than the simulated PRAM). This suggests that 

the correct placement of of arbitrary pipelining representation is in the architectural model. 

The choice for block pipelining is less clear and reduces to whether we consider the BPRAM 

[ACS2] an architectural or computational model. Although the decision is subjective, we 

do note that first, the BPRAM does not need simulation on an architecture as (or to the 

extent) the PRAM does (since blocks of memory accessed in parallel must be disjoint), and 

second, block pipelining may in some way be useful in an architectural model to support a 

memory mapping scheme in the overlaying H-PRAM computational model. 

There is one situation where employing the BPRAM as a sub-model of the H-PRAM 

(therefore representing block pipelining in the H-PRAM) may be beneficial. If a program

ming model overlaying the H-PRAM has data structures that use sets, thus operating on 

sets of data in parallel, these sets could be mapped to blocks of memory in the BPRAM sub

models of the H-PRAM. This could potentially allow a programmer to use an architecture 

very efficiently. 

4 Relations to programming models 

In this section we briefly discuss relationships between the H-PRAM computational model, 

and existing and potential programming models which could overlay it. Although we have 

defined a programming model to be a formalized definition of a programming language, 

we may use the terms "programming model" and "programming language" interchangeably 

without ambiguity. Generally, a programming model is the view of a computer as seen by 

an applications programmer. 

Most existing parallel programming languages are either strictly SIMD or strictly MIMD, 

so could not directly take advantage of the full capabilities of the H-PRAM. However, SIMD 

languages could be augmented with partitioning operations to obtain MSIMD languages that 

can effectively use the H-PRAM (where sub-PRAMs operate in SIMD fashion, rather than 

just synchronously). 

Steele [S4] has recently discussed the design of a programming model that organizes 
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asynchronous control via a hierarchy, and where asynchronous communication is disallowed 

(enforcement mechanisms are part of the model). Although based on sequential processes, 

rather than collections of processors (i.e. sub-PRAMs), it is a promising development. Some

thing along these lines may provide an ideal programming model overlaying the uniform H

PRAM, as it assumes a single (i.e. non-partitionable) global shared memory. Gibbons (G2] 

has discussed general issues of determinate ("semi-synchronous") programming models with 

respect to computational models that partition synchrony but not communication (mem

ory), as the uniform H-PRAM does. We stress that any programming model overlaying the 

uniform H-PRAM must enforce determinacy (synchronous communication; see Section 2.2). 

Programming models for the non-uniform variant would be easier to design, since this 

variant of the H-PRAM takes on the responsibility of enforcing synchronous communication 

itself. We have noted that the non-uniform H-PRAM has a natural fit with the paradigm 

of divide-and-conquer. Mou [M2] has recently designed a programming model for scien

tific computing based on divide-and-conquer called Divacon, which could likely make very 

effective use of the non-uniform H-PRAM. 

A programming model that has set data structures, operating on and communicating 

sets of data in parallel, could efficiently use an architecture capable of block pipelining. This 

was discussed in Section 3.2; the sub-models of the H-PRAM underlying a programming 

model of this type would be BPRAMs. 

Finally, the ability of the H-PRAM to control the conceptual complexity of large parallel 

applications requires that overlaying programming models have facilities for supporting the 

modular construction of software. 

5 Conclusions 

We have introduced the Hierarchical PRAM (H-PRAM), a model of parallel computation 

that retains the ideal properties of the PRAM by using it as a sub-model, while simultane

ously being more reflective of realistic parallel architectures by accounting for and providing 

abstract control over communication and synchronization costs. The use of hierarchy con

trols conceptual complexity in the face of asynchrony in two ways. First, by organizing 

control asynchrony such that synchronization points are implicit in an H-PRAM algorithm's 

structure. Second, by restricting communication asynchrony such that algorithms are de

terminate and thus easy to prove correct, unlike algorithms for most other asynchronous 

environments. Additionally, this means that there is no need for costly synchronization 
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primitives in underlying architectures. Since the PRAM is a sub-model of the H-PRAM, we 

can retain direct relevance of established theory of parallel computing, and build on it in a 

manner of construction from components. From a purely aesthetic viewpoint, the H-PRAM 

is logical model in that it provides the simplifying assumption of synchronous execution 

to the design of algorithms, but allows the algorithms to work asynchronously with each 

other, which corresponds to the way real-world applications are: collections of individual 

algorithms which, as systems, have asynchronous functional definitions. The process of con

structing an H-PRAM algorithm is analogous to the software engineering process in the 

sequential domain, i.e. modular construction of larger and larger components. 

The uniform variant of the H-PRAM passes the responsibility for enforcing determinate 

computation to an overlaying programming model. As noted, there has been encouraging 

work on programming models that do this. Programming models for the non-uniform variant 

(which provides more control over costs) would be easier to design, since this variant of the H

PRAM takes on the responsibility of enforcing determinacy itself. In the other direction, we 

have shown that the H-PRAM is reflective of a variety of existing and proposed architectural 

models. Thus, the H-PRAM could possibly serve as a bridging model at a higher level of 

abstraction than that proposed by Valiant [V2] (and higher than the von Neumann model 

is in sequential computing). 

Since hierarchical architectures have been proposed as the most realistic way of building 

cost-efficient massively parallel computers, the H-PRAM suggests itself as an ideal model 

of massively parallel computing. Inter-level topologies of hierarchical architectures can be 

optimized to match certain common patterns of general locality; it thus follows that the 

H-PRAM could potentially be used to discover these patterns and thus drive topological 

optimization. Additionally, general locality (using the non-uniform H-PRAM) could allow 

the efficient usage of larger parallel architectures than could be done otherwise since, as an 

architecture scales up, its communication bandwidth must grow faster than its computation 

bandwidth, in order to maintain the same level of efficiency [Vl] [V3]. By increasing the 

number of sub-PRAMs performing "localized" communication in a non-uniform H-PRAM 

algorithm as an architecture scales up, thus reducing the sizes of the sub-PRAMs relative to 

the architecture's size, the need for higher communication bandwidth is reduced. 

Strict communication locality, as defined by the ratio of computation to communication 

steps, seems to have its limits in that certain problems do not submit to it, and those that 

do have sometimes severe restrictions on the number of processors efficiently usable. The H

PRAM provides a flexible tool to investigate' general degrees of locality ("neighborhoods" of 



activity) in problems, considering communication and synchronization simultaneously, which 

gives the potential of obtaining algorithms that map more efficiently to architectures, and of 

allowing the efficient usage of more processors (in comparison to a PRAM that charges for 

communication and synchronization). We demonstrate this in the companion paper [HR] 

via various algorithms for computing complete binary trees and FFT graphs. The H-PRAM 

presents a framework in which to study the extent that general locality can be exploited in 

parallel computing. 

Finally, it would be interesting to investigate alternative hierarchy relations for organizing 

asynchrony, such as in (M1]. 
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